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Abstract 

We discuss the types of functional knowledge 
about an environment an agent can use in order 
to act effectively. We demonstrate (1) the use of 
structural regularities for acting efficiently, and 
(2) the use of physical regularities for designing 
effective sensors. These ideas are described in 
the context of an everyday task: grocery store 
shopping. We discuss how SHOPPER, a pro­
gram, uses regularities of grocery stores in or­
der to act appropriately and sense efficiently in 
G R O C E R Y W O R L D , a simulated grocery store. 

1 Introduction 
Much of the useful knowledge people employ in everyday 
life is often implicitly understood to be common knowl­
edge that everyone possesses. For example, getting a 
drink of water in someone else's home involves many as­
sumptions: the kitchen is located on the first floor, there 
are no major obstructions to getting there, a faucet over 
a sink will be in the kitchen, clean glasses will be in 
the cupboards, the glasses will be near the faucet, etc. 
People use these social rules within a shared culture to 
function effectively. Without them, unlikely possibilities 
would be admitted (e.g., the storage of clean glasses in 
the shed out back). None of these possibilities could be 
dismissed. 

To a large extent, researchers building autonomous 
agents to work within a culturally rich environment have 
implicitly built these assumptions into their agents. For 
example, many robots don't explicitly avoid holes in the 
floor. That 's because there aren't any. As pointed out 
in [Agre, 1988], cultures go out of their way to make 
environments safe for people. 

With the SHOPPER project, we are studying the ways 
in which an agent can use the structure of the environ­
ment to its own advantage. In particular, we are identi­
fying the useful types of knowledge an agent can use to 
shop in a grocery store. Grocery stores are completely 
man-made environments in which practically everyone 
has to look around for the items they need. Stores in 
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general are a good domain since their organization is in­
tended to be simple enough for everyone to comprehend. 
This organization makes it easy for a person to go into 
any grocery store and shop effectively. 

In addition to the way environments are structured, 
we can also simplify sensor design by taking into ac­
count the information needed from the sensor. Our pri­
mary sensing is in the form of color images the agent 
sees in GROCERYWORLD, a simulated store. For the 
primary task of finding an item in an image, we consider 
the task in the context of a grocery store, as opposed 
to attempting something more general. In the section 
on computer vision, we describe methods SHOPPER uses 
for gathering information for recognizing objects quickly 
and effectively. 

2 Related work 
Tasks within the context of a highly structured environ­
ment have been studied before. Hammond & Converse 
[l99l] have noted that our environments are designed 
to aid rather than hinder activity. Regularities, actively 
maintained, can greatly simplify a person's interactions 
with the world. They demonstrate the efficacy of this 
approach for the task of making coffee in a simulated 
kitchen. Agre & Horswill [1992] investigate the influ­
ence of culture in TOAST, a program which cooks food 
in a simulated kitchen. They demonstrate how activity 
in the midst of cultural artifacts can be improvised to 
produce nontrivial behavior. They do this by charac­
terizing regularities, or constraints, on cooking tools and 
materials. Because all the necessary tools are nearby and 
the materials undergo straightforward transformations, 
they show how cooking tasks become much simpler. 

Much of the vision work described here is based on 
recent work done in active and purposive vision [Bal­
lard, 1991; Aloimonos, 1990]. For simplifying sensor de­
sign, Horswill [1993] has noted that environments have 
computational properties which allow a designer to build 
simpler sensors. By starting with a complex mechanism 
to compute a piece of information, successively simpler, 
less general mechanisms can be substituted by noting 
regularities an environment supports. These regularities 
can be used for analyzing under what conditions sen­
sors will and won't work. Horswill describes POLLY - a 
robot designed to give guided tours. Polly's visual mech-
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anisms are very simple (optimized) since they're tailored 
to a specific environment. 

Because conditions in the environment change, Pin-
hanez and Bobick [1995] maintain an approximate world 
model for selecting appropriate visual computations. 
These computations have applicability conditions which 
must hold in the current context in order for their results 
to be acceptable. For example, by knowing the location 
of a chef who is wrapping a chicken, the appropriate 
hand tracking routines can be selected and instantiated. 

3 Shopping in GroceryWorld 
While we would like SHOPPER to eventually function in 
a real store, we have opted to work with a simulator 
first. There are two reasons for this: (1) A real grocery 
store is unavailable for frequent testing, and (2) For now 
we want to avoid problems with real robots, like fixing 
broken hardware, writing motor driver code, having to 
transport the robot, etc. We are also able to ignore prob­
lems such as noise in sonar readings and wheel slippage; 
however, we intend to incorporate similar problems in 
the simulator. 

