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Abst rac t 
We examine an approach to multi-agent coordi­
nation that builds on earlier work on enabling 
single agents to control their reasoning in dy­
namic environments. Specifically, we study a 
generalization of the filtering strategy. Where 
single-agent filtering means tending to bypass 
options that are incompatible with an agent's 
own goals, multi-agent filtering means tending 
to bypass options that are incompatible with 
other agents' known or presumed goals. We 
examine several versions of multi-agent filter­
ing, which range from purely implicit to mini­
mally explicit, and discuss the trade-offs among 
these. We also describe a series of experiments 
that demonstrate initial results about the fea­
sibility of using multi-agent filtering to achieve 
coordination without explicit negotiation. 

1 In t roduc t i on 
Distributed Artificial Intelligence (DAI) is concerned 
with effective interactions, and with the mechanisms by 
which these interactions can be achieved. Broadly speak­
ing, two main approaches have been proposed in the lit­
erature. The first involves explicit coordination; agents 
are designed to reason about their potential interactions, 
and negotiate with one another as needed. Examples of 
this approach include [Ephrati and Rosenschein, 1991; 
1993; Kraus, 1993; Zlotkin and Rosenschein, 1993]. A 
difficulty with explicit coordination and negotiation is 
that it can be extremely time-consuming, and in dy­
namic environments, agents may not be able to afford 
the time required. The second approach involves im­
plicit coordination; agents are designed to follow "local" 
rules of behavior that lead to their acting in apparently 
coordinated ways; see, for example, [Shoham and Ten-
nenholtz, 1992; Goldman and Rosenschein, 1994]. This 
approach is motivated in part by a belief that one can 
design simple rules that are easy for an agent to follow, 
yet result in coordination. 

In this paper, we take the second approach, examin­
ing an implicit coordination strategy. The strategy we 
study, multi-agent filtering, is an extension of a single-
agent strategy for controlling reasoning in dynamic en­
vironments. The notion of single-agent filtering derives 

from the work of Bratman [Bratman, 1987]; it involves 
an agent committing to the goals it has already adopted, 
and tending to bypass (or "filter out") new options that 
would conflict with their successful completion [Bratman 
et a/., 1988; Pollack, 1992; Pollack et a/., 1994]. We and 
others have studied the effectiveness of filtering in do­
mains with various characteristics[Kinny and Georgeff, 
1991; Pollack et a/., 1994]. 

The original filtering strategy was designed as a 
method for an individual agent to focus its reasoning in a 
dynamic, but not necessarily multi-agent, environment. 
Here, we generalize this strategy to multi-agent envi­
ronments. Where single-agent filtering means tending 
to bypass options that are incompatible with an agent's 
own goals, multi-agent filtering means tending to bypass 
options that are incompatible with any agent's known or 
presumed goals. 

We examine several forms of multi-agent filtering, 
which range from implicit, in which agents have rules 
of legal action that lead to their avoiding conflict with­
out ever reasoning explicitly about one another's goals, 
to minimally explicit, in which agents perform shallow 
reasoning to assess whether their actions are incompat­
ible with the likely intended actions of other agents. In 
no cases do the agents engage in any explicit negotiation. 

It seems clear that if one agent, call it A, avoids inter­
fering with the goals of a second agent, call it B, then B 
will be better able to achieve its goals. But what about 
A? Won't its performance be worse, because it is subject 
to additional constraints on its behavior? If A is the only 
multi-agent filterer, it seems likely that its performance 
will suffer, but if A and B are both multi-agent filterers, 
then the effect is less obvious. What we need to ask is 
whether the advantage that A derives from B's multi-
agent filtering is sufficient to override any penalties A 
receives from its own multi-agent filtering. And we need 
to ask the same thing about B. The central questions we 
address in this paper are thus: What happens in multi-
agent environments in which all (or most or few or none) 
of the agents are multi-agent filterers? And do these ef­
fects depend, in any interesting and identifiable ways, on 
properties of the domain? To address these questions, we 
conducted a series of experiments using a multi-agent 
version of the Tileworld system [Pollack et a/., 1994; 
Joslin et al., 1993], an abstract testbed for studying be-
havior in dynamic environments. 
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In the next section, we review the theory of filtering, 
and discuss its generalization to the multi-agent case. A 
brief overview of the experimental platform is provided 
in Section 3. Sections 4 through 6 present our experi­
mental results on multi-agent filtering to date: Section 4 
describes experiments with extremely bold multi-agent 
filterers, Section 5 describes the effectiveness of enrich­
ing the filter with an override mechanism, and Section 6 
considers the implications of multi-agent filtering in en­
vironments of self-motivated rational agents. The most 
interesting and surprising result is that, at least for the 
simple, abstract environments so far studied, multi-agent 
filtering is a dominant strategy: no matter what propor­
tion of the agents in some environment choose not to 
filter, those that do filter perform better. We summarize 
our results in Section 7. 

