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Abstract

This paper presents a statistical analysis of the
Davis-Putnam procedure and  propositional
satisfiability problems (SAT). SAT has been
researched in Al because of its strong relationship
to automated reasoning and recently it is used as a
benchmark problem of constraint satisfaction
algorithms. The Davis-Putnam procedure is a well-
known satisfiability checking algorithm based on
free search technique. In this paper, | analyze two
average case complexities for the Davis-Putnam
procedure, the complexity for satisfiability
checking and the complexity for finding all
solutions. | also discuss the probability of
satisfiability. The complexities and the probability
strongly depend on the distribution of formulas to
be tested and | use the fixed dause length model as
the distribution model. The result of the analysis
coincides with the experimental result well.

1 Introduction

This paper presents a statistical analysis of the Davis-
Putnam procedure [Davis and Putnam, 60] that solves
propositional satisfiability problems (SAT). SAT is the
problem to judge whether a given logical formula, given as
a conjunctive normal form (cnf), can be satisfied or not. It
has been researched in Al because of its strong relationship
to automated reasoning such as theorem proving ad
planning. Recently, it is also concemed as a benchmark
problem for constraint satisfaction algorithms [Selman,
Levesque and Mitchell, 92][Yugami, Ohta and Hara, 94].
The Davis-Putnam procedure is one of the most famous
algorithms for SAT.

A number of papers discussed the difficulty of SAT
theoretically. Because of its NP-completeness, SAT requires
more than polynomial time in the worst case, assuming

NPnot =P, and the analysis of SAT concentrated on the average

case behavior. Goldberg et. al. showed that the Davis-
Putnam procedure, on average, could solve SAT in
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polynomial time of the number of variables [Goldberg,
Purdom and Brown, 82]. They assumed the constant
probability model as a distribution model of formulas to be
tested. Franco and Paull pointed out that this easiness of
SAT strongly depended on the distribution model ad
proposed a new distribution model, the fixed dause length
model [Franco and Paull, 83][Franco, 86]. They showed that
the Davis-Putnam procedure required exponential time for
finding all solutions, assignments that satisfied the given
formula, on this distribution model [Franco and Paull,
83][Franco, Plotkin and Rosenthal, 87]. This result is
relevant to the original SAT, satisfiability checking, when
few assignments satisfy the formula. Chao and Franco
showed that the Davis-Putnam procedure with the unit
dause rule could solve SAT without backtracking, i.e. it
required only polynomial time on the fixed dause length
model with a small clauses-to-variables ratio (smaller than
29 for 3-SAT). [Wiliams and Hogg, 94] analyzed the
difficulty of general constraint satisfaction problems by
using the structure of the assumption lattice. Reoent
experimental works showed more precise results of the
average cae behavior of the Davis-Putnam procedure.
Mitchell et. al. reported the dependency of the Davis-Putnam
procedure’'s average case complexity on the dausesto-
variables ratio and showed its drastic change near the 50%
satisfiable point [Mitchell, Selman and Levesque, 92]. The
complexity became maximum near the 50% satisfiable point
and deaeased rapidly when the ratio became larger or
smaller. [Crawford and Auton, 93] reported similar results
by using tableau based satisfiability checking algorithm.

The purpose of this paper is to analyze the Davis-
Putnam procedure's average case behavior on the fixed
dause length model, especially its dependency on the
dauses-to-variables ratio. | discuss two complexities, the
complexity for satisfiability checking and the complexity for
finding all solutions. | also discuss the probability of
satisfiability.

The organization of this paper is as follows. | first
review the Davis-Putnam procedure and the fixed dause
length model in the following two sections. Section 4 gives
the statistical analysis of the average case complexities and



the probability of satisfiability. The results of section 4 arc
compared with experimental results in secton 5. |
summarize my results in section 6.

