
T h e o r e t i c a l Ana l ys i s o f D a v i s - P u t n a m P r o c e d u r e a n d 
P r o p o s i t i o n a l S a t i s f i a b i l i t y 

Nobuhiro Yugami 
Fujitsu Laboratories 

1015 Kamikodanaka Nakahara-ku 
Kawasaki 211 Japan 

E-mail: yugami@flab.fujitsu.co.jp 

A b s t r a c t 

This paper presents a statistical analysis of the 
Davis-Putnam procedure and propositional 
satisfiability problems (SAT). SAT has been 
researched in AI because of its strong relationship 
to automated reasoning and recently it is used as a 
benchmark problem of constraint satisfaction 
algorithms. The Davis-Putnam procedure is a well-
known satisfiability checking algorithm based on 
tree search technique. In this paper, I analyze two 
average case complexities for the Davis-Putnam 
procedure, the complexity for satisfiability 
checking and the complexity for finding all 
solutions. I also discuss the probability of 
satisfiability. The complexities and the probability 
strongly depend on the distribution of formulas to 
be tested and I use the fixed clause length model as 
the distribution model. The result of the analysis 
coincides with the experimental result well. 

1 Introduction 
This paper presents a statistical analysis of the Davis-
Putnam procedure [Davis and Putnam, 60] that solves 
propositional satisfiability problems (SAT). SAT is the 
problem to judge whether a given logical formula, given as 
a conjunctive normal form (cnf), can be satisfied or not. It 
has been researched in AI because of its strong relationship 
to automated reasoning such as theorem proving and 
planning. Recently, it is also concerned as a benchmark 
problem for constraint satisfaction algorithms [Selman, 
Levesque and Mitchell, 92][Yugami, Ohta and Hara, 94]. 
The Davis-Putnam procedure is one of the most famous 
algorithms for SAT. 

A number of papers discussed the difficulty of SAT 
theoretically. Because of its NP-completeness, SAT requires 
more than polynomial time in the worst case, assuming 
NPnot =P, and the analysis of SAT concentrated on the average 
case behavior. Goldberg et. al. showed that the Davis-
Putnam procedure, on average, could solve SAT in 

polynomial time of the number of variables [Goldberg, 
Purdom and Brown, 82]. They assumed the constant 
probability model as a distribution model of formulas to be 
tested. Franco and Paull pointed out that this easiness of 
SAT strongly depended on the distribution model and 
proposed a new distribution model, the fixed clause length 
model [Franco and Paull, 83][Franco, 86]. They showed that 
the Davis-Putnam procedure required exponential time for 
finding all solutions, assignments that satisfied the given 
formula, on this distribution model [Franco and Paull, 
83][Franco, Plotkin and Rosenthal, 87]. This result is 
relevant to the original SAT, satisfiability checking, when 
few assignments satisfy the formula. Chao and Franco 
showed that the Davis-Putnam procedure with the unit 
clause rule could solve SAT without backtracking, i.e. it 
required only polynomial time on the fixed clause length 
model with a small clauses-to-variables ratio (smaller than 
2.9 for 3-SAT). [Williams and Hogg, 94] analyzed the 
difficulty of general constraint satisfaction problems by 
using the structure of the assumption lattice. Recent 
experimental works showed more precise results of the 
average case behavior of the Davis-Putnam procedure. 
Mitchell et. al. reported the dependency of the Davis-Putnam 
procedure's average case complexity on the clauses-to-
variables ratio and showed its drastic change near the 50% 
satisfiable point [Mitchell, Selman and Levesque, 92]. The 
complexity became maximum near the 50% satisfiable point 
and decreased rapidly when the ratio became larger or 
smaller. [Crawford and Auton, 93] reported similar results 
by using tableau based satisfiability checking algorithm. 

The purpose of this paper is to analyze the Davis-
Putnam procedure's average case behavior on the fixed 
clause length model, especially its dependency on the 
clauses-to-variables ratio. I discuss two complexities, the 
complexity for satisfiability checking and the complexity for 
finding all solutions. I also discuss the probability of 
satisfiability. 

The organization of this paper is as follows. I first 
review the Davis-Putnam procedure and the fixed clause 
length model in the following two sections. Section 4 gives 
the statistical analysis of the average case complexities and 

282 AUTOMATED REASONING 



the probability of satisfiability. The results of section 4 arc 
compared with experimental results in section 5. I 
summarize my results in section 6. 