The simulator we have built is called GROCERY-
W O R L D . This "world" is a novel simulator in that it 
integrates some real visual data along with simulated 
sonar information. While being a simulation, we still 
wanted to address some real sensing problems: G R O -
CERYWoRLD is a videodisc-based reproduction of a local 
grocery store. The store has nine aisles of food items. 
For each aisle, four film clips were taken to provide views 
of each side as well as up and down the aisle. In total, 
the simulator provides access to over 75,000 images by 
merely moving around the store. 

G R O C E R Y W O R L D also provides simulated range infor­
mation on the relative proximity of objects to the agent. 
Sign information is also given. When an agent is at the 
end of an aisle and looking down that aisle, it automati­
cally receives the symbolic text of those signs. The signs 
in G R O C E R Y W O R L D are a faithful reproduction of the 
signs in the real grocery store. 

In the next few sections we will illustrate the types 
of structural regularities SHOPPER can use in a grocery 
store. Next we discuss the control and visual routines 
which make use of structural and physical regularities. 
Then we step through an example of SHOPPER finding 
an item. In the last section we end with a discussion. 

4 Regularities in a grocery store 
Any customer shopping for groceries in a store can find 
the necessary items in reasonable time whether or not 
they've been to the store before or not. Yet the average 
store stocks around 10,000 items. In order to sift through 
all the food items available, customers are able to exploit 
their knowledge about the structure of the store. Stores 
organize food items consistently so that customers can 
find items without too much difficulty. Below we illus­
trate the different types of knowledge that can be used 
for finding goods. 

• Type: Stores group together items of the same type 
or that serve the same function. This is a most basic 

organization principle under which many items fall 
under; e.g. Mcintosh apples are near Rome apples; 
Gerber baby food will be found with other baby 
foods; tomatoes clustered with other vegetables; an 
apple placed with other fruits; coffee is near tea. 

• Brand: Within a section of a specific type, foods 
made by the same company will be clustered to­
gether. For example, in a typical grocery store 
aisle, soups of the same brand (e.g. Campbell's, Pro-
gresso) will be clustered with each other. 

• Counterparts: Items that complement each other 
are sometimes grouped together. For example, salad 
and salad dressing, pancakes and maple syrup, pasta 
and tomato sauce, etc. 

• Physical Cons t ra in t s : Perishable items requiring 
refrigeration or bulky items requiring larger storage 
space. For example, orange juice, eggs, frozen en­
trees, charcoal, etc. 

• Specialty foods: Stores often have sections de­
voted to foods related to certain cultures, countries, 
dietary foods: e.g. soy sauce, curry, matzah, water 
cress, refried beans. 

• Packaging: Bulk items such as bags of oranges, 
apples, and potatoes will be placed separate from 
their individual versions. 

These regularities are also principles under which store 
designers build stores [Peak and Peak, 1977]. One nat­
ural way of segmenting the space in the store is by the 
use of aisles. Items of similar nature are placed together 
in the same aisle. Sometimes signs are placed at the end 
of an aisle to indicate some contents of that aisle. 

A person looking for an item can use regularities along 
with knowledge of how a store is organized to select 
promising areas. So if we wanted to find a box of Froot-
Loops cereal, a sign above an aisle that says "cereal" 
can serve as a pointer to the location of the cereal using 
the regularity of "type." A sign saying "syrups" could be 
useful in finding Mrs. Butterworths pancake mix accord­
ing to the "counterparts" relation. See [Fu et a/., 1994] 
for an example of SHOPPER finding a box of pancake 
mix. 

5 Action and Perception 
In this section we discuss the control and visual routines 
which make use of the regularities described earlier. 

5.1 Control of action and perception 
SHOPPER uses hierarchical plans to control all decision­
making and actions. The plan representation is a version 
of that used in RUNNER [Hammond et al., 1990] and 
include ideas taken from RAPs [Firby, 1987]. Initially, 
a plan is given a permission to activate. An active plan 
first checks to see if its objectives (its success clause) are 
met. If so, it finishes. If not, it selects a method based 
on current context (sensor and state) information. Each 
method will have a sequence of plans or actions. These 
plans and actions will then be permitted (retrieved and 
activated) in sequence, as successive plans succeed. 