2 Davis-Putnam Procedure

Figure 1 shows the Davis-Putnam procedure (DP). It takes
a cnf as an input and retums whether the cnf is "satisfiable”
or "unsatisfiable" It solves SAT by searching an
assignment that satisfies all causes. DP uses the unit
propagation (unit dause rule) to improve its performance.
The unit propagation selects a variable in an unit dause, a
dause containing a single literal, and assigns a value to the
variable to satisfy the clause. In the original DP, the pure
literal rule is also used to improve DP, but | ignore it in
this paper because the unit propagation is much more
powerful.

| use the number of DP calls as the complexity of DP. |
modify DP to simplify the analysis. Figure 2 shows the
modified procedure, SDP. The only difference between DP
and SDP is that SDP does not check whether all dauses ae
satisfied or not. It finds all dauses are satisfied when all
variables are bound and no empty dause exists. The
difference is not essential because if a partial assignment
satisfies all dauses, then no backirack occurs after that. This
means that the number of SDP calls for satisfiability
checking is larger than the number of DP calls by at most
the number of variables and usually the difference is very
small. For finding all solutions, there is no diference
between DP and SDP.

3 The Fixed Clause Length Model

The complexity of SDP, and DP, strongly depends on the
distribution of cnfs to be tested. It this paper, | use the fixed
dause length model as the distribution model. This model
has three parameters, the number of variables, N, the dause
length, K and the number of dauses, M. A cnf on this
mode! consists of M dauses and each dause contains K
literals. In a clause, each variable appears at most once. A
formula to be tested is randomly selected from the set of all
cnfs that satisfy these conditions. The important feature of
this model is that the dauses in the cnf are mutually
independent. SAT on the fixed dause length model with
dause length K is calledk-SAT.

4 Analysis
4.1 Probabilities of becoming empty and unit

On k-SAT, a dause contains K literals first and becomes
satisfied or becomes shorter when SDP assigns values to
variables incrementally. In SDP, an empty dause and an
unit dlause perform important roles. | first discuss the
probabilities of becoming empty or unit when b variables
are bound and r variables are removed "Remove a variable™
means deleting both of positive and negative literals of the
variable from the cnf. SDP, and DP, does not do such a
thing but | will use removed variables to discuss the

procedure DP
Input: A cnf to be tested
Output: "satisfiable"or "unsatisfiable"
step 1 : Unit Propagation
While there is no empty dause and an unit dause
exists, select an unit dause and bind a variable in
it to satisfy it.
step 2 : Satisfiability Checking
If all dauses are satisfied, retum "satisfiable".
step 3 : Unsatisfiability Checking
If an empty dause exists, retum "unsatisfiable"
step 4 : Splitting Rule
Select a variable whose value is not assigned.
Assign true to it and call DP. If the result is
"satisfiable" then retum "satisfiable". Otherwise,
assign false to the variable and call DP again.
Retum the result of it.

Figure 1: Davis-Putham Procedure

procedure SDP
Input: A cnf to be tested
Output: "satisfiable"or "unsatisfiable™
step 1 : Unit Propagation
While there is no empty dause and an unit dause
exists, select an unit dause and bind a variable in
it to satisfy it.
step 2 : Unsatisfiability Checking
If an empty dause exists, retum "unsatisfiable"
step 3 : Satisfiability Checking
If all variables are bound, retum "satisfiable".
step 4 : Splitting Rule
Select a variable whose value is not assigned.
Assign true to it and call SDP. If the result is
"satisfiable"then retum "satisfiable". Otherwise,

assign false to the variable and call SDP again.
Retum the result of it.

Figure 2: SDP, a variant of Davis-Putnam
Procedure

probability of satisfiability. For simplicity, | use "at (b,r)"
to represent "when b variables are bound and r variables are
removed". Letp,(b.7) be the probability of becoming empty
at (b,r). A dause becomes empty when all variables in it are
bound or removed and values of bound variables violate the
comresponding literals. Thus the desired probability is

minigty (O 7

pon- 3 Sl
remdliK-r) g

YUGAMI 283



Where, n is the number of bound variables in the dause and
K - n varables in the dause are removed. The probability
of becoming unit can be obtained by the same way. The
only difference is that the dause contains one variable that
is not bound Ifb+r=Norb+r=sX-2,the
probability is 0 and otherwise,

