
A Theore t i ca l Eva lua t i on of Selected B a c k t r a c k i n g A l g o r i t h m s 

Grzegorz Kondrak* and Peter van Beek 
Department of Computing Science 

University of Alberta 
Edmonton, Alberta, Canada T6G 2H1 

kondrak@mprgate.mpr.ca, vanbeek@cs.ualberta.ca 

Abstract 

In recent years, many new backtracking algorithms 
for solving constraint satisfaction problems have 
been proposed. The algorithms are usually evalu­
ated by empirical testing. This method, however, 
has its limitations. Our paper adopts a different, 
purely theoretical approach, which is based on char­
acterizations of the sets of search tree nodes visited 
by the backtracking algorithms. A notion of in­
consistency between instantiations and variables is 
introduced, and is shown to be a useful tool for char­
acterizing such well-known concepts as backtrack, 
backjump, and domain annihilation. The charac­
terizations enable us to: (a) prove the correctness 
of the algorithms, and (b) partially order the algo­
rithms according to two standard performance mea­
sures: the number of nodes visited, and the number 
of consistency checks performed. Among other re­
sults, we prove the correctness of Backjumping and 
Conflict-Directed Backjumping, and show that For­
ward Checking never visits more nodes than Back-
jumping. Our approach leads us also to propose 
a modification to two hybrid backtracking algo­
rithms, Backmarking with Backjumping (BMJ) and 
Backmarking with Conflict-Directed Backjumping 
(BM-CBJ), so that they always perform fewer con­
sistency checks than the original algorithms. 

1 Introduction 
Constraint-based reasoning is a simple, yet powerful paradigm 
in which many interesting problems can be formulated. It has 
received much attention recently, and numerous methods for 
dealing with constraint networks have been developed. The 
applications include graph coloring, scene labelling, natural 
language parsing, and temporal reasoning. 

The basic notion of constraint-based reasoning is a con­
straint network, which is defined by a set of variables, a do­
main of values for each variable, and a set of constraints 
between the variables. To solve a constraint network is to find 
an assignment of values to each variable so that all constraints 
are satisfied. 

Backtracking search is one of the methods of solving con­
straint networks. The generic backtracking algorithm was 

* Currently with MPR Teltech Ltd, Bumaby, BC, Canada 

first described more than a century ago, and since then 
has been rediscovered many times [Bitner and Reingold, 
1975]. In recent years, many new backtracking algorithms 
have been proposed. The basic ones include Backmark­
ing [Gaschnig, 1977], Backjumping [Gaschnig, 1978], For­
ward Checking [Haralick and Elliot, 1980], and Conflict-
Directed Backjumping [Prosser, 1993]. Several hybrid al­
gorithms, which combine two or more basic algorithms, have 
also been developed [Prosser, 1993]. 

There is no simple answer to the question which back­
tracking algorithm is the best one. First, the performance 
of backtracking algorithms depends heavily on the problem 
being solved. Often, it is possible to construct examples 
of constraint networks on which an apparently very efficient 
algorithm is outperformed by the most basic chronological 
backtracking. Second, it is not obvious what measure should 
be employed for comparison. Run time is not a very reliable 
measure because it depends on hardware and implementa­
tion, and so cannot be easily reproduced. Besides, the cost 
of performing consistency checks (checks that verify that the 
current instantiations of two variables satisfy the constraints) 
cannot be determined in abstraction from a concrete problem. 
A better measure of the efficiency of a backtracking algorithm 
seems to be the number of consistency checks performed by 
the algorithm, although it does not account for the overhead 
costs of maintaining complex data structures. Another stan­
dard measure is the number of nodes in the backtrack tree 
generated by an algorithm. 

The need for ordering algorithms according to their effi­
ciency has been recognized before. Nudel [1983] ordered 
backtracking algorithms according to their average-case per­
formance. Prosser [1993] performed a series of experiments 
to evaluate nine backtracking algorithms against each other. 
However, such an approach is open to the criticism that the 
test problems are not representative of the problems that arise 
in practice. Even a theoretical average-case analysis is pos­
sible only if one makes simplifying assumptions about the 
distribution of problems. Prosser commented on his results: 

It is naive to say that one of the algorithms is 
the 'champion'. The algorithms have been tested 
on one problem, the ZEBRA. It might be the case 
that the relative performance of these algorithms 
will change when applied to a different problem. 

