
E f f i c i e n t A l g o r i t h m s a n d P e r f o r m a n c e R e s u l t s f o r M u l t i - U s e r 
K n o w l e d g e Bases 

Vinay K. Chaudhri* and John Mylopoulos 
Department of Computer Science, 

10 King's College Road, University of Toronto, 
Toronto, Ontario, M5S 1A4 

Abstract 

The paper describes research efforts to develop 
efficient implementation techniques for large, 
shared knowledge bases, focusing on efficient 
concurrent access of large knowledge bases by 
multiple users. We present an algorithm, called 
the Dynamic Directed Graph policy, originally 
proposed in [Chaudhri et a/., 1992], which al­
lows efficient interleaved execution of transac­
tions against a large knowledge base with the 
intent of optimizing transaction throughput. 
The implementation of the policy and exper­
imental evaluation results are also presented 
and discussed. The paper concludes with dis­
cussion on lessons learnt from this research. 

Large knowledge bases containing millions of facts will 
soon be here, thanks to research efforts such as the 
Knowledge Sharing initiative [Patil et a/., 1992] and the 
CYC project [Guha and Lenat, 1994]. However, tools 
for building knowledge bases do not scale up to accom­
modate such large knowledge bases. Our efforts are fo­
cusing on the adoption of database techniques to build 
knowledge base building tools that do scale up. 

One of the requirements of such tools is that they ac­
commodate efficient multi-user access of a single, large 
knowledge base by maximizing throughput, i.e., the 
number of user-defined transactions that are executed 
against the knowledge base per time unit. A compara­
ble requirement for databases is addressed by concur­
rency control mechanisms that are routinely offered by 
database management systems, which have been shown 
to improve throughput by as much as an order of mag­
nitude or more. 

A comparable concurrency control algorithm, specif­
ically designed for knowledge bases and called the Dy­
namic Directed Graph policy was proposed in [Chaudhri 
et a/., 1992]. The main purpose of this paper is to de­
scribe an implementation of that policy and to present 

*This paper is based on joint work with Prof. Vassos 
Hadzilacos and Prof. Ken Sevcik. It was supported by the 
University of Toronto, the Information Technology Research 
Center of Ontario, the Natural Science and Engineering Re­
search Council of Canada and the Institute of Robotics and 
Intelligent Systems. 

performance results which compare the performance of 
the proposed policy against the performance of off-
the-shelve concurrency control mechanisms designed for 
databases. The paper summarizes some of our findings 
and concludes with research directions. 

The outline of this paper is as follows. In Section 1, 
we begin by motivating the problem. In Section 2, we 
present the Dynamic Directed Graph (DDG) policy. In 
Section 3, we briefly describe some problems that were 
faced while implementing the policy. In Sections 4-5, we 
present the evaluation of the algorithm for knowledge 
base applications, and in Section 6, discuss some related 
work. In Section 7, we discuss the lessons learnt from 
our research and conclude in Section 8 with a summary. 

1 Problem Statement 
Concurrent processing of user requests can lead to large 
speed ups in user response time as compared to process­
ing the requests of one user at a time [Gray and Reuter, 
1993]. Arbitrary concurrency can, however, lead to in­
consistent information in the knowledge base and one 
must make sure that the concurrent executions are seri-
alizable [Bernstein et a/., 1987]: interleaved execution of 
a set of transactions must be equivalent to some serial 
execution of the same collection of transactions in the 
sense that it leaves the knowledge base in the same state 
and returns the same answers to the users. 

Most commercial database systems use locktng-based 
algorithms to ensure serializability. The best known 
locking algorithm, two-phase locking (2PL) [Eswaran et 
a/., 1976], works along the following lines. Associated 
with each data item is a distinct "lock". A transac­
tion must acquire a lock on a data item before accessing 
it. While a transaction holds a lock on a data item no 
other transaction may access it. A transaction cannot 
acquire any additional locks once it has started releasing 
locks (hence the name "two-phase" locking). In a simple 
generalization of this model, the transactions may hold 
shared and exclusive locks on data items. The instant 
when a transaction has acquired all the locks that it will 
ever need is called its locked point. 