Next, I discuss the transition probabilities from unit
clause to empty clavse, unit clause to nnit clause and so on.
An unil clause becomes empty if the vanable of the
remaining literal in it is bound and the assigned value
violates the literal, or the variable is removed. Thus a clause
that iz unit at (b,,r,) becomes empty at (b)) (b,<h,,
r,<r,) with probability

1, - )+ (5 - 1)

Pu—elbr.n by,77) = N-(b+/)

The probability that an unit clause at (b,,r,) is also unit at
by} Pyai(Br, 1, ba.1), and the probability of becoming
satisfied at (b;.r;). Pu~s{by.7i.52.5). can be calculated by
the same way.

l‘-hll(b' L§ bz 72)- N_({bhal::fl

(b1 b)
Pu~s(byfinbyn) = N-(G, +1)

Let p,v (b5 .bs.12) be a probability that a clause,
which is nol empty nor umt at (&,.r,), becomes empty at
(b,.ry). Because a clause is pot empty nor unit at (b,,7,)
with probability 1 - p,(8.57) - g, (b7},

Pc(bl'r‘l) - p.(bll rl)"‘pu(bl'rl)Pn-oc(bl'rl-h- 5).)
+{1-2Bn) - G o by 1 o)
By solving this equation for p,.,(b.5.0;.7),

pp*'(bl vr] ' t& !rz)

P.(b: rl) pr(bl ’i) Pu (b[ rj)Pu-e(bL r_l b). Tz)
L pe(Bu k) - pulbiof)

Especially,
Poeglb-10,6,0)m 0
because a value assignment to one variable can make a new

empty clause only from an unit clause.
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The probability of becoming unit can be calculated with
the similar discussion.

Poei{by 1 0y.1y)

(b vr)_ ( 'r) -'u(blvrllbl‘a)
1-pe(b.n)- A1, 5)

For simplicity, | will use the following notations.

pu-oe(b)" Ai-r(b - 1,0. b, 0)
Pu-u{b} = pu—-u(b -10,5,0)
Pu—v:(b) - Pu-.r(b - ln D,b,O)
Pn—’u(b) - Po—ﬁu(b_l-ovbv 0)

4.2 Unit Propagation

The effectiveness of SDP, and DP, is mainly based on the
unit propagation. In this subsection, | discuss the statistical
behavior of the unit propagation when SDP is called with b
bound variables anc{=k) of them are bound by the unit
propagation. Because SDP calls SDP recursively only in
the splitting rule, there is no empty nor unit dause when
b - 1 variables are bound. The number of variables whose
values are assigned by the unit propagation, u, means u
dauses selected for the unit propagation must be satisfied.

To analyze the statistical behavior of the wunit
propagation, | discuss three probabilities, the probability
that the unit propagation binds at least Au variables,
Punu(boti, 8, the probability that SDP defects an empty
dause after the unit propagation binds Awx variables,
pfmi(b w,Au), and the probability that the unit propagation
terminates after binding As variables because there is no
unit dause nor emphp,,,(b.u.AL). Because of their
definitions, they relate to each other through the following
equations.

Pm(b u, du+1) p..,,,(b u, Au)

(L= P, = g 0.0 )]

When Au=0. i.e. when SDP is called, a dause that is not
selected for the unit propagation before the cument SDP is
called, becomes unit with probability p,,,, () and does not

become emply o, (b -1,0,5,0)= 0 Thus,

p,,-,(b.u.{)) ), e (3)
Pipte(b.11,0) = Y= pors BI}

If bxX -2, all unsatisfied dauses contain at least two
literals and the unit propagation can not find an unit dause.
SDP must apply the splitting rule (there must be an
unbound variable be N = K') and the probabilities for
the unit propagation are



b A 1 Aum
Pu B8, 88 =00 pua1
pﬁ,—,(b.u.ﬂ)-ﬂ.
Pspir( D1, 0) = 1.

1 assume & = X —lin the remaining part of this subsection.