2 F i l te r ing and Mu l t i -Agen t F i l te r ing 
Our work on multi-agent filtering derives from our ear­
lier work on filtering as a strategy that individual agents 
can use to focus their reasoning. The notion of filter­
ing derives from the work of Bratman [Bratman, 1987], 
who argued that it is useful for resource-limited agents 
to adopt and commit to plans, tending to bypass, or 
"filter out" from consideration new options that would 
conflict with the successful completion of those existing 
plans. On this view, an agent's existing intentions frame 
its subsequent reasoning: the agent can focus on ways 
of achieving its current goals, and can, in general, by­
pass deliberation about the myriad of options that are 
incompatible with its current goals. 

Typically, filtering is augmented with some kind of 
override mechanism that enables the agent to deliberate 
about options that are prima facie important, even when 
they are incompatible with pre-existing options. A cen­
tral challenge for the designer of an agent with a filtering 
mechanism is to construct an override component that 
embodies the right degree of sensitivity to the problems 
and opportunities of the agent's environment. 

Note that the filter-plus-override mechanism does not, 
by itself, determine what intentions the agent will adopt. 
When an option survives the filter, either because it is 
deemed compatible with existing plans or because it trig­
gers an override, it is then subject to a deliberation pro­
cess that selects the actions towards which the agent will 
form intentions. In other words, it is the deliberation 
process that performs the type of decision-making that 
is the focus of traditional decision theory. The filtering 
mechanism frames particular decision problems, which 
the deliberation process solves.1 

In fact, in his original discussion of the role of commit­
ment in resource-limited reasoning, Bratman suggested 
two advantages that accrue to an agent who uses a fil­
tering strategy. First, filtering can help the agent focus 
its reasoning, as described just above; this has been a 

lThe filtering mechanism is meant to be only one part of 
a rich meta-level control structure. Thus, for example, agent 
designers may also want to include mechanisms to filter from 
full consideration options that are especially unpromising, 
even if they are compatible with existing plans. 

main concern in our previous work. Second, filtering can 
help multiple agents coordinate their activities, because 
each agent can count on the other agents carrying out 
the plans to which they have committed. Following this 
observation, we hypothesized that it was possible and 
desirable to extend the strategy of filtering for multi-
agent environments so that it could serve as a technique 
for coordination as well as for control. The basic idea 
is straightforward: not only should agents tend to by­
pass consideration of options that conflict with their own 
goals, but they should also tend to bypass consideration 
of options that conflict with the goals of other agents. 

The precise interpretation of conflict depends on the 
relationships that hold among the goals of the agents in 
the environment. For example: 

1. The agents may have one common goal, but individ­
ual and distinct subgoals. In this case, avoiding con­
flict means avoiding actions that make it more diffi­
cult for another agent to achieve its subgoals. This 
situation underlies the work on social laws [Moses 
and Tennenholtz, 1992], where the (implicit) com­
mon goal is the maximization of the designer's re­
ward (through the individual activities). 

2. The agents may have one common goal, but po­
tentially overlapping subgoals. Here, "conflict" can 
mean achieving (or helping in the achievement of) 
a subgoal for another agent. To some extent, this 
situation underlies the work on cooperative state-
changing rules [Goldman and Rosenschein, 1994]. 

3. The agents have distinct, possibly conflicting, goals. 
There may be competition not only for resources 
to achieve goals, but also for the goals themselves. 
This case would appear to pose the greatest chal­
lenge to a multi-agent filtering strategy. 

As we discuss below, in conducting our experiments 
we addressed each of these variants. 

3 Exper imenta l P la t fo rm 
The Tileworld testbed is a Lisp-based tool that was 
developed to support controlled experimentation with 
agents in dynamic environments. For the current 
project, we built a multi-agent version of the Tileworld 
system, called MA-Tileworld. We first briefly describe 
the MA-Tileworld, and then discuss some details of the 
multi-agent filtering strategies. 