Transactions in a knowledge base system often access 
large number of data items, for example, while inferenc-
ing over long rule chains. Such a transaction may po­
tentially access all the nodes that are descendants of the 

CHAUDHRI AND MYLOPOULOS 759 



goal in the inference graph from which it begins execu­
tion. Similar long transactions are generated while per­
forming truth maintenance operations in a knowledge 
base. In such situations, 2PL implies that a transac­
tion will have to hold each lock until its locked point 
thereby locking most of the knowledge base for other 
users. Hence, concurrency is significantly reduced when 
running such "global" transactions. For this reason, our 
research has been directed towards the development of 
new methods that only hold a small number of locks at 
any one time, even for global transactions. 

Interestingly, knowledge bases generally possess much 
richer internal structure (e.g., generalization and aggre­
gation hierarchies, deductive rules, temporal dimensions 
defined in terms of history or belief time, etc.) than that 
of traditional databases. Information about this struc­
ture can be potentially useful in allowing early release 
of locks. Indeed, a concurrency control algorithm does 
exist for databases that have a directed acyclic graph 
structure, and is accordingly called DAG policy [Silber-
schatz and Kedem, 1980; Yannakakis, 1982]. Under the 
DAG policy, a transaction may begin execution by lock­
ing any item. Subsequently, it can lock an item if it 
has locked all the predecessors of that item in the past 
and is currently holding a lock on at least one of those 
parents. Moreover, under the DAG policy a transaction 
may only lock an item once. The DAG policy exploits 
the assumption that there are no cycles in the under­
lying structure and the structure does not undergo any 
change. Unfortunately, such a policy cannot be adopted 
for knowledge bases without modifications. The struc­
ture of a knowledge base is likely to contain cycles (e.g., 
the inference graph generated for a collection of recur­
sive rules) and will undergo change (e.g., when rules are 
added or deleted). 

In summary, neither 2PL nor DAG policy is, by itself, 
appropriate for knowledge bases. 2PL is too conserva­
tive, thereby causing reduced concurrency, while DAG 
policy does not provide sufficient functionality. Accord­
ingly, we are proposing a new graph-based policy, the 
Dynamic Directed Graph policy (DDG) that can handle 
cycles and updates in the knowledge base and also allows 
release of locks before the locked point of a transaction, 
thereby promising better performance than 2PL. 

2 The Dynamic Directed Graph Policy 
The knowledge bases that we have in mind are assumed 
to support an object-oriented representational frame-
work with an assertional sub-language used for both 
deductive rules and constraints. Also, possibly, they 
might support facilities for representing special kinds 
of knowledge (for example, temporal knowledge, incom­
plete knowledge, etc.). A large class of knowledge bases 
can be represented in terms of such directed graphs, 
not only the ones based on semantic nets, frames but 
also description logics or even logics [Plexousakis, 1993; 
Borgida and Patel-Schneider, 1994]. Therefore, for the 
purposes of concurrency control, a knowledge base is a 
directed graph G(V,E), where V is a set of nodes (e.g., 
Employee), and E is a set of edges which are ordered 
pairs of nodes (e.g., (Manager,Employee)). 

We first define some properties of directed graphs that 
are necessary for specifying our algorithm. A root of a 
directed graph is a node that does not have any prede­
cessors. A directed graph is rooted if it has a unique root 
and there is a path from the root to every other node in 
the graph. A directed graph is connected, if the underly­
ing undirected graph is connected. A strongly connected 
component (SCC) G, of a directed graph G is a maximal 
set of nodes such that for each A, B £ G», there is a path 
from A to B. An SCC is non-trivial if it has more than 
one node. An entry point of an SCC, G,, is a node B 
such that there is an edge (B, A) in G, A is in G,', but 
B is not in G,-. Thus, if a node is an SCC by itself, its 
entry points are simply its predecessors. 