When Ax 21, p,,; and p_,, depend on the number of
unit clauses after the previous varable binding in the unit
propagation. Let a be the munber of unit claoses after the
nnit propagaticn binds Aw-1 variables. The umit
propagation selects one of n unit clauses apd binds the
variable in it to satisfy it. Thiz value assignment may make
anew empty clause from the remaining # -1 umil clauses.
Because each unit clause becomes empty with probability
Pune b+ AU},

M- el
Epmm(b.udu— 1,n)
fim| (5}

x [l o T Au)}""] _

Pt (h.u, Aut) =

Where, pum{b u, Au-11n} is the probability that there are
n (2 1) unit clauses after the unit propagation binds Awu -1
variables on the conditons that there 15 no emply clause
and there i5 at least one unit clause, i.e. on the condition
that the unit propagation binds one more vanable.

The prebability that there is no empty nor unit clause,
p,pm(b,u,Au), can be obtained as [ollows. To remove the
remaining » -1 umit clauses, the vaniable binding for the
selected unit clause must satisfy all of them and the binding
must oot make a new unil clause from M-u-{Au-1)-n
non-unit clauses {4 clauses are already satisfied by the unit
propagation before the current  SDP is called, Au-1 are
satsficd by the unit propagason in the curent SDP and #
are unil now). Thus, p‘w,(b,u,Au} is

M-y= sl
E P (b0, 8k = 1)
n=1 (6}

xp, L (b+ Ay {l

Poprs (b, Bui) =

(b + du}}M-u- A¥l-n

= Poes

The remaining problem is to obtain the probahility
Pamibtt, Au-1n). 1 calculate it as a recursion formula
with respect to Au. As 1 mentioned above, I needto calculate
it on the conditions that no empty clausc exisis and at least
one unii clause exists. Thus, a clause that is unit after the
uni{ propagation binds Aw-1 variables, iz also uni1 after
the Auth binding with probability

) b+ Au
pu-hu(b +AH) - 1- Rl-(r(;""di‘) .

The probability that there are #’ unit clauses after the Auth
binding in the unit propagation on the condition that there
are » {=1} unit clanses before the binding, is

Py (b, Au,nn')

= 2 [: ’] Po b+ 80 {L- g, by A}

M-u-Au+l-5
%
A -m

, ]p,,_u b+ duy

M=u=Au+l -n-(n'-m}

*{1- P b+ A0}

Where, m is the oumber of clauses that are unit belore the
Auth variable binding in the unit propagation and also unit
after the binding This means that the vanable binding
causes n' —m new unil clauses. The range of m ia

max(0,n —{M-u-Au+1-n))< m< min{n -1, 1)
This probabtlity leads the following recursion formula.

Prum (b,u, Au.n")
M-+l
z P o (B0, A0 = 1,0 p,(bou, At 0"y
ey (8}

Meti=Aui+ )
I- EP.,..,.,(b.u.du-l.n)p,(b.u,m,n,m

=l

The denominator is a correction for the condition that there

is a1 least one unit clause. When Au=0, i.e. when the unit

propagation starts, p,,. is

(a0 - P
1- {1 = Po—eu (b)} M

Prumlb 4, 0,1t) = (9}

becausc all of Af- u clauses, that are not selected for the
unit propagation before the current SDP is called, are oot
empty nor unit when the spliting rule is applied and the
value assipnment to one variable by the spliting rule can
not make an cmpty clause.

Asaresull, p, - can be obtained from (8)-(9) and with
this probability, I can obtain the probabilities, p, . Py and
Py, that decide the statistical behavior of the unit
propagation from (1)~{6).

4.3 After the Unit Propagation

What happens after the unit propagation finishes? There are
three possibilities, retuming “imsatisfiable” because am
empty clavse exists, returning “satisfiable” because no
empty clause exists and all variables are bound, and applying
the splitting rule. The definitions of p,,,, Py a0d py, lead
the probabilities of these three cases as follows.
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The unit propagation step binAu variables and SDP

* retums "unsatisfiable"
Puris (b- u, AU)PM (br u, AH)

* retums "sausfiable"
0 Au< N-b

Jpw(b.ﬂ. N-bf1-po (b.uN-B)} BuaN-b

= applies the splinting rule
Pung (b3, 800) Py (B4, ) Au<N-b
0 Aum N -b

4.4 Average Case Complexities

In this subsection, | discuss two average case complexities,
the complexity for satisfiability checking and the
complexity for finding all solutions. | use the number of
SDP calls as the complexity.