When Prosser's results are examined, it is easy to notice that 
in some cases one algorithm performed better than another in 

KONDRAK AND VAN BEEK 541 



all tested instances. Could this mean that one algorithm is 
always better than another? Such a hypothesis can never be 
verified solely by experimentation; the relationship has to be 
proven theoretically. In this paper we show that some of these 
cases indicate a general rule, whereas other do not. More­
over, we present a partial ordering of several backtracking 
algorithms which is valid for all instances of all constraint 
satisfaction problems. 

Our approach is purely theoretical. We analyze several 
backtracking algorithms with the purpose of discovering gen­
eral rules that determine their behaviour. A notion of incon­
sistency between instantiations and variables is introduced, 
and is shown to be a useful tool for characterizing such well-
known concepts as backtrack, backjump, and domain annihi­
lation. Using the new notion, we formulate the necessary and 
sufficient conditions for a search tree node to be visited by 
each backtracking algorithm. These characterizations enable 
us to construct partial orders (or hierarchies) of the algorithms 
according to two standard performance measures: the num­
ber of visited nodes, and the number of performed consistency 
checks. 

The orderings are surprisingly regular and contain some 
non-intuitive results. For instance, it turns out that the set of 
nodes visited by Forward Checking is always a subset of the 
set of nodes visited by Backjumping. This fact has never been 
reported before although the two algorithms have been often 
empirically compared. Also, the orderings confirm and clar­
ify the experimental results published by other researchers. 
The characterizing conditions imply simple and elegant cor­
rectness proofs of the characterized algorithms. Two of these 
algorithms, Backjumping (BJ) and Conflict-Directed Back-
jumping (CBJ) have not been formally proven correct before1. 

The orderings proved also to be a stimulus for developing 
more efficient backtracking algorithms. The idea of combin­
ing Backjumping and Backmarking into a new hybrid algo­
rithm was first put forward by Nadel [1989]. Such algorithm, 
called BMJ, was presented by Prosser [1993]. BMJ, however, 
does not retain all the power of both base algorithms in terms 
of consistency checks. Prosser observed that on some in­
stances of the zebra problem BMJ performs more consistency 
checks than BM. In the conclusion of his paper he posed the 
following question: 

It was predicted that the BM hybrids, BMJ and 
BM-CBJ, could perform worse than BM because 
the advantages of backmarking may be lost when 
jumping back. Experimental evidence supported 
this. Therefore, a challenge remains. How can the 
backmarking behaviour be protected? 

In this work we answer the question by modifying the two BM 
hybrids, Backmarking with Backjumping (BMJ), and Back-
marking with Conflict-Directed Backjumping (BM-CBJ), so 
that they always perform fewer consistency checks than both 
corresponding basic algorithms. 

Apart from presenting specific results for particular back­
tracking algorithms, our goal is also to propose a general 

'Both BJ and CBJ were first presented without correctness 
proofs and no direct proofs of these algorithms have appeared in 
the literature. However, proofs have been given for certain algo­
rithms related to BJ and CBJ [Bruynooghe, 1981; Ginsberg, 1993; 
Schiex and Verfaillie, 1994]. 

542 CONSTRAINT SATISFACTION 



to variables) with nodes: the empty tuple E is the root of 
the tree, the first level nodes are 1-tuples (representing an 
assignment of a value to variable x1), the second level nodes 
are 2-tuples, and so on. The levels closer to the root are 
called lower levels, and the levels farther from the root are 
called higher levels. Similarly, the variables corresponding 
to these levels are called lower and higher. The nodes that 
represent consistent tuples are called consistent nodes. The 
nodes that represent inconsistent tuples are called inconsistent 
nodes. We say that a backtracking algorithm visits a node if 
at some stage of the algorithm's execution the instantiation of 
the current variable and the instantiations of the past variables 
form the tuple identified with this node. The nodes visited by 
a backtracking algorithm form a subset of the set of all nodes 
belonging to the search tree. We call this subset, together 
with the connecting edges, the backtrack tree generated by 
a backtracking algorithm. Backtracking itself can be seen 
as retreating to lower levels of the search tree. Whenever 
some variables become uninstantiated and XH is set as the 
new current variable, we say that the algorithm backtracks 
to level h. We consider two backtracking algorithms to be 
equivalent if on every constraint network they generate the 
same backtrack tree and perform the same consistency checks. 