The dominator D of a set of nodes W is a node such 
that for each node A G W, either every path from 
the root to A passes through D or D lies on the same 
strongly connected component as A. Thus, in a rooted * 
graph, the root dominates all the nodes in the graph 
including itself. All nodes on a strongly connected com­
ponent dominate each other. 

The DDG policy has three types of rules. Prepro­
cessing rules convert an arbitrary graph to a rooted and 
connected graph. Locking rules specify how each trans­
action should acquire locks. Maintenance rules specify 
additional operations that must be executed by transac­
tions to keep the structure rooted and connected. The 
rest of the discussion in this section focuses on locking 
rules. A detailed description of the DDG algorithm ap­
pears elsewhere [Chaudhri, 1995]. 

A transaction may lock a node in shared or exclusive 
mode [Bernstein et al., 1987]. Two transactions may 
simultaneously lock a node only if both lock it in shared 
mode. The locking rules are as follows: 
L I . Before a transaction T performs any INSERT, 
DELETE or WRITE operation on a node A (or an edge 
(A,B)), T has to lock A (both A and B) in exclusive 
mode. Before T performs a READ operation on a node 
A (an edge (A, B)), it has to lock A (both A and B) in 
either mode. 
L2. A node that is being inserted can be locked at any 
time. 
L3. Each node can be locked by T at most once. 
L4. The first lock obtained by T can be on any node. If 
the first node locked by T belongs to a non-trivial SCC, 
all nodes on that SCC are locked together in the first 
step. 

Subsequently, 
L5. All nodes on an SCC are locked together if: 

L5a. All entry points of that SCC in the present state 
of G have been locked by T in past, and T is now holding 
a lock on at least one of them, and 

L5b. For every node A on this SCC that is a successor 
of an entry point, and every path A1,..., Ap,A,p > 1, 
in the present state of the underlying undirected graph 
of G\ such that T has locked A\ (in any mode), and 
A2. • • ■, Ap in shared mode, T has not unlocked any of 
A1,. .. ,AP so far. 

As an example application of the DDG-SX policy con­
sider the knowledge base and the transactions shown in 

760 KNOWLEDGE BASE TECHNOLOGY 



Figure 1. (LS and LX respectively denote the acquisition 
of lock in shared and exclusive mode, U denotes release 
of lock on a node and (U *) denotes the release of all 
the locks held by a transaction.) T1 begins by locking 
node 1 (locking rule L4) in shared mode and then locks 
node 2 in exclusive mode (locking rule L5). It locks the 
nodes 3 and 4 which form a strongly connected compo­
nent in shared mode in one step (locking rule L5). It is 
able to do so because the condition L5b is satisfied for 
each path from node 2 to node 3 and 4. T1 locks node 5 
in exclusive mode and finishes execution. T2 begins by 
locking both nodes 3 and 4 (locking rule L4) and then 
locks node 5 and finishes execution. If T1 adds the edge 
(2,5) (locking rule LI), then T2 will be unable to lock 
node 5 because in order to do that it must lock node 2 
which is a predecessor of node 5 in the current state of 
the graph (locking rule L5a). T2 must abort and start 
from node 2. 
Theorem: The DDG policy produces only serializable 
schedules [Chaudhri, 1995]. 

The DDG policy does not permit concurrency within 
cycles (see rule L5 above) suggesting that if a knowledge 
base contains cycles, concurrency will be reduced. We 
have a version of the DDG policy that permits concur­
rency within cycles [Chaudhri et a/., 1992]. We adopted 
the above version, because the transactions in knowledge 
bases tend to access all the nodes on a cycle together, 
and therefore, the cycles are a natural unit of locking. 

For a transaction to be able to satisfy locking rule L5 
for all the nodes that it needs to lock, it has to begin by 
locking the dominator of all the nodes that it is going 
to access. This is not a contradiction to locking rule 
L4, which just says that to lock the first node, no other 
condition needs to be satisfied. 

3 Implementat ion of the D D G Policy 
The DDG policy has been implemented in the DeNet 
[Livny, 1990] simulation environment. The implementa­
tion ideas that we present here are independent of any 
specific system. 