3.1 The Mult i -Agent Ti leworld System 
Like the original Tileworld, MA-Tileworld is an ab­
stract, dynamic, simulated environment, with embedded 
agents. It is obviously, and intentionally, a highly arti­
ficial environment. In keeping the environment divorced 
from any realistic application, our goal has been to pro­
vide a tool that allows researchers concerned with any 
application to focus on what they consider to be key 
features of that application's environment, without the 
confounding effects of the actual, complex environment 
itself. We have, in other words, traded realism—in the 
short run, at least—for sufficient control to allow for sys­
tematic experimentation. (Cf. [Hanks et a/., 1993]). 
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The MA-Tileworld environment consists of a rectan­
gular, two-dimensional grid, on which are located a vari­
ety of objects, including holes, tiles, obstacles, etc., and 
simulated agents. A trial is a single run of the MA-
Tileworld system, defined by its duration and its experi­
mental condition, user-specified parameter settings that 
establish agent and environment conditions. Trials for 
the same experimental condition will, in general, differ 
from one another, because the system's performance de­
pends stochastically on the parameter settings. 

An example of an experimental condition is the rate 
at which objects (tiles, etc.) appear and disappear dur­
ing the trial. When a MA-Tileworld agent successfully 
fills a hole with tile(s), it receives an reward, the size 
of which depends on the type of tiles that were used to 
fill the hole. The agent may carry one or many tiles 
at a time; however, the more tiles it carries, the more 
energy (or "gas") it expends; agents must be concerned 
not only with filling holes but also with maintaining suffi­
cient energy. For further details see [Pollack et al, 1994; 
Joslin et a/., 1993]. 

The agents that are embedded in the MA-Tileworld 
observe a filtering strategy. That is, they bypass consid­
eration of options that are incompatible with their own 
goals except when those options trigger an override. The 
question of how easy it is for an option to trigger an over­
ride is put under the control of the experimenter, who 
specifies a override threshold t. When the agent recog­
nizes an option o that is incompatible with its existing 
goals, it computes an estimated value V0 for o. For o 
to trigger a filter override, V0 must exceed the computed 
value of the current intentions by at least t. Thus, the 
lower the threshold, the more likely the agent is to allow 
options to pass through the filter, and hence the more 
likely it is to engage in deliberation: in the terminology 
of [Bratman et a/., 1988], the more cautious the agent 
will be. In contrast, we say that an agent with a high 
threshold is bold. The threshold can be negative, to al­
low for full deliberation even about options that appear, 
upon original estimation, to be less valuable than the 
intention(s) with which they conflict. In all the exper­
iments described in this paper, the estimated value of 
a fill-hole option was set equal to the raw score of the 
hole (i.e., the highest score that will be achieved if the 
hole is successfully filled with the best tiles); the esti­
mated value of getting gas is a function of the agent's 
current gas level; and the estimated value of the other 
options, such as stockpiling tiles and wandering, is a low 
constant. 

3.2 Operationalizing Mult i -Agent Fi l tering 
The filtering process as just described disposes agents to 
filter from consideration options that are incompatible 
with their own existing intentions. For our current pur­
poses, we generalized this strategy to the multi-agent 
case. Recall that our goal is to investigate filtering as 
an implicit coordination strategy, i.e., a set of easily fol­
lowed rules for behavior that result in coordinated action 
by multiple agents inhabiting some environment. Thus, 
our implementation of multi-agent filtering had to ob­
serve strict limits on the amount of reasoning that each 

agent needs to do about the others. We implemented 
and investigated three different filtering methods: 

1. Static geographical boundaries: The environment is 
divided into geographical regions. Each agent is as­
signed a particular region, and filters out options 
to fill holes in other regions. Because no two agents 
are assigned the same region, filtering automatically 
leads to conflict avoidance. 

2. Dynamic geographical boundaries: The environment 
is not partitioned a priori. Instead, each agent fil­
ters out options to fill holes that are nearer to some 
other agent than to itself. This leads to conflict 
avoidance, since every hole is nearest to a single 
agent. 

3. Intention posting: The first two cases are clearly 
"implicit": the agents can follow those filtering 
strategies without any computations that directly 
take into consideration the goals of other agents. 
This third approach is slightly more explicit: here, 
agents post to a globally accessible data structure 
each intention they form to fill a hole. Agents then 
filter from consideration hole-filling options that 
have already been declared by other agents. 