2 Davis-Putnam Procedure 
Figure 1 shows the Davis-Putnam procedure (DP). It takes 
a cnf as an input and returns whether the cnf is "satisfiable" 
or "unsatisfiable" It solves SAT by searching an 
assignment that satisfies all clauses. DP uses the unit 
propagation (unit clause rule) to improve its performance. 
The unit propagation selects a variable in an unit clause, a 
clause containing a single literal, and assigns a value to the 
variable to satisfy the clause. In the original DP, the pure 
literal rule is also used to improve DP, but I ignore it in 
this paper because the unit propagation is much more 
powerful. 

I use the number of DP calls as the complexity of DP. I 
modify DP to simplify the analysis. Figure 2 shows the 
modified procedure, SDP. The only difference between DP 
and SDP is that SDP does not check whether all clauses ate 
satisfied or not. It finds all clauses are satisfied when all 
variables are bound and no empty clause exists. The 
difference is not essential because if a partial assignment 
satisfies all clauses, then no backtrack occurs after that. This 
means that the number of SDP calls for satisfiability 
checking is larger than the number of DP calls by at most 
the number of variables and usually the difference is very 
small. For finding all solutions, there is no difference 
between DP and SDP. 

3 The Fixed Clause Length Model 
The complexity of SDP, and DP, strongly depends on the 
distribution of cnfs to be tested. It this paper, I use the fixed 
clause length model as the distribution model. This model 
has three parameters, the number of variables, N, the clause 
length, K and the number of clauses, M. A cnf on this 
model consists of M clauses and each clause contains K 
literals. In a clause, each variable appears at most once. A 
formula to be tested is randomly selected from the set of all 
cnfs that satisfy these conditions. The important feature of 
this model is that the clauses in the cnf are mutually 
independent. SAT on the fixed clause length model with 
clause length K, is calledk-SAT. 

4 Analysis 
4.1 Probabilities of becoming empty and unit 
On k-SAT, a clause contains K literals first and becomes 
satisfied or becomes shorter when SDP assigns values to 
variables incrementally. In SDP, an empty clause and an 
unit clause perform important roles. I first discuss the 
probabilities of becoming empty or unit when b variables 
are bound and r variables are removed "Remove a variable'* 
means deleting both of positive and negative literals of the 
variable from the cnf. SDP, and DP, does not do such a 
thing but I will use removed variables to discuss the 

procedure DP 
Input: A cnf to be tested 
Output: "satisfiable"or "unsatisfiable" 

step 1 : Unit Propagation 
While there is no empty clause and an unit clause 
exists, select an unit clause and bind a variable in 
it to satisfy it. 

step 2 : Satisfiability Checking 
If all clauses are satisfied, return "satisfiable". 

step 3 : Unsatisfiability Checking 
If an empty clause exists, return "unsatisfiable" 

step 4 : Splitting Rule 
Select a variable whose value is not assigned. 
Assign true to it and call DP. If the result is 
"satisfiable" then return "satisfiable". Otherwise, 
assign false to the variable and call DP again. 
Return the result of it. 

Figure 1: Davis-Putnam Procedure 

procedure SDP 
Input: A cnf to be tested 
Output: "satisfiable"or ''unsatisfiable" 

step 1 : Unit Propagation 
While there is no empty clause and an unit clause 
exists, select an unit clause and bind a variable in 
it to satisfy it. 

step 2 : Unsatisfiability Checking 
If an empty clause exists, return ''unsatisfiable" 

step 3 : Satisfiability Checking 
If all variables are bound, return "satisfiable". 

step 4 : Splitting Rule 
Select a variable whose value is not assigned. 
Assign true to it and call SDP. If the result is 
"satisfiable"then return "satisfiable". Otherwise, 
assign false to the variable and call SDP again. 
Return the result of it. 

Figure 2: SDP, a variant of Davis-Putnam 
Procedure 

probability of satisfiability. For simplicity, I use "at (b,r)'' 
to represent "when b variables are bound and r variables are 
removed". Let be the probability of becoming empty 
at (b,r). A clause becomes empty when all variables in it are 
bound or removed and values of bound variables violate the 
corresponding literals. Thus the desired probability is 

YUGAMI 283 



Where, n is the number of bound variables in the clause and 
K - n variables in the clause are removed. The probability 
of becoming unit can be obtained by the same way. The 
only difference is that the clause contains one variable that 
is not bound nor removed. the 
probability is 0 and otherwise, 

The probability of becoming unit can be calculated with 
the similar discussion. 

For simplicity, I will use the following notations. 

4.2 Unit Propagation 
The effectiveness of SDP, and DP, is mainly based on the 
unit propagation. In this subsection, I discuss the statistical 
behavior of the unit propagation when SDP is called with b 
bound variables and u of them are bound by the unit 
propagation. Because SDP calls SDP recursively only in 
the splitting rule, there is no empty nor unit clause when 
b - 1 variables are bound. The number of variables whose 
values are assigned by the unit propagation, u, means u 
clauses selected for the unit propagation must be satisfied. 