There are two main issues in the implementation of 
the DDG policy. First, to enforce the rules of the lock­
ing policy, we need to compute and maintain information 
about several graph properties. Second, we need a mech­
anism to decide the order in which the locks should be 
acquired and released. 

To enforce the locking rules, we need information on 
the dominator relationships and the strongly connected 
components within the knowledge base graph. In our 
implementation, the dominator tree of the knowledge 

base is computed at compile time using a bit vector al­
gorithm [Chaudhri, 1995J. Using this information, the 
dominator of the set of nodes in the transaction can be 
computed in time linear in the length of a transaction. 
The dominator information is maintained using an in­
cremental algorithm [Caroll, 1988]. The information on 
strongly connected components is computed at compile 
time using depth-first search. There was no algorithm 
available for incrementally maintaining information on 
strongly connected components as the knowledge base 
evolves, and therefore, we developed an algorithm for 
this purpose [Chaudhri, 1995]. 

Let us describe the order in which a transaction ac­
quires and releases locks. A transaction always begins 
by locking the dominator of all the nodes that it might 
access. The dominator is computed on the assumption 
that a transaction may access all the descendants of the 
first node on which it requests a lock. Subsequently, 
every time a lock is requested, the locking conditions 
are checked, and if not enough predecessors are locked 
(rule L5a), lock requests for them are issued recursively. 
Before a node A can be unlocked by a transaction T, 
following conditions must be satisfied: 
U1. A is no longer needed by T, and 
U2. Releasing the lock on node A does not prevent the 
locking of any of its successors at a later stage in the 
execution of T (as required by rule L5a), and 
U3. For every path A, A1,..., Ap, B in the present state 
of the underlying undirected graph, such that A is locked 
(in any mode), A\,.. ., Ap are locked in shared mode, T 
intends to lock B in future, T must not unlock any of 
ApA\,..., Ap (by locking rule L5b). 

To implement Ul, we require T to send a message to 
the lock manager when it has finished processing a node. 

To implement U2, we have to know how many of the 
descendants might be later locked by T. Moreover, of 
all the predecessors of a node A, only one has to be kept 
locked until T locks A. Therefore, we distinguish one 
of the predecessors that needs to be locked until all the 
successors have been locked, and associate with it the 
number of successors that are yet to be locked. Once 
the number of successors yet to be locked for a node 
becomes zero, U2 is satisfied. 

To implement U3, we check all the undirected paths 
from A to all the nodes that T may lock in future. U3 
needs to be checked only when T acquires an exclusive 
lock or when T locks a node none of whose descendants 
will be locked by it in future. The check can be made 
more efficient by observing that if U3 is not satisfied for 
a node A, it is also not satisfied for descendants of A, 

CHAUDHRI AND MYL0P0UL0S 761 



Class 2 

and therefore, the paths passing through them need not 
be checked. 

4 Evaluation of the D D G Policy 
Our performance model is similar to an earlier model 
[Agrawal et a/., 1987] and has four components: a source, 
which generates transactions, a transaction manager, 
which models the execution of transactions, a concur­
rency control manager, which implements the details of 
a particular algorithm; and a resource manager, which 
models the CPU and I/O resources of the database. 

Performance of the DDG policy was studied on a 
knowledge base under development for industrial pro-
cess control [Mylopoulos et ai, 1992]. The application 
is called Advanced Process Analysis and Control Sys­
tem (APACS). The objects represented in the knowl­
edge base (boilers, valves, preheaters, alarms, etc.) are 
organized into a collection of classes, each with its own 
subclasses, instances and semantic relationships to other 
classes. There are several semantic relationships in this 
knowledge base. The isA relationship captures the class-
subclass relationship, the instanceOf relationship rep-
resents the instances of a class, and the linkedTo rela­
tionship stores how the components are linked to each 
other in the power plant. 

For our experiments, we view this knowledge base as 
a directed graph. Each class and each instance is repre­
sented by a node. There are 2821 nodes in this graph. 
There is an edge between two nodes if they have some se­
mantic relationship. For example, there is an edge from 
node A to node B, if the object represented by A is a 
part of the object represented by node B. 