Note that in all cases, hole-filling is the only type of 
option that may lead to multi-agent filtering in these 
experiments; options like getting gas and stockpiling are 
never seen to be incompatible with another agent's goals. 
It is also important to remember that just because an 
option is subject to filtering, it does not mean that that 
option will necessarily be discarded from consideration. 
What it does mean is that it will be further considered 
only if it triggers a filter override, i.e., it is deemed prima 
facie to be worthy of deliberation despite the fact that 
it conflicts with another agent's goals. If deliberation 
does occurs, it may result in adopting a new intention 
towards the option, but it may also result in bypassing 
the option. 

In our first set of experiments (Section 4), we stud­
ied agents that were extremely bold: they can be viewed 
either as having no override mechanism at all, or, equiva­
lent,, as having an override mechanism with an infinite 
threshold value. (This is, in fact, how they were im­
plemented.) For these agents, options that were deemed 
incompatible with the options of other agents never trig­
gered an override and thus were never subject to de­
liberation. Note that the agents had a single override 
mechanism, which did not distinguish between options 
that conflict with their own existing plans and those that 
conflict with the plans of other agents. Thus, the ex­
tremely bold agents also filtered out all options that were 
deemed incompatible with their own goals. As we will 
describe, the use of a multi-agent filtering strategy, even 
such a rigid (bold) one, improved the agents' overall per­
formance. In a second set of experiments (Section 5), we 
explored the effect of making the multi-agent filtering 
process more flexible, by including particular override 
strategies. The results demonstrate cases in which over­
riding is important. 

In all these experiments, what we measured was the 
total effectiveness of the agents. Effectiveness, for the 
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single-agent Tileworld, is defined to be a normalized 
measure of an agent's score: the score it actually re­
ceived during a trial divided by the total full score of 
all the holes that appear during the trial. In the multi-
agent case, we compute (average) effectiveness by sum­
ming the scores received by all the agents and dividing 
by the total score of all the holes that appear during the 
trial. Thus defined, (average) effectiveness is an appro­
priate measure for first two types of multi-agent settings 
mentioned above: those in which all the agents share a 
common goal, and may or may not have potentially over­
lapping subgoals. For the third type of setting, in which 
the agents may have competing goals, we measured the 
average effectiveness of agents with each strategy. 

4 R ig id F i l te r ing 
In the first set of experiments, the strategy of extremely 
bold multi-agent filtering was studied. We examined 
each of the three filtering mechanisms defined above 
(static geographical boundaries, dynamic geographical 
boundaries, and intention posting). A fourth experimen­
tal condition involved extreme caution: agents deliber­
ated about all options that appeared in the Tileworld 
grid, regardless of whether they were potentially or ac­
tually incompatible with the goals. 

This set of experiments was aimed at examining the 
effectiveness of multi-agent filtering in various envi­
ronmental conditions. In the Tileworld environment, 
the most influential parameters are the average rate of 
change in the world (the "world speed"), and the aver­
age number of holes available to fill at any time. We 
therefore conducted two experiments; in the first one we 
varied the rate of change in the world, while in the sec­
ond we held world speed constant and varied the average 
number of holes. 

Both experiments involved four agents on a 20x20 grid. 
Their "thinking" speed was set to a baseline rate estab­
lished in our earlier experiments [Pollack et a/., 1994]. 
The agent's "moving" speed was varied directly with the 
rate of world change, because our interest is in the rela­
tion between the agent's computation cycle time and the 
degree of dynamism in the world, not between the speed 
at which the agent can move and the degree of dynamism 
in the world. Generated holes were were randomly as­
signed a score of between 25 and 75, again consistent 
with baselines established in our earlier experiments. 

For each experimental condition, we ran 51 trials, 
where the length of each trial was 80,000 clock ticks 
(which is equivalent to the amount of time it takes an 
agent to move 400 units of distance). The number of 
trials per condition and the length of each trial are the 
same as in our earlier, single-agent experiments. 