Let t5,,, ,(b.u) and 15,,(b,u} be the SDP's complexity
for satisfiability checking and the complexity for finding all
solutions when SDP is called with b bound variables and u
of them are bound by the unit propagation. SDP calls SDP
recursively only in the splitting rule and, for satisfiability
checking, the splitting rule calls the second descendant SDP
only when the first one retums "unsatisfiable". Thus,

N-b-1
B bu)y=1+ Pt (b,u,d.u)p,m(b,u,du)
=0

x{2-pop(b+ Aus Lus u)} - (10)
wtr, o (b+ Au el + An)

Where, pepbiu) is the probability that SDP retums
"sausfiable” when it is called with b bound variables and u
of them are bound by the unit propagation. | discuss this
probability in the next subsection. For finding all solutions,
the splitting rule always calls the second desoendent
SDP.

- N=b-1
B by =142 2 Pro (B 14, 800) p, 3, (b, u, i)
An=i

xﬂ'a"(bi- Au+)uy Au)

These two recursion fomulas reduce the complexities of
SDP with N-b unbound variables to the complexities
with less number of unbound variables. When b=N, i.e.
when all variables are bound, SDP does not apply the
splitting rule and

BM(NIR)-EHI(N.H)- i.

When SDP is called first, i.e. when no variable is
bound, the unit propagation does not bind a variable because
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a cX-SAT (K=2) doss not contain an unit clause. SDP
applies the splitting rule and the complexity of each
descendant SDP IS #5,,,,(1.0) or t5,,(1.0). Thus the
average case complexities for k-SAT ae

OCchect = 14 {2 = prp(1,0)} bt (1.0), 0000+ (12)
ac gy .14.25-““(1_0)‘ - (13)

4.5 Probability of Satisfiability

This subsection discuss the protpg,.(b.u)., that SDP
retums "sausfiable" when it is called with b bound variables
and u of them are bound by the unit propagation. The
probability is, of course, a probability that the cnf with the
partial value assignment to b variables is sausfiable.

Let p (b, .u,.b,,7,) be the probability that the cnf with
b, bound variables and r, removed variables is sausfiable on
the conditions that the cnf does not contain an empty nor
unit dause and contains at least v, satisfied dauses when b,
variables are bound and no variable is removed. Because
SDP applies the splitting rule and calls SDP recursively
only when there is no empty nor unit clause, the probability
of retuming "sausfiable" is

Pop (b} = p,(b-Lub.0) e (14)

When & +1 < N, let x be a variable that is not
bound nor removed. The cnf with b, bound variables and r»
removed variables, is sausfiable iff one of the two cnfs, the
cnf generated by assigning true to x and the cnf generated by
assigning false to x, is sausfiable. Because of the definition
of ps, each of the two cnfs is sausfiable with probability
b b+ 1) To obtain pth,.u,.by.n), | need the
probability that both of the two cnfs are sausfiable. It is
very difficult to calculate it and | approximate it with its
lower bound, the probability that the two cnfs share an
assignment that satisfies both of them. In other words, the
lower bound is the probability that the conjunction of the
two cnfs is sausfiable. The conjunction is generated by
removing x from the cnf and the lower bound is
Pi(by.u,.8,.1,+1). This is the reason | infroduced removed
variables" to the analysis. The above discussion leads the
following recursion formula.