FU, HAMMOND, AND SWAIN 465 



Execution of this control mechanism behaves in a 
very "depth-first search" manner by permitting abstract 
plans which become more and more concrete depending 
on sensor/state conditions. The resulting "leaves" are 
either physical, visual, or mental actions. For example 
"(align-body-to-head)" is a physical action which orients 
the direction of travel to the direction the head is facing. 

(defplan (move-down-aisle-looking-for ?item) 
(success (or (see-verified ?item) 

(not (clear-space forward)))) 
( m e t h o d (context (and (see-sign ?type) 

(isa ?item ?type))) 
(serial (align-body-to-head) 

(move-out-of-intersection) 
(look-for ?item))) 

( m e t h o d (context (and (isa ?item ?type) 
(counterpart ?type ?other-type) 
(see-sign ?other-type))) 

(serial (align-body-to-head) 
(move-out-of-intersection) 
(disable all) ;; deactivate all histograms 
;; activate histograms related to signs 
(sign-enable) 
(look-for-type ?type ?other-type ?item) 
(search-vicinity ?item)))) 

Figure 1: A plan to select and execute a method for 
finding an item in an aisle after a relevant sign is en­
countered. 

In Figure 1, the plan is satisfied if either the item 
sought has been spotted, or the end of the aisle has been 
reached. If not, a method is chosen. The two methods 
listed in Figure 1 represent two different search strate­
gies: looking for a specific item, or looking for an item's 
related types and then searching a local vicinity. 

5.2 V i s i o n i n G r o c e r y W o r l d 

The vision operations rely on the regularities discussed in 
the previous section as well as some simple assumptions 
we make about the domain: 

• The lighting comes from the ceiling. 

• Items usually sit directly on shelves. 

• Food items are displayed on shelves in a consistent 
manner, e.g. cereal boxes are upright with the front 
of the box facing outward. 

Basing vision routines on these assumptions allows us 
to build a very effective ensemble which, while being 
very simple and easy to understand, combine to execute 
nontrivial visual tasks. 

SHOPPER uses three basic vision routines for obtain­
ing information from the images. The routines (in order 
of increasing complexity) are: shelf detection, histogram 
intersection, and comparison of edge images using Haus-
dorff distance. Figure 2 shows the three routines in in­
termediate states. 

The first routine is a shelf detector. This helps to con­
strain the relevant regions in an image. Given that the 
agent is looking at a side of an aisle, we locate the shelves 

by assuming that (1) light comes from above, and (2) the 
shelves are light in color. From these assumptions, we 
build a simple filter sensitive to changes from light to 
dark since shadows are cast beneath shelves. The detec­
tor histograms the responses and then finds maxima by 
partitioning the ID histogram. The maxima correspond 
to shelf locations in the image. 

The second routine is a histogram intersection routine 
[Swain and Ballard, 199l]. Histogram intersection in­
volves discretizing the pixels of a food item image into 
a color space histogram. Intersection matches are deter­
mined by intersecting two color spaces. Given a model 
histogram M and a sample histogram I with n color bins 
each, the intersection is computed as , 
which indicates the number of color pixels in the model 
which also appear in the sample. In order to obtain a 
fractional value, the result is normalized by the size of 
the model. Sample histograms are taken successively 
across a shelf area. The sample size is exactly the same 
size as the original model. 

The third routine we use is a comparison function us­
ing Hausdorff distance [Rucklidge, 1994] to compare two 
edge images. Hausdorff distance is a measure of how 
close a set of model points are to a set of image points, 
and vice versa. 

Because each routine's speed is related to the size of 
the image, we sought to successively limit the size of 
regions of interest. So, we first constrain search to be 
on shelves. Then, on each shelf we further bound the 
region using color. Finally, we compute the Hausdorff 
distance over the smallest region possible. Computing 
the Hausdorff distance is the most expensive operation. 
By taking into account the safe assumptions available 
to us, we are able to constrain areas in the image for 
processing. 

From these basic routines, we create more sophis­
ticated routines for processing images in GROCERY -
WORLD. Rather than presenting them now, we will de­
scribe them in the context of an example in the next 
section. 

6 Example 
In this section we illustrate an example of finding a box 
of FrootLoops cereal. These regularities apply: 

• Type - FrootLoops is a cereal. 

• Counterparts - Milk is often used with cereal. 

• Physical constraints - Milk and cereal have different 
physical constraints, so milk is not likely to be very 
near cereal. 

Milk is not a good indicator for the presence of Froot­
Loops because of physical constraints. However, the 
"type" relation still holds when looking at an aisle sign. 
As we will demonstrate, this is correct for this particular 
example in GROCERYWORLD. 