Figure 1 describes the case where the the world speed 
was changed. There were a total of 44 experimental con­
ditions (4 filtering strategies and 11 rates of dynamism). 
The x-axis shows the world speed: experimental results 
for the least dynamic worlds are shown at the origin, 
and speed increases across the x-axis. Average effective­
ness is plotted on the y-axis. As can be seen, all three 
multi-agent filtering strategies result in better perfor­
mance than no filtering, regardless of the rate of change 

in the world. Among the filtering strategies, a society of 
intention posting agents performs better than a society 
of agents using either of the geographic strategies, both 
of which result in quite similar performance. 

Figure 2: Bold Filtering with Varied Number of Holes 

Figure 2 shows the experiment in which world speed 
is held constant at a baseline level, while the average 
number of holes in the world is varied between four and 
sixteen. Effectiveness is again plotted on the y-axis. The 
results are similar to our first experiment: regardless 
of the average number of holes in the environment, the 
multi-agent filterers do best, and the best of the multi-
agent filtering strategies is intention posting. 

We believe that the intention posting outperforms the 
other two filtering strategies because it is more accurate: 
agents will avoid goals that other agents actually intend 
to pursue, rather than avoiding goals that others might 
pursue. In addition, intention posting is computationally 
simpler than the dynamic geographic strategy: instead 
of calculating whether the goal is within the the agent's 
territory, the filter is triggered by an immediate lookup 
operation. (The additional computational overhead of 
the dynamic geographic strategy may also explain why 
it performs somewhat worse than the static geographi­
cal strategy.) These results suggests that in some cases, 
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minimally explicit coordination strategies like intention 
posting may outperform implicit coordination. 

5 F i l te r ing w i t h Overr id ing 
The first set of experiments involved extremely bold 
agents, who never deliberated about options that were 
deemed to be incompatible with the goals of other 
agents. But, as we noted above, such unconditional ac­
ceptance of other agents' goals may lead to inefficiencies 
in performance, just as unconditional acceptance of one's 
own goals may lead to inefficiencies. This is why we in­
clude an override mechanism along with filtering. In 
[Pollack et a/., 1994], we described conditions in which 
overriding was beneficial for the single-agent case. Our 
next step was thus to investigate how overriding affects 
performance in the multi-agent setting. 

What exactly does overriding amount to in the MA-
Tileworld? Recall that multi-agent filtering results in 
agents bypassing consideration of options that they be­
lieve would interfere with the goals of other agents; in 
other words, multi-agent filterers avoid "stepping on one 
another's toes." But sometimes they should step on one 
another's toes. The reason is that the world is dynamic: 
opportunities don't last forever. Sometimes the possi­
bility of successfully filling a hole may disappear by the 
time it could be filled by the responsible agent—either 
the one in whose geographical area the hole lies or the 
one who has declared an intention to fill it. In some 
such cases, the opportunity may be captured by another 
agent who happens to be nearby. But this will only oc­
cur if that nearby agent can override the normal filtering 
of the option to fill the hole in question. 

To operationalize the override mechanism in the MA-
Tileworld, we used a threshold technique similar to that 
used in our single-agent experiments. The threshold t 
is set by the experimenter. The value of the conflicting 
(hole-filling) option o is then computed as the maximal 
score that will be awarded if the hole is filled, divided by 
the Manhattan distance between the agent and the hole. 
We included overriding both in a static geographic strat­
egy and an intention posting strategy; because the earlier 
experiment suggested that the overhead associated with 
the dynamic geographic strategy was too high, we did 
not include that in these experiments. 

We further considered the question of whether the 
original agent—the one whose toes are being stepped 
on—should be notified of this fact. In the first two ex­
perimental conditions, agents are not notified when an­
other agent takes over one of their goals. In the third 
experimental condition, intention posting with preemp­
tion, conflict is determined via intention posting, but, 
when an override occurs, the original agent is notified 
that its goal has been taken over, and so drops the goal 
and looks for an alternative. 

In our earlier work, we determined that extreme bold­
ness was a surprisingly good strategy in a wide variety 
of single-agent Tileworld environments. Overriding be­
came beneficial in environments which can be charac­
terized as presenting many opportunities that have rel­
atively small payoff, and occasional critical opportuni­
ties, which have high payoff but short deadlines. Under 

those circumstances, it seems natural to think that ex­
treme commitment to existing goals would not be a good 
strategy, because the high-payoff opportunities, if they 
are to be successfully acted on, require a quick response. 
We therefore constructed an environment that had those 
characteristics. In particular, it had two types of holes. 
"Common" (C-type) holes were quite numerous, had low 
scores and long lifetimes, and took a long time to fill. 
"Special" (S-type) holes were rare, had high scores and 
short lifetimes, and took a short time to fill. We studied 
similar environments for the multi-agent case. 