P.(b.i by 1)

. 15
- min(1,2p, (5.t By + L) - By 4 ) ()
Whenby + 1, = N, i.e. when all variables are bound or

removed, a dause in the cnf is safisfied with probability
1= pou by 00y 1) ad

M-u

2araii b ry) = {1 = pyy (BB b2. 1 P (16)

The proba pp,pib,u), can be obtained fron (14)~(16}.
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Figure 4: 4-SAT with 50 variables

Because a cof generated on K-SAT (Kz2) contains
neither cmpty nor unit clause, the probability of
satisfiability for K-SAT is

P satisfiaile w p (0,0,0,0), e (1N

4.6 The complexity for computing complexities

It is not 0 easy to calculate the complexities with (he result
of this section because the result contajns many recursion
formulas. The bottleneck of the compulation is to calculate
Pe(bu, Au,nn'). It requires O(M) tinse 1o compute p, for
the given b, u, Au, n, 1" ad O(N*M>) (o compute all
clements of p, becawse of the following relation.

Bibu A nn)s p{b-lLu-1,Au+1nn’)

It is polynomial time but not practical when ¥ and M ae
large. But we don't need to calculate all elements of p,
because many of them are probsbilities for very mre
possibilitics. For example, when b, u, Aw and » are fixed,
the average of n’ is

< n' = {n- g, b+ Au)
+(M-u-Au+l-n)p,, (b+ A

and the standard deviation is
5D =[(n-Dp_ (b+ &u¥l- g (b+ Aw)}

+(M-tu-Au+l-nyp, (b+AuXl-p _, b+ du)}]é.

The approximation, p,{bu, 4w, n.n')= 0, is ressonable
when jn'- < #' »)/ SD] is large.
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Another reasonable approximation is ignoring the
probabiliies of the unit propagation for large Ax. Because
Pnibu.224) monotonically deareases with respect to Auw, if
Poni 210,22y becomes very small, the approximation

Pay b, Au'ym O Au' > Au

does not affect the result. This approximation also deaeases
the number of elements of p, to be calculated and shortens
the computation time.

5 Comparison with Empirical Results

Figure 3 and 4 show the statistical and empirical results of
the probability of satisfiability, p,q;se the complexity
for satisfiability checking, a,,,., and the complexity for
finding all solutions, e, for 3-SAT and 4-SAT with 50
variables. The complexities are the number of SDP calls
that are required for satisfiability checking and for finding all
solutions. The empirical results were obtained by solving
randomly generated 1,000 problems at each dausesto-
variables ratio for 3-SAT and by solving 100 problems at
each ratio for 4-SAT.

The probability of satisfiability coincided with the
empirical result well. The 50% satisfiable points by the
statistical analysis (4.6 for 3-SAT and 104 for 5-SAT) were
alittle larger than the empirical results (4.3 for 3-SAT and
100 for 4-SAT). This difference is caused by the
approximation | used for calculating the recursion formula
for ps. The approximation makes ps larger than the real
value and causes the overestimatioPg,e andPsaisabe-

The complexity for finding all solutions coincided with
the empirical result very well at all dauses-to-varables
ratios. On the other hand, the complexity for satisfiability
checking coincided with me empirical resutt above the 50%
satisfiable point, but became smaller than the experimental
result bellow the point. It became maximum near the 50%
satisfiable point and the statistical results at the pesk (632
for 3-SAT and 29,500 for 4-SAT) were about 20% smaller
for 3-SAT and about 15% smaller for 4-SAT than the
empirical results (671 for 3-SAT and 34,700 for 4-SAT).
These results suggests that the analysis of the unit
propagation, that are commonly used for both of two
complexities, gives the accurate result. The overestimauon
of pgpp deceases the probability of calling the second
descendant SDP  and deceases the complexity for
satisfiability checking. Above the 50% satisfiable point, the
statistical prediction for satisfiability checking coincided
with the empirical result because pgpp becomes very small
and the approximation for it does not affect the statistical
result.

6 Conclusions

In this paper, | analyzed the average case behavior of the
Davis-Putnam procedure on the fixed dause length model.
The analysis included two average case complexities, the
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complexity for satisfiability checking and the complexity for
finding all solutions. | also discussed the probability of
satisfiability.

The results, especially the complexity for finding all
solutions, coincided with experimental results well. The
complexity for satisfiability checking coincided with
experiments above the 50% satisfiable point but became
smaller below the point because of the overestimation of the
probability that a cnf with a partial assignment is
satisfiable.
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