
A T h e o r e t i c a l a n d E x p e r i m e 
P r o p a g a t i o n T e c h n i q u e s 

Ph i l ippe Bapt is te 
ILOG S.A. 

2 Avenue Gallieni BP 85 
94253 Gentilly Cedex FRANCE 

Abst rac t 
Disjunctive constraints are widely used to en
sure that the time intervals over which two ac
tivities require the same resource cannot over
lap: if a resource is required by two activities A 
and B, the disjunctive constraint states that ei
ther A precedes B or B precedes A. The "prop
agation" of disjunctive constraints consists in 
determining cases where only one of the two 
orderings is feasible. It results in updating the 
time-bounds of the two activities. The stan
dard algorithm for propagating disjunctive con
straints achieves arc-B-consistency. Two types 
of methods that provide more precise time-
bounds are studied and compared. The first 
type of method consists in determining whether 
an activity A must, can, or cannot be the first 
or the last to execute among a set of activi
ties that require the same resource. The second 
consists in comparing the amount of "resource 
energy" required over a time interval [t1 t2) to 
the amount of energy that is available over the 
same interval. The main result of the study is 
an implementation of the first method in ILOG 
SCHEDULE, a generic tool for constraint-based 
scheduling which exhibits performance in the 
same range of efficiency as specific operations 
research algorithms. 

1 I n t roduc t i on 
Disjunctive constraints are widely used to ensure that 
the time intervals over which two activities require the 
same resource do not overlap in time [Erschler, 1976; 
Carlier, 1984; Le Pape, 1988; Smith and Cheng, 1993]. 
If a resource is required by two activities A and B, the 
disjunctive constraint states that either A precedes B 
(i.e., ends before B starts) or B precedes A. The "prop
agation" of disjunctive constraints consists in determin
ing that only one of the two orderings is feasible. It 
results in updating the time-bounds (earliest start times 
and latest end times) of the two activities. 

The most basic disjunctive constraint can be stated as 
follows: 

600 CONSTRAINT SATISFACTION 



ble constraint propagation systems show that the 
amount of constraint propagation that enables a 
problem-solver to be the most efficient varies with 
the problem-solver, with the application, and with 
the problem-solving context [Van Hentenryck, 1989; 
Collinot and Le Pape, 1991]. The following sections 
present the results of an investigation of the tech
niques that can be used to extend the propagation 
of disjunctive constraints. 

2 B ib l iographica l Study 
In the literature, there are roughly two types of methods 
that provide more precise time-bounds. The first type 
of method, described in Section 2.1, consists in deter
mining whether an activity A must, can, or cannot be 
the first or the last to execute among a set of activities S 
that require the same resource [Carlier and Pinson, 1990; 
Nuijten et a/., 1993b; Caseau and Laburthe, 1994]. The 
second type of method consists in comparing the amount 
of resource energy required over a time interval [t1 t2) to 
the amount of energy that is available over the same in
terval [Erschler et a/., 1991; Beck, 1992; Le Pape, 1994]. 
This form of propagation is discussed in Section 2.2. 

2.1 Automatic Sequencing of Activities 
Rather than just looking at pairs of activities {A B}, 
the first type of method compares the temporal charac
teristics of A to those of a set of activities 

Let est A denote the earliest possible start time of A, 
let A denote the latest possible end time of A, and PA 
denote the processing time of A (the smallest possible 
processing time of A if the processing time of A is not 
fixed). Let est n denote the smallest of the earliest start 
times of the activities in denote the greatest of 
the latest end times of the activities in , and denote 
the sum of the processing times of the activities in 
Let mean that A is before (after) B and 

mean that A is before (after) all the 
activities in n. The following rules apply: 

New time-bounds can consequently be deduced. When 
A is before all activities in the end time of A is nec
essarily smaller than (or equal to) . When A is 
after all activities in the start time of A is necessarily 
greater than (or equal to) 

The technique which consists in applying these rules 
is known as edge-finding [Applegate and Cook, 199l]. 
(Actually, Applegate and Cook use the term "edge-
finding" to denote both the above type of deduction, 
i.e., a "bounding" technique, and the non-deterministic 
choice between the possible orderings of activities, i.e., a 
"branching" technique. In the following, edge-finding is 
considered only as a deterministic deductive "bounding" 
technique.) 