To analyze the statistical behavior of the unit 
propagation, I discuss three probabilities, the probability 
that the unit propagation binds at least variables, 

the probability that SDP detects an empty 
clause after the unit propagation binds variables, 

and the probability that the unit propagation 
terminates after binding variables because there is no 
unit clause nor empty clause, Because of their 
definitions, they relate to each other through the following 
equations. 

When i.e. when SDP is called, a clause that is not 
selected for the unit propagation before the current SDP is 
called, becomes unit with probability and does not 
become empty because Thus, 

If , all unsatisfied clauses contain at least two 
literals and the unit propagation can not find an unit clause. 
SDP must apply the splitting rule (there must be an 
unbound variable because and the probabilities for 
the unit propagation are 

284 AUTOMATED REASONING 



YUGAMI 285 



The unit propagation step binds variables and SDP 

• returns "unsatisfiable" 

• returns "sausfiable" 

4.4 Average Case Complexities 
In this subsection, I discuss two average case complexities, 
the complexity for satisfiability checking and the 
complexity for finding all solutions. I use the number of 
SDP calls as the complexity. 

complexity 
for satisfiability checking and the complexity for finding all 
solutions when SDP is called with b bound variables and u 
of them are bound by the unit propagation. SDP calls SDP 
recursively only in the splitting rule and, for satisfiability 
checking, the splitting rule calls the second descendant SDP 
only when the first one returns "unsatisfiable". Thus, 

Where, is the probability that SDP returns 
"sausfiable" when it is called with b bound variables and u 
of them are bound by the unit propagation. I discuss this 
probability in the next subsection. For finding all solutions, 
the splitting rule always calls the second descendent 
SDP. 

These two recursion formulas reduce the complexities of 
SDP with N-b unbound variables to the complexities 
with less number of unbound variables. When b=N, i.e. 
when all variables are bound, SDP does not apply the 
splitting rule and 

When SDP is called first, i.e. when no variable is 
bound, the unit propagation does not bind a variable because 

a cnf on does not contain an unit clause. SDP 
applies the splitting rule and the complexity of each 
descendant SDP is Thus the 
average case complexities for k-SAT are 

4.5 Probability of Satisfiability 
This subsection discuss the probability, , that SDP 
returns "sausfiable" when it is called with b bound variables 
and u of them are bound by the unit propagation. The 
probability is, of course, a probability that the cnf with the 
partial value assignment to b variables is sausfiable. 

be the probability that the cnf with 
b2 bound variables and r2 removed variables is sausfiable on 
the conditions that the cnf does not contain an empty nor 
unit clause and contains at least u1 satisfied clauses when bl 
variables are bound and no variable is removed. Because 
SDP applies the splitting rule and calls SDP recursively 
only when there is no empty nor unit clause, the probability 
of returning "sausfiable" is 

When let x be a variable that is not 
bound nor removed. The cnf with b2 bound variables and r2 
removed variables, is sausfiable iff one of the two cnfs, the 
cnf generated by assigning true to x and the cnf generated by 
assigning false to x, is sausfiable. Because of the definition 
of ps, each of the two cnfs is sausfiable with probability 

To obtain I need the 
probability that both of the two cnfs are sausfiable. It is 
very difficult to calculate it and I approximate it with its 
lower bound, the probability that the two cnfs share an 
assignment that satisfies both of them. In other words, the 
lower bound is the probability that the conjunction of the 
two cnfs is sausfiable. The conjunction is generated by 
removing x from the cnf and the lower bound is 

This is the reason I introduced 'removed 
variables" to the analysis. The above discussion leads the 
following recursion formula. 

(15) 

When , i.e. when all variables are bound or 
removed, a clause in the cnf is satisfied with probability 

The probability, can be obtained from 

286 AUTOMATED REASONING 



YU6AMI 287 



Another reasonable approximation is ignoring the 
probabilities of the unit propagation for large Because 

monotonically decreases with respect to if 
becomes very small, the approximation 

does not affect the result. This approximation also decreases 
the number of elements of to be calculated and shortens 
the computation time. 

5 Comparison with Empirical Results 
Figure 3 and 4 show the statistical and empirical results of 
the probability of satisfiability, the complexity 
for satisfiability checking, and the complexity for 
finding all solutions, for 3-SAT and 4-SAT with 50 
variables. The complexities are the number of SDP calls 
that are required for satisfiability checking and for finding all 
solutions. The empirical results were obtained by solving 
randomly generated 1,000 problems at each clauses-to-
variables ratio for 3-SAT and by solving 100 problems at 
each ratio for 4-SAT. 