For this experiment, we again used a 20x20 grid with 
four agents, and held the world speed constant at a base-
line value. The number of C-type holes varied in the 
range of 30-80 with a score of 25-75, while the number 
of S-type holes varied in 0-4 with score range of 500-
1500). The results are summarized in Figure 3, which 
shows the overall effectiveness (on the Y axis) as a func­
tion of the filtering threshold (on the X axis). 

Figure 3: Overriding in the Multi-Agent Tileworld 

As the graph shows, overriding is indeed beneficial, at 
least in the environmental parameters that we have con­
sidered. Moreover, the filtering threshold has a signifi­
cant influence on the effectiveness of a specific filtering 
strategy. Although there are several local maximas, for 
each filtering strategy there is a unique threshold value 
where the maximal effectiveness is attained. In none of 
the experimental conditions was either extreme boldness 
or extreme caution the optimal strategy. 

Perhaps more surprising was the relative performance 
of the various operationalizations of filtering in this en­
vironment. Recall that in the uniform environments 
studied in the first set of experiments, intention post­
ing was always the best method of filtering. Here, the 
geographical-boundaries method is best, except when 
the override threshold is very high. This result led us 
to re-evaluate what is significant about the alternative 
filtering methods. What we realized is that what is par­
ticularly important in all the environments we studied is 
for the agents to maintain reasonable geographical sep­
aration from one another. In the uniform environments 
of the first set of experiments, all the filtering strate-
gies lead to geographical separation. With geographical 
boundaries filtering, the agents focus on holes in distinct 
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areas, and so tend to stay separated. With intention 
posting filtering, agents dynamically create separate re­
gions because they tend first to form plans to fill nearby 
holes, and thus create territories that are avoided by 
other agents. Moreover these territories tend to stay 
fixed, because filtering is absolute. 

However, once overriding is introduced, the stability 
of these local areas decreases. With a relatively low 
threshold, posted intentions will frequently be overrid­
den by other agents, and there is nothing to prevent 
the agents from becoming clustered in one area of the 
grid and thus missing many remote opportunities. In 
contrast, although geographical-boundaries filtering will 
also be subject to frequent overrides, once any particular 
out-of-region goal is completed, the agent will return to 
its original territory. 

Although this result in some sense is quite specific to 
the MA-Tileworld environment, it can be related to a 
much more general claim about the importance of re­
source distribution in coordination. What is interesting 
about this case is that the resources are both goals and 
objects needed to satisfy those goals. 

6 The Effect of Defectors 
The first two sets of experiments aimed at giving at least 
preliminary evidence that multi-agent filtering can be an 
effective means to achieve collaboration: it is an implicit 
strategy, requiring only that agents observe local rules of 
behavior, and it leads to overall improved performance, 
at least within the simulated environments we investi­
gated. However, the fact that global performance is bet­
ter if all the agents adopt a filtering strategy does not, 
in and of itself, guarantee that each agent will choose 
this strategy, if it has the choice. In some, and perhaps 
most, settings agents will have individual goals and util­
ity functions: their concern is not with global perfor­
mance, but with maximization of their private utility. 
We addressed these settings with experiments that aban­
don the assumption that agent will benevolently adopt 
the filtering coordinating mechanism. We assumed in­
stead simply that agents are self-motivated (rational). 

Game theory has addressed many interactions similar 
to the ones considered here. Such interactions have been 
analyzed to determine what an agent's chosen strategies 
would be, given the rules of the interaction. Our aim is 
complementary; it is to design rules that would induce 
the agents to adopt some specific strategy that we con­
sider to be desirable. In our case we would like to make 
cooperation be the individually desired strategy. That 
is, each agent should prefer, out of "selfish" (rational) 
considerations, the filtering strategy over the other al­
ternatives she might have. If all agents find cooperation 
to be their superior alternative it becomes an equilib­
rium point. In particular, a very strong claim would be 
that, regardless of whether the other agents are multi-
agent filterers, each agent should itself choose to be one, 
i.e., multi-agent filtering is dominant to not filtering: 
Definition 1 The strategy s* is a dominant strategy if 
it is an agent 's strictly best response to any strategies that 
the other players might pick, in the sense that whatever 
strategies they pick, his payoff is highest with si . 