Notice that if n activities require the resource, there 
are potentially 0(n * 2n) pairs to consider. An 

algorithm that performs all time-bound adjustments in 
0{n2) is presented in [Carlier and Pinson, 1990]: 

• Compute "Jackson's preemptive schedule" for the 
resource under consideration. "Preemptive" means 
that an activity A can be interrupted to process 
another activity B. Jackson's preemptive schedule 
(JPS) is obtained by applying a very simple priority 
rule: whenever the resource is free and one activity 
is available, schedule the activity A for which letA 
is the smallest. If an activity B becomes available 
while A is in process, stop A and start B if lets is 
strictly smaller than letA; otherwise continue A. 

• For each activity Ai, compute the set of the ac
tivities which are not finished at t on J PS. 
Let p*k be the residual duration on the preemptive 
schedule of the activity Ak at time . Take 
the activities of in decreasing order of due dates 
and select the first activity Aj such that: 

If such an Aj exists, then post the new temporal 
constraints: 

where CA^S is the completion time of the activity 
Ak in JPS. 

[Nuijten et a/., 1993b] presents a variant of this algo
rithm, which also runs in 0(n2), but is simpler in the 
sense that it does not require the computation of Jack-
son's preemptive schedule. 

[Caseau and Laburthe, 1994] presents a constraint-
based technique based on the same principles. Two sets 
of rules based on the concept of "task intervals" are de
veloped: 

• edge-finding within a task interval: The edge-
finding technique is very powerful but, as we have 
said, it cannot be naively applied to all the subsets 
Q of activities requiring the same resource (since for 
n activities, this would lead to 2n sets). To avoid 
this, Caseau and Laburthe associate to all couples of 
activities (A B) scheduled on the same machine the 
set of activities K(A B) which will surely be sched
uled between the earliest start time of A and the 
latest end time of B: 

K(A B) is called a task interval and is considered 
of interest only when A and B belong to KA B) 
Deductive edge-finding propositions are applied to 
task intervals: for each activity C in K(A B) 
rules determine whether C necessarily executes be
fore (or after) all the other activities in K(A B). 

• edge-finding between a task interval and an
other task: this second set of rules is used to de
duce that a task C cannot be performed before (or 

BAPTISTE AND LE PAPE 601 



A few remarks can be made about these rules. First, 
there are at most 0(n2) task intervals to consider for a 
resource on which n activities are scheduled. Therefore, 
a computational time in 0(n3) is, in the worst case, nec
essary to apply the rules to all the task intervals and 
all the activities of a given resource. In comparison, 
the edge-finding algorithm of Carlier and Pinson runs 
in 0{vr). However, the implementation of task intervals 
is simpler (e.g., no need to compute Jackson's preemp
tive schedule) and can be applied in an incremental way 
[Caseau and Laburthe, 1994], so it is difficult to deter
mine for which values of n Carlier and Pinson's algorithm 
will be the most efficient. 

Another remark is that when the second set of rules 
is applied only to task intervals, the overall propagation 
system (which includes those rules as well as others) can 
lead to different results depending on the order in which 
constraints are propagated. In general, a set of prop
agation rules is said to have a "unique fixpoint" when 
the results of the overall propagation do not depend on 
the order in which the propagation steps are executed. 
Applying the second set of rules of Caseau and Labur
the to task intervals only "breaks" the "unique fixpoint 
semantics" of constraint propagation. This means that, 
if other propagation rules apply, the "fixpoint" that it 
is reached may depend on the propagation order. This 
fact is illustrated below on a simple example. 