The probability of satisfiability coincided with the 
empirical result well. The 50% satisfiable points by the 
statistical analysis (4.6 for 3-SAT and 10.4 for 5-SAT) were 
a little larger than the empirical results (4.3 for 3-SAT and 
10.0 for 4-SAT). This difference is caused by the 
approximation I used for calculating the recursion formula 
for ps. The approximation makes p3 larger than the real 
value and causes the overestimation of andPsatisfiable-

The complexity for finding all solutions coincided with 
the empirical result very well at all clauses-to-variables 
ratios. On the other hand, the complexity for satisfiability 
checking coincided with me empirical result above the 50% 
satisfiable point, but became smaller than the experimental 
result bellow the point. It became maximum near the 50% 
satisfiable point and the statistical results at the peak (532 
for 3-SAT and 29,500 for 4-SAT) were about 20% smaller 
for 3-SAT and about 15% smaller for 4-SAT than the 
empirical results (671 for 3-SAT and 34,700 for 4-SAT). 
These results suggests that the analysis of the unit 
propagation, that are commonly used for both of two 
complexities, gives the accurate result. The overestimauon 
of decreases the probability of calling the second 
descendant SDP and decreases the complexity for 
satisfiability checking. Above the 50% satisfiable point, the 
statistical prediction for satisfiability checking coincided 
with the empirical result because becomes very small 
and the approximation for it does not affect the statistical 
result. 

6 Conclusions 
In this paper, I analyzed the average case behavior of the 
Davis-Putnam procedure on the fixed clause length model. 
The analysis included two average case complexities, the 

complexity for satisfiability checking and the complexity for 
finding all solutions. I also discussed the probability of 
satisfiability. 

The results, especially the complexity for finding all 
solutions, coincided with experimental results well. The 
complexity for satisfiability checking coincided with 
experiments above the 50% satisfiable point but became 
smaller below the point because of the overestimation of the 
probability that a cnf with a partial assignment is 
satisfiable. 

References 
[Chao and Franco, 90] Chao, M. and Franco, J., 

Probabilistic Analysis of a Generalization of the Unit-
Clause Literal Selection Heuristics for the k-
Satisfiability Problem. Information Science, Vol. 51 
(1990), 289-315. 

[Crawford and Auton, 93] Crawford, J.M. andAuton, L.D., 
Experimental Results on the Crossover Point in 
Satisfiability Problems. Proc. of AAAI-93 (1993), 21-
27. 

[Davis and Putnam, 60] Davis, M. and Putnam, H., A 
Computing Procedure for Quantification Theory. J. 
Assoc. Comput. Mack, Vol. 7 (1960), 201-215. 

[Franco, 86] Franco, J., On the Probabilistic Performance 
of Algorithms for the Satisfiability Problem. 
Information Processing Letters, Vol. 23 (1986), 103-
106 

[Franco and Paull, 83] Franco, J. and Paull, M., 
Probabilistic Analysis of the Davis-Putnam Procedure 
for Solving the Satisfiability Problems. Discrete 
Applied Mathematics, Vol. 5 (1983), 77-87. 

[Franco, Plotkin and Rosenthal, 87] Franco, J., Plotlrin, 
J.M. and Rosenthal, J.W., Correction to Probabilistic 
Analysis of the Davis-Putnam Procedure for Solving 
the Satisfiability Problems. Discrete Applied 
Mathematics, Vol. 17 (1987), 295-299. 

[Goldberg, Purdom and Brown, 82] Goldberg, A., Purdom, 
P. and Brown, C, Average Time Analysis of 
Simplified Davis-Putnam Procedures. Information 
Processing Letters, Vol. 15 (1982), 72-75. 

[Mitchell, Selman and Levesque, 92] Mitchell, D., Selman, 
B. and Levesque, H., Hard and Easy Distributions of 
SAT Problems. Proc. of AAAI-92 (1992), 459,465. 

[Selman, Levesque and Mitchell, 92] Selman, B., Levesque, 
H. and Mitchell, D., A New Method for Solving Hard 
Satisfiability Problems. Proc. of AAAI-92 (1992), 440-
446. 

[Williams and Hogg, 94] Williams, C.P., and Hogg, T., 
Exploiting the deep structure of constraint problems. 
Artificial Intelligence, Vol. 70 (1994), 73-117. 

[Yugami, Ohta and Hara, 94] Yugami, N., Ohta, Y. and 
Hara, H., Improving Repair-based Constraint 
Satisfaction Methods by Value Propagation. Proc. of 
AAAI-94 (1994), 344-349. 

288 AUTOMATED REASONING 