The knowledge base receives two classes of transac­
tions. Class 1 transactions are long and traverse the 
knowledge base along one of its structural relationships. 
Class 2 transactions are short and look-up or update an 
attribute value and occasionally change the structural 

relationships in the knowledge base. The proportion of 
the transactions in Class 1 was determined to be 27% 
with the remaining 73% being in Class 2. 

Since there are several semantic relationships in the 
knowledge base, we can selectively use one or more of 
these as the graph to be used for concurrency control. 
Making a semantic relationship known to concurrency 
control gives it information on the entities to be accessed 
by transactions that traverse that relationship, but on 
the other hand, for transactions that do not traverse this 
relationship, it may mean locking more nodes than they 
actually require. We analyzed this tradeoff [Chaudhri, 
1995] and concluded that for the APACS workload, using 
the graph defined by the union of isA and instanceOf 
relationships leads to the best performance, and there­
fore, used it as the graph with respect to which the lock­
ing rules of the DDG policy were applied. 

In the APACS application, Class 1 transactions do not 
specify the traversal strategy that should be used, and 
therefore, one can choose a strategy that leads to bet­
ter performance. We considered two traversal strategies: 
depth-first traversal (DFT) and breadth-first traversal 
(BFT). In general, transactions using a DFT hold a 
lesser number of locks on average as compared to the 
average number of locks held while using a BFT. To 
quantify the difference, we show, in Figure 2, the per­
centage improvement in the Class 2 response times as 
obtained when Class 1 transactions use DFT as com­
pared to BFT. We do not show the improvement in Class 
1 response time as it was found to be insignificant. The 
improvement is shown as a function of Multiprogram­
ming level of Class 1 transactions and the write prob­
ability. Multiprogramming level (MPL) is the number 
of transactions that are concurrently executing at any 
given time and can be controlled by the system admin­
istrator. Permitting too few active transactions (or a 
low MPL) may not exploit full benefits of concurrency 

762 KNOWLEDGE BASE TECHNOLOGY 



and permitting too many active transactions (or a high 
MPL) may lead to excessive contention and degrada­
tion in user response time. Write probability is the pro­
portion of accesses performed by a transaction that are 
updates. If R(J)BFT and R(J)DFT are the mean re­
sponse times of transactions in the Class j then the per­
centage improvement of DFT over BFT is computed as 
(R(J)BFT ~ R(J)DFT)/R(J)BFT * 100. We can see that, 
even at high write probabilities, by using DFT, Class 
2 response times showed consistent improvement. This 
result shows that in a multi-user knowledge base envi­
ronment, while using the DDG policy, DFT is a more 
desirable traversal strategy than BFT. 

In Figure 3, we plot the percentage improvement in 
response time of Class 2 transactions obtained by us­
ing the DDG policy as compared to 2PL. If R{j)2PL 
and R(J)DDG are the mean response times of transac­
tions in class j, then the percentage improvement of the 
DDG policy over 2PL is computed as 100 x (R(J)2PL -
R{J)DDG)/R{J)2PL-

The results for Class 2 transactions indicate that when 
Class 1 transactions are read only, the performance of 
the DDG policy is comparable to 2PL. When Class 1 
transactions also perform some updates, the DDG pol­
icy can improve considerably (of the order of 50%) the 
response time of Class 2 transactions that are running 
concurrently. The results for Class 1 transactions are not 
shown here. We found that at low update probabilities 
there was slight degradation (about 10%) in Class 1 re­
sponse time by using the DDG policy and at high update 
probabilities there was no significant difference between 
the two algorithms. These results make sense, because 
when there are only shared locks in a transaction, the 
DDG policy cannot allow any release of locks before its 
locked point, but incurs extra overhead, and therefore, 
leads to a slight degradation in response time. On the 
other hand, if the Class 1 transactions are update in­

tensive, they release locks before their locked point, and 
the extra overhead is more than offset by the increased 
concurrency obtained due to lock pre-release leading to 
a net improvement in Class 2 response time. 