Let A, B, C, D be four activities to schedule on a unary 
resource with respect to the following release and due 
dates: 

The counterexample shows that the second set of rules, 
breaks "unique fixpoint semantics" when applied only to 
task intervals. Having different possible fixpoints is not 
a real problem when developing a specific algorithm, but 
may be annoying in the context of a generic constraint 
programming tool. Indeed, it means that a user of the 
tool can face different execution behaviors depending on 
the order in which constraints are posted. Such variabil
ity makes it less easy to use the tool for the development 
of complex scheduling applications. 

2.2 Energy-Based Reasoning 
The second type of method consists in comparing the 
amount of resource energy required over a time interval 
[t1 t2) to the amount of energy that is available over the 
same interval. 

In [Erschler et a/., 1991], the authors analyze the effect 
of time and resource constraints on the admissibility of 
schedules. They study how activity characteristics and 
resource constraints can induce new constraints which 
allow to restart the propagation. Although Erschler, 
Lopez and Thuriot have worked on discrete resources 
(i.e., resources the capacity of which can be greater than 
one), from now on, we focus on the case of unary re-
sources (i.e., resources of capacity 1). 

602 CONSTRAINT SATISFACTION 



yet the result struck us given that our algorithm was 
extremely simple. 

While using this algorithm, we noticed that the num
ber of backtracks required to prove the optimality of the 
solution varied with the order in which constraints were 
posted. This observation suggested that our implemen
tation did not have a unique fixpoint. Yet we have been 
unable to put together a simple example with two dif
ferent fixpoints. 

Energetic reasoning is also used in the TOSCA sys
tem of Beck [Beck, 1992] and in the energetic resources 
of ILOG SCHEDULE [Le Pape, 1994]. Beck uses a data 
structure called "habograph" to compute the required 
energy consumption and the maximal energy available 
over each time interval [t1 t2) up to a given discretization 
of time. When the required energy consumption exceeds 
the maximal energy available, a failure occurs. When 
the required energy consumption is close to the maximal 
energy available, a constraint threat is indicated. The 
habograph can also be used to determine that an ac
tivity cannot fully execute during a given time interval 
[t1 t2), in a way similar to applying the rules above, but 
with predetermined time intervals rather than intervals 
depending on the time-bounds of activities. 

In ILOG SCHEDULE, an energetic resource represents 
the fact that the amount of energy that can be used over 
given intervals of time is limited. Roughly, an energetic 
resource does not represent a resource per se, but the 
amount of work performed by the resource over regular 
intervals of time. The capacity of an energetic resource 
is consequently not measured as a number of machines 
or as a number of men and women, but as a number of 
machining hours, or as a number of human-days, human-
weeks or numan-months, spent for the performance of 
the activities. The following code, for example, creates 
an energetic resource to represent the fact that at most 
50 human-days of work can be spent each week. The 
time unit is supposed to be the day and date 0 corre
sponds to the beginning of the first week. 
CtDiscreteEnergy* W ■ new CtDiscreteEnergy(...); 
V->makeTimeTable(0, 7 * number Of Weeks, 7, 50); 
Energetic reasoning is thus performed for each time in
terval [t1 t2) of the form [7n l(n + 1)). In fact, an 
energetic resource of ILOG SCHEDULE corresponds to a 
"piece of habograph" used to update the time-bounds of 
activities. Energetic resources are occasionally used in 
ILOG SCHEDULE applications to implement redundant 
constraints (that result in more constraint propagation 
being performed). 

2.3 Theoretical Comparison 
The previously described mechanisms have been imple
mented in several systems and shown to give interesting 
results as far as computational time is concerned. One 
issue however to be dealt with is the management of 
the additional data structures used to implement these 
techniques. Indeed, these data structures may be more 
or less costly to maintain both in terms of CPU time and 
in terms of memory consumption. 