Chronological Backtracking (BT) [Bitner and Reingold, 
1975] is the generic backtracking algorithm. The consistency 
checks between the instantiation of the current variable and the 
instantiations of the past variables are performed according 
to the original order of instantiations. If a consistency check 
fails, the next domain value of the current variable is tried. If 
there are no more domain values left, BT backtracks to the 
most recently instantiated past variable. If all checks succeed, 
the branch is extended by instantiating the next variable to 
each of the values in its domain. A solution is recorded 
every time when all consistency checks succeed after the last 
variable has been instantiated. 

Backjumping (BJ) [Gaschnig, 1978] is similar to BT, ex­
cept that it behaves more efficiently when no consistent in­
stantiation can be found for the current variable (at a dead-
end). Instead of chronologically backtracking to the preceding 
variable, BJ backjumps to the highest past variable that was 
checked against the current variable. 

Conflict-Directed Backjumping (CBJ) [Prosser, 1993] has 
a more sophisticated backjumping behaviour than BJ. Every 
variable has its own conflict set that contains the past variables 
which failed consistency checks with its current instantiation. 
Every time a consistency check fails between the instantiation 
a, of the current variable and some past instantiation a/,, the 
variable Xh is added to the conflict set of xi. When there are 
no more values to be tried for the current variable xi CBJ 
backtracks to the highest variable Xh in the conflict set of xi. 
At the same time, the conflict set of Xi is absorbed by the 
conflict set of Xh* so that no information about conflicts is 
lost. 

In contrast with the above backward checking algorithms, 
Forward Checking (FC) [Haralick and Elliot, 1980] performs 
consistency checks forward, that is, between the current vari­
able and the future variables. After the current variable has 
been instantiated, the domains of the future variables are fil­
tered in such a way that all values inconsistent with the current 
instantiation are removed. If none of the future domains is 
annihilated, the next variable becomes instantiated to each of 

the values in its filtered domain. Otherwise the effects of for­
ward checking are undone, and the next value is tried. If there 
are no more values to be tried for the current variable, FC 
backtracks chronologically to the most recently instantiated 
variable. A solution is recorded every time the last variable 
becomes instantiated. 

Example 1. The n-queens problem is how to place n 
queens on a n x n chess board so that no two queens at­
tack each other. Our representation of this problem identifies 
board columns with variables, and rows with domain values. 
Figure 1 shows a fragment of the backtrack tree generated by 
Chronological Backtracking (BT) for the 6-queens problem. 
White dots denote consistent nodes. Black dots denote incon­
sistent nodes. For simplicity, when referring to nodes we omit 
commas and parentheses. The board in the upper right corner 
depicts the placing of queens corresponding to node 253 in 
the backtrack tree. Capital Q's on the board represent queens 
which have already been placed on the board. The shaded 
squares represent positions that must be excluded due to the 
already placed queens. The numbers inside the squares indi­
cate the queen responsible for the exclusion; 1,2,3 correspond 
to the first, second, and third queen respectively. 

The dark-shaded part of the tree contains two nodes that are 
skipped by Backjumping (BJ). The algorithm detects a dead-
end at variable X6 when it tries to expand node 25364. It then 
backjumps to the highest variable in conflict with x6, in this 
case x4. The backjump is represented by a dashed arrow. We 
could say that BJ discovers that the tuple (2,5,3,6), which is 
composed of instantiations in conflict with x6, is inconsistent 
with variable X6. To see this, notice that if we place a queen 
in column 4 row 6, every square in column 6 is attacked by 
the queens placed in the first four columns. Indeed, there is 
no point in trying out the remaining values for x5 because that 
variable plays no role in the detected inconsistency. Nodes 
25365 and 25366 may be safely skipped. 