A dominant strategy equilibrium is a strategy combi­
nation of each player's dominant strategy. 

Thus, a strategy combination that is a dominant strat­
egy equilibrium is very desirable. The fact that there is 
no importance to the other agents' behavior does away 
with the need to reason about the other agents' strate­
gies, knowledge, or even computational capabilities. The 
behavior of an agent depends solely on its own charac­
teristics. 

To explore the question of whether the filtering strat-
egy is dominant, we conducted another experiment, us­
ing MA-Tilewords populated by fifteen agents, only some 
of whom were cooperative. We varied the number of co-
operative agents across trials, and measured the perfor­
mance of the cooperative agents, the performance (av­
erage effectiveness) of the non-cooperative agents, and 
the global performance. We used the relatively weaker 
intention-posting method of filtering, and held world 
speed fixed at a baseline rate.2 The experimental results 
are summarized in Figure 4. The X-axis indicates the 
number of filtering agents (out of the total population of 
fifteen), and the Y-axis shows the effectiveness. 

As can be seen from the graph, the higher the percent­
age of filtering agents, the better the global performance 
is. But more importantly, the graph shows that at any 
given ratio of filtering to non-filtering agents, the filtering 
agents are doing better. That fact implies that regardless 
of the other agents' behavior, each agent should choose 
to cooperate and thus guarantee itself a higher utility. 
That is, at least for the range of environments that we 
have examined, intention-posting multi-agent filtering is 
in dominant strategy equilibrium.3 

2 Other experimental parameters were: Number of C-type 
holes=30-80, Score of C-Type holes=25-75, Number of S-
type holes= 0-4, Score of C-Type holes=500-1500. Also, the 
grid was enlarged to 30x30, to accommodate the increased 
number of agents. 

3 Another phenomenon worth noting is that the effective­
ness of the non-filtering agents improves as their proportion 
of the population decreases. This fact recalls the well-known 
parasite phenomenon of evolutionary game theory, and de­
serves further study. 
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7 Conclusions References 

In this paper, we have described an implicit approach 
to deriving coordination in multi-agent environments. 
The approach, the use of multi-agent filtering, is an out­
growth of earlier proposals that filtering is a useful tech­
nique for the control of reasoning by single agents. Multi-
agent filtering is a natural extension to single-agent fil­
tering, and has several highly desirable characteristics, 
such as simplicity and efficiency. To date we have con­
ducted experiments, reported on in this paper, that pro­
vide preliminary evidence that multi-agent filtering is 
a good candidate for achieving coordination, and may 
even be a dominant strategy. Clearly the experiments 
conducted so far raise at least as many questions as they 
answer, and our experimental work, which aims to refine 
many of the hypotheses made in this paper, is ongoing. 

The previous work that our approach is probably most 
closely related to is that on "social laws" [Moses and Ten-
nenholtz, 1992; Shoham and Tennenholtz, 1992]. The 
idea behind social laws is that multi-agent systems may 
be designed so that, in any given situation, only a sub­
set of the physically possible actions are designated as 
"legal". The specification of legality is intended to lead 
to cooperation: action restrictions should be defined so 
that, as long as the agents perform only legal actions, 
their behavior will be cooperative, i.e., their interactions 
will tend to lead to overall improved performance. If the 
restrictions on legal actions are principled, rather than 
ad hoc, then they can be described as social laws. 

The strategy of multi-agent filtering that we describe 
in this paper can be cast as a particular class of social 
laws. However, there are some key differences between 
the approaches. Social laws are designed in part to guar­
antee that once an agent adopts a goal, no other agent 
will interfere. As a result, social laws are typically very 
difficult to generate and are very complex. In contrast, 
the filtering mechanism is intended to lead to improve­
ment in the expected performance of the agents in a so­
ciety, but not to guarantee success for each specific goal. 
The filtering strategy can be generated in a straightfor­
ward manner, based only on abstract properties of the 
environment and interaction. Moreover, while previous 
approaches assume that agents will follow the coordina­
tion strategy benevolently or through an explicit enforc­
ing mechanisms, we expect the filtering mechanism to 
be self-enforcing, in which case, no particular assump­
tion must be made about the agents' motivation, and a 
group of multi-agent filterer may either all be pursuing 
the same global goal or may have individual goals, some 
of which may conflict. 
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