The task intervals of [Caseau and Laburthe, 1994] re
quire the maintenance of a data structure in 0(n2) where 
n is the number of activities requiring a given resource. 

BAPTISTE AND LE PAPE 603 



Note that, in principle, this memory space consumption 
could be avoided, but at some expense in terms of CPU 
time. Similarly, the habograph of [Beck, 1992] uses a 
memory space in 0((h/g)2) where h is the scheduling 
horizon and g the grain of the habograph. An ener
getic resource in ILOG SCHEDULE uses a memory space 
in 0{h/g) only since the energetic analysis is restricted to 
time intervals of size g. Using implementation cues sim
ilar to those used in the sequential time-tables of ILOG 
SCHEDULE [Le Pape, 1994], the habograph could be re
duced to time intervals [est A let B) such that est A is the 
earliest start time of an activity A and lets the latest 
end time of another (or the same) activity B. The space 
complexity would then be 0(n2). 

Erschler, Lopez and Thuriot do not say much about 
their implementation choices in this respect. However, 
the use of the energetic rules for all pairs [estA let B) 
obviously requires either 0(n2) in space, or 0(n3) in 
CPU time. The less consuming techniques are those of 
[Carlier and Pinson, 1990] and [Nuijten et a/., 1993b]. 

The following table summarizes the complexity anal
ysis of the various propagation techniques we have dis
cussed. The time complexity that is given corresponds to 
one iteration (over the n activities of the same resource) 
of the constraint propagation process. A question mark 
is used when we are not sure about the actual complex
ity of the technique. Two things that are difficult to 
measure a priori do not appear in the table: (1) the typ
ical number of iterations necessary to reach the fixpoint; 
(2) the "pruning power" of the propagation that is being 
performed. In the next section, we present experiments 
performed to assess the effectiveness of some of these 
propagation techniques: arc-B-consistency, edge-finding, 
and energetic reasoning. 

The table also includes a new algorithm developed by 
Carlier and Pinson, which runs in 0(n * log(n)) time 
[Carlier and Pinson, 1994]. We have not yet found the 
time to study this algorithm in detail. The results of 
the next section are based on the 0(n2) algorithms of 
[Carlier and Pinson, 1990] and [Nuijten et a/., 1993b]. 

Technique 
arc-B-consistency 

edge-finding 

task intervals 
energetic reasoning 

habograph 
energetic resources 

Time 
0(n2) 
0(n2) 

0(n * log(n)) 
0(n3) 
0(n*) 

(?) 
0(n* h/g) 

Space 
O(n) 
O(n) 
0(n) 
0(n2) 
O(n) 

0((h/g)2) 
0(h/g) 

3 Exper imenta l Study 
3.1 Implemented Algorithms 
In addition to arc-B-consistency, three "extended" con
straint propagation algorithms have been implemented 
on top of version 1.0 of ILOG SCHEDULE. 

• The ERA algorithm is based on energetic reasoning. 
• The EFJ algorithm performs edge-finding based on 

Jackson's preemptive schedule. 
• The EFN algorithm performs edge-finding based on 

the method described in [Nuijten et a/., 1993b]. 

ERA 
In a preliminary experiment, we combined the first rule 
of Erschler, Lopez and Thuriot (cf. Section 2.2) with the 
edge-finding technique of Carlier and Pinson restricted 
to the overall set of yet unordered operations. Using the 
resulting algorithm, we noticed that the number of back
tracks required to prove the optimality of the solution 
varied with the order in which constraints were posted. 
We consequently changed the rule as follows: rather than 
computing the energy required over the time interval 
[estA lets), we compute the energy W that would be 
required by other activities between the latest start time 
of A and the earliest end time of B if A were scheduled 
before B. We deduce that if A is before B, then at least 
W units of time must elapse between the end of A and 
the beginning of B. We can then use W to update, still 
under the hypothesis that A is before B, the latest start 
time of A and the earliest end time of B. As long as W 
increases and is not large enough to prove that A cannot 
be before B, we iterate. 