In Figure 3, we can observe that the improvements 
are smaller at high multiprogramming levels. At low 
multiprogramming levels (for example, at MPL=1), any 
release of locks by a transaction before its locked point 
contributes to the improvement in response time of con­
currently executing Class 2 transactions. At higher mul­
tiprogramming levels, this may not be necessarily true, 
because the lock released by a Class 1 transaction could 
be acquired by another Class 1 transaction giving no 
benefit to Class 2 transactions. As a result, we see 
greater improvements in the Class 2 response time at 
low multiprogramming levels of Class 1 as compared to 
improvements at high multiprogramming levels. 

The overall system response time can be computed as 
the weighted sum of the individual class response times 
where class throughputs are used as weights. In the 
APACS workload the throughput of Class 2 (25 trans­
actions/second) is much higher than the throughput of 
Class 1 (approximately 0.4 transactions/second), and 
therefore, the behavior of Class 2 transactions dominates 
the overall response time. On computing the improve­
ments in the overall response time, we found that im­
provements were very close to the corresponding values 
for Class 2 response time as shown in Figure 3. 

In view of the relative behavior of the two algorithms, 
we designed an adaptive scheme which can switch be­
tween 2PL and the DDG policy depending on the load 
conditions. Such a scheme uses 2PL at low write prob-
abilities and the DDG policy at high write probabili­
ties, thus giving the best of the two algorithms. Since 
simultaneously using the two algorithms may lead to 
non-serializable schedules the adaptive scheme uses a 
transition phase while switching from one algorithm to 

CHAUDHRI AND MYL0P0UL0S 763 



764 KNOWLEDGE BASE TECHNOLOGY 



6 Related Work 
The present paper summarizes and enhances the results 
published earlier which focused on details of correctness 
[Chaudhri et a/., 1992] and performance [Chaudhri et 
a/., 1994] issues. A detailed description of the results 
can be found in the first author's doctoral dissertation 
[Chaudhri, 1995]. 

Knowledge base implementations that have tried to 
address the issue of concurrent access to a shared knowl­
edge base include CYCL [Guha and Lenat, 1994], K-
REP [Mays et a/., 1991] and PROTEUS [Ballou et a/., 
1988]. In CYCL, a copy of the whole knowledge base 
is made and given to each of its users. Users indepen­
dently make changes to the database and submit it to 
a central server that tries to detect inconsistencies. If 
it finds any inconsistencies, it passes them along to the 
persons who made the changes. Otherwise, it propagates 
the changes to all users. The K-REP system uses simi­
lar ideas and allows users to work on different versions 
of the knowledge base and provides facilities for merging 
the versions. The basic assumption in the CYCL and K-
REP approach is that the cost of detecting and repairing 
inconsistency is much smaller as compared to the cost of 
preventing it by ensuring serializability. The CYCL and 
K-REP approach is feasible for a small knowledge base 
but it is unclear if it wil l scale up to more realistic knowl­
edge base sizes. PROTEUS system uses the concurrency 
control facilities of an underlying object-oriented system 
ORION. The concurrency control mechanism in ORION 
is 2PL with locking granularities based on aggregation 
and generalization hierarchies. 

To deal with long transactions, there have been other 
proposals [Agrawal and Abbadi, 1990; Salem et a/., 1994] 
that permit more concurrency than 2PL, but they do not 
exploit the semantic structure of the database. 

7 Lessons Learnt 
An interesting aspect of our results is the integration of 
knowledge model features with low level implementation 
issues. The integration is reflected in the design of the 
DDG policy that abstracts the knowledge model into a 
directed graph, and in performance evaluation which is 
done as a function of data model features. 

For example, the presence of cycles in a knowledge 
base influences the design of the locking policy and the 
amount of concurrency permitted by it. This indicates 
that if there are large cycles in the knowledge base that 
are repeatedly accessed by a transaction then concur­
rency wil l be l imited. Similarly, we found that a depth-
first traversal strategy led to a better response time 
as compared to a breadth-first strategy. Traditionally, 
traversal strategy has been under the control of a query 
processor and the designs of transaction manager and 
query processor have been considered in isolation. Our 
result on the influence of traversal strategy on concur­
rency control performance shows that the interaction be­
tween query processor and concurrency control can play 
an important role in the overall performance. 