The light-shaded part of the tree contains nodes that are 
skipped by Conflict-Directed Backjumping (CBJ). The algo­
rithm reaches a dead-end when expanding node 25314. At 
this moment the conflict set of x6 is {1, 2, 3, 5} because the 
instantiations of these four variables prevent a consistent in­
stantiation of variable x6. To see this, notice that after the 
fourth and the fifth queen are placed, column 6 of the chess 
board will contain numbers 1,2,3, and 5. CBJ backtracks to 
the highest variable in the conflict set, which is x5. No nodes 
are skipped at this point. The conflict set of x6 is absorbed 
by the conflict set of x5, which now becomes {1, 2, 3}. After 
trying the two remaining values for x5, CBJ backjumps to x3 
skipping the rest of the subtree. The backjump is represented 
by a dashed arrow. In terms of consistency, we could say that 
the algorithm discovered that tuple (2,5,3) is inconsistent with 
the set of variables {x5, x6}. A look at the board in Figure 1 
convinces us that indeed such a placement of queens cannot 
be extended to a full solution. It is impossible to fill columns 
5 and 6 simply because the two available squares are in the 
same row. Note that (2,5,3) is consistent with both x5 and x6 
taken separately. 

Forward Checking (FC), in contrast with the backward 
checking algorithms, visits only consistent nodes, although 
not necessarily all of them. In our example, nodes 253, 2531, 
25314 and 2536 are visited, but not 25364. The board in 
Figure 1 can be interpreted in the context of this algorithm 

KONDRAK AND VAN BEEK 543 



as follows. The shaded numbered squares correspond to the 
values filtered from domains of variables by forward check­
ing. The squares that are left empty as the search progresses 
correspond to the nodes visited by FC. Due to the filtering 
scheme, FC detects an inconsistency between the current par­
tial solution and some future variable without ever reaching 
that variable, but it is unable to discover an inconsistency with 
a set of variables. In our example, the algorithm finds that 
both 25314 and 2536 are inconsistent with X6. However, it 
does not discover that node 253 is inconsistent with {x5, x6}. 
That is why node 2536 is visited by FC even though it is 
skipped by the backward checking CBJ. 

3 Characterizations and Their Implications 
We are now ready to present some new results. First, we give 
two lemmas that define backjumps in terms of inconsistency 
between variables and instantiations. Then, we present theo­
rems about the backtrack trees of the four basic backtracking 
algorithms: BT, BJ, CBJ, and FC. The theorems enable us 
to (a) partially order the algorithms according to the number 
of visited nodes, and (b) prove the correctness of the algo­
rithms. It is assumed that all constraints are binary, the order 
of instantiations is fixed and static, and the order of perform­
ing consistency checks within the node follows the order of 
instantiations. We deal with the more general problem of 
finding all solutions; at the end of the section we briefly com­
ment on the validity of our results when only one solution is 
sought. The proofs that are not included here can be found 
in [Kondrak, 1994], 
Lemma 1 If BJ backtracks to variable Xh from a dead-end 
at variable Xi then (a\,..., ah) is inconsistent with Xi. 

544 CONSTRAINT SATISFACTION 



KONDRAK AND VAN BEEK 545 



parent (a\,..., a„_ i) is consistent as well, and it is also 
consistent with xn. Therefore, (a1,..., an-1) is con­
sistent with all variables. From Theorem 1 we know 
that (a1,..., an) is visited by BJ. Since all consistency 
checks between an and previous instantiations must suc­
ceed, a solution is claimed by BJ. 

Proofs of the remaining cases are similar. □ 
Naturally, our approach can be extended to other backtrack­

ing algorithms. 
All the above results were originally proven with the as­

sumption that the search is not interrupted until all possibilities 
are exhausted. This is not generally true if only a fixed number 
of solutions is sought. However, if we restrict our attention 
to only those of the search tree nodes that precede (in the 
preorder traversal) the last node visited by a backtracking al­
gorithm, the theorems are still valid. Therefore, our results 
hold also for the "one solution" versions of the backtracking 
algorithms, with only slightly modified proofs. 

4 Hybrid Algorithms with Backmarking 
In this section we briefly discuss Backmarking [Gaschnig, 
1977] and its two hybrids. We propose a modification to the 
hybrids, and then include these algorithms in our hierarchies. 