Our implementation of energetic reasoning uses data 
structures in O(n) (rather than 0(n2)). Consequently, 
the energetic reasoning algorithm runs in 0(n3), even 
without iterating the energy calculation. Within the 
same 0(n3) loop, the algorithm directly applies the edge-
finding technique of Carlier and Pinson to all the 3-tuples 
and (n-l)-tuples of activities (where n denotes the num
ber of unscheduled activities requiring a given resource), 
without computing Jackson's preemptive schedule. 

EFJ 
The second constraint propagation algorithm is a direct 
implementation in ILOG SCHEDULE of the technique de
scribed in [Carlier and Pinson, 1990]. However, our im
plementation computes Jackson's preemptive schedule in 
0(n2) rather than 0(n * log(n)). This allows us to re
use data structures predefined in ILOG SCHEDULE rather 
than implementing new ones: it would be interesting to 
determine the number of activities n at which the price 
of additional data structures would be balanced by the 
resulting CPU time savings. 

The algorithm also applies the rules of Caseau and 
Laburthe to a unique task interval for each resource, i.e., 
the task interval consisting of all unscheduled activities. 
It runs in 0(n2) and uses data structures in 0(n). It 
is applied iteratively as long as it results in updates of 
earliest and latest start and end times. 

EFN 
The third constraint propagation algorithm is similar 
but uses the algorithm of [Nuijten et a/., 1993b] rather 
than computing Jackson's preemptive schedule. It runs 
in 0(n2) and uses data structures in O(n). 

Normally, the two edge-finding algorithms result in the 
same deductions. However, in the case of the algorithm 
of [Nuijten et a/., 1993b], we were incidentally able to 
deduce a bit more than the pure edge-finding technique. 
Indeed, each time the earliest start time of an activity 
is updated, we can note that the activity cannot be the 
first to execute among the yet unscheduled activities of 
the considered resource. This information can then be 
used to prune the search tree. 

604 CONSTRAINT SATISFACTION 



Such deductions are also possible in the case of the 
algorithm of Carlier and Pinson, but they are less nu
merous. As we shall see in the next section, the two 
algorithms provide slightly different results in terms of 
CPU time and number of backtracks. 

3.2 Results 
The following table compares the three constraint prop
agation methods on four problems taken from the con
straint programming and operations research literature. 
Results on more than eighty problems are available in 
Baptiste, 1994].) The first problem is a bridge construc

tion scheduling problem that is often used as a bench
mark problem within the constraint programming com
munity [Van Hentenryck, 1989]. The other problems are 
job-shop scheduling problems with 10 jobs and 10 ma
chines (hence with 100 activities) considered to be par
ticularly hard to solve to optimality. The optimization 
algorithm consists of a branch-and-bound backtracking 
search, with constraint propagation being performed at 
each node of the search tree. Details about the prob
lems and the optimization algorithms are available in 
[Baptiste, 1994]. 

In the table, PROB denotes the problem instance 
and ALGO the constraint propagation algorithm used 
to solve it. BT and CPU denote the total number of 
backtracks and CPU time needed to find an optimal so
lution and prove its optimality. BT-PR and CPU-PR 
denote the number of backtracks and CPU time needed 
for the proof of optimality. CPU times are expressed in 
seconds on a HP715/50 workstation, rounded either to 
the closest second or to the closest tenth of a second. 

For the bridge construction (BDG), the table also pro
vides results obtained using arc-B-consistency (ARC) as 
a constraint propagation procedure. Such results are 
not provided for the job-shop problems because 10x10 
job-shop problems were generally not solved with ARC 
after three hours of computational time. ERA results for 
ABZ5 are not available for the same reason. The table 
shows that the number of backtracks significantly de
creases when more propagation is being performed. On 
the simple bridge problem, the algorithm based on arc-
B-consistency performs better than the others in terms 
of CPU time: the cost of additional constraint propaga
tion is not balanced by the reduction of the search effort. 
On the more complex job-shop scheduling problems, the 
cost of additional constraint propagation is more than 
balanced by the reduction of the search effort. 