The following is an edited trace of SHOPPER finding a 
box of FrootLoops. Of the 121 primitive actions done, 
only illustrative ones are reported here. 

Permitting (retrieve-item frootloops) 
Permitting (align-head) 

[Action: (aligning head to body)] 
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Figure 2: From top left: (a) Image of cereal boxes with shelf positions drawn as solid lines. The jagged lines are 
made of match values of histograms taken above a shelf against a histogram of FrootLoops. The higher the point, the 
better the match. Regions of interest are bounded as seen by the bigger dots on the jagged line, (b) Shows an edge 
image taken around a cereal box of Smacks for subsequent comparison with FrootLoops using Hausdorff distance. 
(c) Same as in b, but with FrootLoops. (d) FrootLoops' edge image is superimposed; it's found. 

Permitting (find-sign) 
[Action: (turning body l e f t ) ] 

At this point, SHOPPER is looking down the first aisle 
at the entrance to the store. Sign information is passed 
from the simulator: "aisle-1 bread cracker cookie meat 
frozen-entree baked-good." 

From here, S H O P P E R executes a plan to move across 
aisles by first picking an open direction to move and 
then turning the head back toward the aisle. This way, 
SHOPPER can read signs while moving across aisles. 

[Action: (turning body l e f t ) ] 
[Action: (turning head to look r ight ) ] 

Permitting (move-across-aisles-looking-for 
frootloops) 

[Action: (moving forward)] 
[Action: (moving forward)] 

At this point, SHOPPER keeps moving forward until 
a relevant sign is seen in the fourth aisle: cereal. Be­
cause the sign is relevant according to the "type" rela­

tion, SHOPPER commits to exploring this aisle. See the 
first method in Figure 1. 

Permitting (move-down-aisle-looking-for frootloops) 
Permitting (align-body) 

[Action: (aligning body to head)] 
Permitting (move-out-of-intersection) 

Permitting (move-forward) 
[Action: (moving forward)] 
[Action: (moving forward)] 

Permitting (look-for frootloops) 
Permitting (look-head-left) 

[Action: (turning head to look l e f t ) ] 

At this point SHOPPER is actively searching for a box 
of FrootLoops by moving down the aisle and looking left 
and right. 

For each image processed, SHOPPER first looks for 
shelf locations. By taking color histograms across and 
above a shelf location, it can quickly tell if the box is 
not present if all resulting intersections are low in value. 
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In contrast, if the intersection values are high, we bound 
the regions of high response and use Hausdorff distance 
comparison by first using a precomputed edge image of 
FrootLoops and computing an edge image of the region 
of high response. If the edge images match well, we have 
verified the location of the item. If not, we consider the 
item to be absent from the image and continue on. 

The information passed to plan "item-boundary" are 
the FrootLoops color histogram, the shelf height in the 
image (512x484), and the lowest histogram intersection 
threshold for finding boundaries for Hausdorff verifica­
tion. 

SHOPPER continues its search in this fashion until it 
eventually encounters FrootLoops: 

S H O P P E R found a shelf at height 315 in the image, 
found a high intersection region (165 - 206), and verified 
its presence at coordinates (124, 228) in the local region. 

This particular example was used on a second version 
of GROCERYWoRLD using a second videodisc. Because 
the second version was filmed with a different lens, we 
also search across scale as well as translation for a given 
model. The models we use were taken from the first 
videodisc. FrootLoops was found by scaling the model's 
width and height. 

In this example, we used the type regularity in or­
der to design more complicated routines. This merging 
of simpler visual routines into more sophisticated rou­
tines results in more robust performance at a smaller 
cost. The color histogram intersection routine could be 
scanned across the entire image and produce many pos­
sible locations for an object. However, by itself, it is not 
enough to reliably verify the existence of the object. The 
Hausdorff distance between a model edge image and an 
entire image could yield the same results, but at a pro­
hibitive time cost. Since we can localize regions using 

shelf detection and color histograms, the area of pro­
cessing is substantially reduced. By combining routines 
of shelf detection, color histogramming, and Hausdorff 
distance we are able to lessen computation time without 
compromising reliability. 

7 Status 
SHOPPER currently uses four out of the six regularities 
outlined earlier: type, counterpart, physical constraint, 
and specialty foods. Tests were conducted on two ver­
sions of G R O C E R Y W O R L D . 