Backmarking (BM) imposes a marking scheme on the 
Chronological Backtracking algorithm in order to eliminate 
some redundant consistency checks. The scheme is based on 
the following two observations [Nadel, 1989]: (a) If at the 
most recent node where a given instantiation was checked the 
instantiation failed against some past instantiation that has not 
yet changed, then it will fail against it again. Therefore, all 
consistency checks involving it may be avoided, (b) If, at the 
most recent node where a given instantiation was checked, 
the instantiation succeeded against all past instantiations that 
have not yet changed, then it will succeed against them again. 
Therefore we need to check the instantiation only against the 
more recent past instantiations which have changed. 

The marking scheme is implemented using two arrays: mbl 
(minimum backup level) of size n, and mcl (maximum check­
ing level) of size n x m. The entry mbl[i] contains the number 
of the lowest variable whose instantiation has changed since 
the variable X1 was last instantiated with a new value. The 
entry mc/[i][j] contains the number of the highest variable 
that was checked against the j-th value in the domain of the 
variable x,. 

Nadel [1989] suggested combining BM and BJ into a new 
hybrid algorithm. Prosser presented such algorithm, called 
Backmarking and Backjumping (BMJ), in [Prosser, 1993]. 
BMJ, however, does not retain all the power of each base 
algorithm in terms of consistency checks. Prosser observed 
that on some instances of the zebra problem BMJ performs 
more consistency checks than BM. BMJ is also worse than 
BM on the benchmark 8-queens problem. 

A careful analysis of the algorithm leads us to the conclu­
sion that BMJ is sometimes worse than BM because the mbl 
array, which was originally designed for a chronologically 
backtracking algorithm, is no longer adequate for a back-
jumping algorithm. Since BM always tests all values of the 
current variable for consistency, a single entry for all values 
is sufficient. In BMJ, however, it often happens that only 
some values of the current instantiation are tested, and the 

BT = B M 

FC-CBJ 
Figure 3: The hierarchy with respect to the number of visited 
nodes. 
other values are skipped by a backjump. A separate entry 
for each value is therefore necessary to preserve all collected 
consistency information. 

We propose a modified BackMarkJump (BMJ2), which 
solves the problem by making mbl a two-dimensional rather 
than a one-dimensional array. The new mbl array is of size 
n x m, where n is the number of variables, and m is the size 
of the largest domain. This is a reasonable space requirement 
because BMJ already uses one n x m array; each mcl entry has 
now a corresponding mbl entry. The mbl[i][j] entry stores the 
number of the lowest variable whose instantiation has changed 
since the variable xi was last instantiated with the j- th value. 
The entry is set to i every time the current instantiation (X, , tj) 
is being tested for consistency with past instantiations. When 
the algorithm backtracks, the entries are updated in a similar 
way as in BMJ. Thanks to the more efficient backmarking 
scheme BMJ2 is always better than BMJ. Moreover, since 
BMJ2 does not lose information about consistency checks in 
the way BMJ does, it is always better than BM. 

An analogous modification of Backmarking and Conflict-
Directed Backjumping (BM-CBJ), which is another hybrid 
proposed by Prosser, produces BM-CBJ2: mbl should be 
made a 2-dimensional array, and maintained in the same way 
as in BMJ2. 
5 Hierarchies 
We now present two hierarchies, which include the four ba­
sic backtracking algorithms described in Section 2, and the 
Backmarking hybrids discussed in Section 4. 

The hierarchy with respect to the number of visited nodes is 
presented in Figure 3. Two algorithms are connected by a link 
if the set of nodes visited by one of them is always a subset 
of the set of nodes visited by the other. Naturally, the relation 
is transitive. The relationships derived in Section 3 form the 
core of the hierarchy. Note that imposing a backmarking 
scheme on an algorithm does not change the set of nodes that 
are visited. Thus, for example, BM generates exactly the 
same backtrack tree as BT. 

Figure 4 shows the hierarchy of algorithms with respect 
to the number of consistency checks. Two algorithms are 
connected by a link if one of them always performs no more 
consistency checks than the other. Since BT, BJ, and CBJ 
perform the same number of consistency checks at any given 

646 CONSTRAINT SATISFACTION 



node, they are in the same order as in the nodes hierarchy. Im­
posing a marking scheme on a backtracking algorithm results 
in a reduction of the number of consistency checks performed. 
The figure contains also one Forward Checking hybrid: For­
ward Checking and Conflict-Directed Backjumping (FC-CBJ) 
[Prosser, 1993], which has not been discussed here. For a 
treatment of FC-CBJ see [Kondrak, 19941. 