The three algorithms were also tested on an industrial 
project scheduling problem submitted by a customer of 
ILOG, and found to be extremely difficult to solve. The 
problem consists of scheduling two projects that require 
common resources. There are forty-five activities and 
five resources to consider. Each activity requires up 
to four resources. Within each project, activities are 
subjected to precedence constraints. Three of the re
sources are unary resources. The number of activities 
that require each unary resource is close to thirty. The 
two other resources are discrete resources with capacity 
greater than one. 

There are two optimization criteria: the goal is to min
imize the end times of two activities, one for each project. 
As the projects rely on common resources, these two op
timization criteria are conflicting. As a result, the final 
user wants to impose upper bounds on the two criteria, 
and wants the system to tell whether there exists a solu
tion satisfying these upper bounds. The following table 
provides the CPU times obtained for different values of 
the upper bounds of the two criteria. If an algorithm is 
incapable of solving an instance within one hour of CPU 
time, that is reported by "-". The results show that the 
algorithms which use edge-finding strongly outperform 
the other algorithms. 

4 Conclusion 
Following these experiments, an industrial version of the 
edge-finding algorithm of [Nuijten et a/., 1993b] was im
plemented in a new version (1.1) of ILOG SCHEDULE. 
We also improved our search strategy for solving job-
shop scheduling problems. The new strategy consists of: 

1. generating a first solution (very quickly), 
2. iteratively improving the solution by keeping part 

of the best solution (i.e., keeping some ordering de
cisions, selected randomly with a probability p that 
decreases over time) and searching with a limit on 
the number of backtracks per iteration, 

3. systematically exploring the search space when p 
falls below a given threshold. 

BAPTISTE AND LE PAPE 605 



The following table provides the average results obtained 
over three runs, on the ten 10x10 job-shop scheduling 
problem instances used by Applegate and Cook in their 
computational study of the job-shop scheduling problem 
[Applegate and Cook, 1991]. CPU times are expressed in 
seconds on an IBM RS6000 workstation. Over the ten in
stances, the total number of backtracks for ILOG SCHED
ULE is 215256, while the total number of nodes explored 
by Applegate and Cook's algorithm is 674128. The use of 
edge-finding techniques allows the user of ILOG SCHED
ULE to enjoy the flexibility inherent to constraint pro
gramming, with performance in the same range of effi
ciency as specific operations research algorithms, such as 
the one reported in [Applegate and Cook, 1991]. 

Acknowledgments 
The authors would like to thank Jean-Francois Puget, 
Younes Alaoui, Michel Leconte, Wim Nuijten, and all 
the members of the ILOG SOLVER development and con
sulting team for their contributions to the design and 
continual improvement of ILOG SCHEDULE. Thanks also 
to the referees for their helpful comments. 

References 
[Applegate and Cook, 1991] David Applegate and Will

iam Cook. A Computational Study of the Job-Shop 
Scheduling Problem. ORSA Journal on Computing, 
3(2):149-156, 1991. 

[Baptiste, 1994] Philippe Baptiste. Constraint-Based 
Scheduling: Two Extensions. MSc Thesis, University 
of Strathclyde, 1994. 

[Baptiste and Le Pape, 1995] Philippe Baptiste and 
Claude Le Pape. Disjunctive Constraints for Manu
facturing Scheduling: Principles and Extensions. In 
Proceedings of the Third International Conference on 
Computer Integrated Manufacturing, Singapore, 1995. 

[Beck, 1992] Howard Beck. Constraint Monitoring in 
TOSCA. In Working Papers of the AAAI Spring 
Symposium on Practical Approaches to Planning and 
Scheduling, Stanford, California, 1992. American As
sociation for Artificial Intelligence. 