Many of the items we tested initially were relatively 
small in size - about 40x50 pixels. The size is relevant 
to both the color intersection and Hausdorff distance 
routines. For color intersection with small items, the 
shelf placement is critical since a vertical ten-pixel error 
could seriously affect the histogram intersection value 
when histograms are taken across a shelf. Bigger items 
such as laundry detergent are less affected since their his­
tograms are based on a larger set of pixels. For Hausdorff 
distance, the edge image is computed from a subsampled 
greyscale image. The video is NTSC interlaced (odd scan 
lines are recorded, then even lines) and was filmed while 
the camera was moving. This results in jagged vertical 
edges. The problem was alleviated by sampling every 
other line. However, this makes the model edge image 
twice as small. 

In picking items for testing, we restricted items to be 
of larger than normal sizes (cereals, laundry detergents, 
etc.). Also we did not pick items whose shape is cylindri­
cal. Because cans and bottles can be rotated, the current 
Hausdorff verification method will not suffice. It might 
be possible to isolate the outside shape of an object a 
priori and use its label in various rotations to later find 
the object again. However, we have not attempted this 
method. 

Of the twenty-five items tested on the first videodisc 
twenty were found (80% found), one was missed by color 
histogramming (false negative), one wrong item was 
picked (false positive) and the other three didn't match 
correctly using our set thresholds for Hausdorff match­
ing (false negatives). The results for two videodiscs are 
summarized in Table 1. 

Number Items Tested 
Correctly Found 
Color Errors 
Hausdorff Errors 
Number False Positives 

Videodisc 1 
25 
20 

1 
3 
1 

Videodisc 2 
11 
6 
2 
1 
2 

Table 1: Summary of tests for two versions of GROCERY-
WORLD. 

The second version of GROCERY Wo RLD differed from 
the first in a few ways. First, the transfer process of 
videotape to videodisc was different since the two discs 
were pressed at least a year apart. Models appearing in 
the second version are more yellow. Second, a different 
lens was used so most items appear different in size.1 

1 The width and height of each item appearing is approx­
imately .72 of the original model. 
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Also, distances to shelves while filming were not kept 
constant, so there is significant variation up to the size 
of the original model. 

Correcting the color is necessary since the yellowness 
of images from the second videodisc directly impinges 
on the effectiveness of color histogram intersection. As­
suming constant lighting in the store, we corrected col­
ors in the second disc using models of known color from 
the first. The scale differences for edge matching were 
handled by loosening scale parameters in the Hausdorff 
distance routine. We allow scale matches from 70% to 
100% of the original width and heights of the models. 

Currently we only use sonar information for naviga­
tion. If the distance to an object were known, better 
color histogram samples (we use the original model's 
size) and scale parameters can be chosen since we know 
at what distance the original models were filmed. 

8 Discussion 
Regularities are general rules of thumb - not hard and 
fast rules. However, they provide reference points from 
which we can base the search for an item, as opposed to 
doing exhaustive search or constructing elaborate rea­
sons for looking in certain areas. Undoubtedly, reg­
ularities will be wrong in instances. SHOPPER works 
within the structure of a store maintained by man­
agers who wish to maximize their profits [Dipman, 1931; 
Peak and Peak, 1977] while still providing a pleasant 
shopping experience. This can lead to mistaken beliefs 
about the locations of objects. However, when a failure 
occurs, the regularities which pointed to a mistaken lo­
cation can be identified and then repaired incrementally. 
Eventually, SHOPPER can learn and optimize plans of 
action over several visits. When new grocery stores are 
encountered, the agent can be better prepared since its 
knowledge of particular grocery stores serves as a field 
from which it can reap the benefits of past experience. 

Note that we don't need explain why, for example, 
most stores have their produce section on the right 
perimeter next to the entrance of the store; we just need 
to know the tendency for produce sections to be located 
near the entrance. Explaining why produce is near the 
entrance does little for the typical customer while know­
ing where to find produce is most useful. As another 
example, toothpaste and nail clippers tend to be located 
near the front of the store. This is to reduce pilferage 
since cashiers (a form of store security) are also near the 
front. 

From the earlier example discussed in this paper, we 
have demonstrated that the physical search space can 
be drastically reduced using functional knowledge of the 
domain. Prom the same example we have also illustrated 
visual routines which speeded computation by restricting 
regions of interest. These optimized the basic recognition 
routines we had available to us, without losing effective­
ness. Certainly, the physical search mechanism depends 
on the environment, but everyday life has the same re­
straints. Any agent working in an everyday man-made 
domain can use its knowledge to help facilitate its own 
activity. In this paper we have shown the effectiveness 
of such knowledge. 
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