Besides the relationships that are shown explicitly, it is 
important to note the ones that are implicit in the picture. In 
order to disprove a relationship between A and B, one needs 
to find at least one constraint satisfaction problem on which 
A is better than B, and one on which B is better than A. For 
example, BM performs fewer consistency checks than FC 
on the regular 8-queens problem, but more on the confused 
8-queens problem [Nadel, 1989]. Examples of constraint 
networks were found that disprove all relationships that are not 
included in the hierarchies. Thus, however counterintuitive 
it may seem, FC-CBJ may visit more nodes than CBJ, and 
perform more consistency checks than BT. 

6 Conclusions 

We presented a theoretical analysis of several backtracking al­
gorithms. Such well-known concepts as backtrack, backjump, 
and domain annihilation were described in terms of inconsis­
tency between instantiations and variables. This enabled us to 
formulate general theorems that fully or partially describe sets 
of nodes visited by the algorithms. The theorems were then 
used to prove the correctness of the algorithms and to con­
struct hierarchies of algorithms with respect to the number of 
visited nodes and with respect to the number of consistency 
checks. The gaps in the resulting hierarchy prompted us to 
modify existing hybrid algorithms so that they are superior 
to the corresponding basic algorithms in every case. One of 
the modified algorithms is always better (in terms of con­
sistency checks) than all six backward checking algorithms 
described by Prosser in [Prosser, 1993]. In the future the hier­
archies could be extended by applying our approach to other 
backtracking algorithms, such as Dechter's graph-based back-
jumping algorithm [Dechter, 1990] and Nader s backtracking 
algorithm with full arc-consistency lookahead [Nadel, 1989], 

References 
iBitnerandReingold, 1975] J. R. Bitner and E. Reingold. 

Backtrack programming techniques. Comm. ACM, 
18(11):651-656,1975. 

[Bruynooghe, 1981] M. Bruynooghe. Solving combinatorial 
search problems by intelligent backtracking. Information 
Processing Letters, 12:36-39,1981. 

[Dechter, 1990] R. Dechter. Enhancement schemes for con­
straint processing: Backjumping, learning, and cutset de­
composition. Artificial Intelligence, 41(3):273-312,1990. 

iGaschnig, 1977] J. Gaschnig. A general backtracking algo­
rithm that eliminates most redundant tests. In Proceedings 
of the International Joint Conference on Artificial Intelli­
gence, page 457, 1977. 

[Gaschnig, 1978] J. Gaschnig. Experimental case studies of 
backtrack vs. waltz-type vs. new algorithms for satisficing 
assignment problems. In Proceedings of the 2nd Biennial 
Conference of the Canadian Society for Computational 
Studies of Intelligence, pages 268-277, 1978. 

[Ginsberg, 1993] M. L. Ginsberg. Dynamic backtracking. 
Journal of Artificial Intelligence Research, 1:25-46,1993. 

[Haralick and Elliot, 1980] R. M. Haralick and G. L. Elliot. 
Increasing tree search efficiency for constraint satisfaction 
problems. Artificial Intelligence, 14:263-314, 1980. 

[Kondrak, 1994] G. Kondrak. A theoretical evaluation of 
selected backtracking algorithms. Technical Report TR94-
10, University of Alberta, June 1994. 

[Montanari, 1974] U. Montanari. Networks of constraints: 
Fundamental properties and applications to picture pro­
cessing. Information Sciences, 7:95-132, 1974. 

[Nadel, 1989] B. A. Nadel. Constraint satisfaction algo­
rithms. Computational Intelligence, 5:188-224, 1989. 

[Nudel, 1983] B. Nudel. Consistent labeling problems and 
their algorithms: Expected complexities and theory based 
heuristics. Artificial Intelligence, 21:135-178, 1983. 

[Prosser, 1993] P. Prosser. Hybrid algorithms for the con­
straint satisfaction problem. Computational Intelligence, 
9(3):268-299,1993. 

[Schiex and Verfaillie, 1994] T. Schiex and G. Verfaillie. No-
good recording for static and dynamic constraint satisfac­
tion problems. International Journal on Artificial Intelli­
gence Tools, 3:1-15, 1994. 

KONDRAK AND VAN BEEK 547 