[Carlier, 1984] J acques Carlier. Problemes d'ordonnan-
cement a contraintes de ressources : algorithmes 
et complexity. These de Doctorat d'Etat, Universite 
Paris VI, 1984 (in French). 

[Carlier and Pinson, 1990] Jacques Carlier and Eric 
Pinson. A Practical Use of Jackson's Preemptive 

Schedule for Solving the Job-Shop Problem. Annals 
of Operations Research, 26:269-287, 1990. 

[Carlier and Pinson, 1994] Jacques Carlier and Eric 
Pinson. Adjustment of Heads and Tails for the Job-
Shop Problem. European Journal of Operational Re
search, 78:146-161,1994. 

[Caseau and Laburthe, 1994] Yves Caseau and Francois 
Laburthe. Improved CLP Scheduling with Task In
tervals. In Proceedings of the Eleventh International 
Conference on Logic Programming, Santa Margherita 
Ligure, Italy, 1994. 

[Collinot and Le Pape, 199l] Anne Collinot and Claude 
Le Pape. Adapting the Behavior of a Job-Shop 
Scheduling System. International Journal for Decision 
Support Systems, 7(3):341-353, 1991. 

[Erschler, 1976] Jacques Erschler. Analyse sous con
traintes et aide a la decision pour certains problems 
d'ordonnancement. These de Doctorat d'Etat, Univer
site Paul Sabatier, 1976 (in French). 

[Erschler et a/., 199l] J acques Erschler, Pierre Lopez et 
Catherine Thuriot. Raisonnement temporel sous con
traintes de ressource et problemes d'ordonnancement. 
Revue d'Intelligence Artificielle, 5(3):7-32, 1991 (in 
French). 

[Le Pape, 1988] Claude Le Pape. Des systemes d'ordon
nancement flexibles et opportunistes. PhD Thesis, 
University Paris XI, 1988 (in French). 

[Le Pape, 1994] Claude Le Pape. Implementation of Re
source Constraints in ILOG SCHEDULE: A Library 
for the Development of Constraint-Based Scheduling 
Systems. Intelligent Systems Engineering, 3(2):55-66, 
1994. 

[Lhomme, 1993] Olivier Lhomme. Consistency Tech
niques for Numeric CSPs. In Proceedings of the Thir-
teenth International Joint Conference on Artificial In
telligence, pages 232-238, Chambery, France, 1993. In
ternational Joint Committee on Artificial Intelligence. 

[Nuijten et a/., 1993a] W. P. M. Nuijten, E. H. L. Aarts, 
D. A. A. van Erp Taalman Kip and K. M. van Hee. 
Randomized Constraint Satisfaction for Job-Shop 
Scheduling. In Proceedings of the AAAI-SIGMAN 
Workshop on Knowledge-Based Production Planning, 
Scheduling and Control, pages 251-262, Chambery, 
France, 1993. 

[Nuijten et a/., 1993b] W. P. M. Nuijten, E. H. L. Aarts, 
D. A. A. van Erp Taalman Kip and K. M. van Hee. 
Job-Shop Scheduling by Constraint Satisfaction. Com
puting Science Note 93/39, Eindhoven University of 
Technology, 1993. 

[Smith and Cheng, 1993] Stephen F. Smith and Cheng-
Chung Cheng. Slack-Based Heuristics for Constraint 
Satisfaction Scheduling. In Proceedings of the Eleventh 
National Conference on Artificial Intelligence, pages 
139-144, Washington, District of Columbia, 1993. 
American Association for Artificial Intelligence. 

[Van Hentenryck, 1989] Pascal Van Hentenryck. Con
straint Satisfaction in Logic Programming. MIT Press, 
Cambridge, Massachusetts, 1989. 

606 CONSTRAINT SATISFACTION 