To get better advantage of the semantic structure, the 
knowledge base should be highly structured: it should 

be almost like a tree (high depth factor) and should not 
have large fanin and fanout (low fanin and fanout fac­
tors) . This has an interesting implication for knowledge 
base implementations that pre-compute all subsumption 
relationships. Pre-computation of all subsumption re­
lationships is equivalent to creating a large fanin and 
fanout in the subsumption hierarchy and in such a sit­
uation the advantages of using the semantic structure 
using the DDG policy wil l be reduced. 

Our research illustrates a general framework for in­
corporating database functionality into knowledge bases. 
The solution space to achieve this includes [Mylopou-
los and Brodie, 1990]: coupling an AI system with a 
database system (loose or tight coupling) or devising an 
integrated solution (in an evolutionary or a revolution­
ary way). We adopt and recommend an evolutionary 
approach, because it is pragmatic and consistent with 
software reusability. 

An evolutionary approach to design an integrated AI -
DB solution should be a two step process. In the first 
step, one should view the problem as a database tuning 
problem [Shasha, 1994], and if necessary, one should take 
the second step and solve a database kernel design prob­
lem. By solving a kernel design problem we mean ad­
dressing a core database concern such as storage design 
or query optimization. Let us illustrate this approach by 
considering the problem of concurrent access addressed 
in the present paper. To support concurrent access to a 
knowledge base, one would start with a database solution 
which in this case is 2PL. To tune 2PL for long transac­
tions, one would chop the long transactions into smaller 
transactions [Shasha, 1994] or impose a correctness cri­
terion which is weaker than serializability. If the long 
transaction problem stil l persists one would change the 
database kernel and augment 2PL with the DDG policy 
and use an adaptive algorithm that consistently gives a 
better performance than 2PL. These two steps taken to­
gether would give a comprehensive integrated solution 
for concurrent access in a knowledge base environment. 

In summary, we feel that to develop a technology for 
constructing knowledge bases, we need to address the 
core database issues for knowledge models. A subset 
of these concerns may be addressed by tuning existing 
database products but a long term solution would require 
an integrated approach that makes fundamental changes 
in the database kernel. 

8 Summary and Conclusions 
In this paper, we considered the problem of support­
ing concurrent access to large knowledge bases. We 
argued that knowledge base operations such as infer­
ence over long rule chains and truth maintenance lead 
to the problem of long transactions which cannot be 
efficiently solved by existing database techniques. We 
argued that we can use the rich semantic structure of 
knowledge bases to devise a more viable solution for long 
transactions. We showed this by presenting the design, 
implementation and evaluation of an algorithm called 
Dynamic Directed Graph (DDG) policy that gives bet­
ter response time than 2PL at high update rates. We 
showed that 2PL can be augmented with the DDG pol-

CHAUDHRI AND MYL0P0UL0S 765 



icy to give a hybrid algorithm that consistently performs 
better than a system that uses only 2PL. We also dis­
cussed the impact of our results on the knowledge base 
design and presented a refinement of the evolutionary 
paradigm for constructing knowledge base management 
systems. In our current work, we are addressing the is­
sues of fault-tolerance for the DDG policy. 

In conclusion, we would like to note that the re­
sults presented in this paper are at the intersection of 
knowledge base and database systems. Research com­
bining techniques from these two fields will be of prime 
importance in future. One of the major technologi­
cal innovations in the coming years would be devel­
opment of cooperative information systems involving a 
large number of intelligent agents distributed over com­
puter/communication networks. Developing such sys­
tems presents a unique opportunity in which techniques 
from both knowledge bases and databases will play a 
crucial role. The results presented in this paper make a 
modest contribution towards this goal. 

References 
[Agrawal and Abbadi, 1990] D. Agrawal and A. El Ab-

badi. Locks with Constrained Sharing. In 9TH ACM 
Symposium on Principles of Database Systems, pages 
85-93, April 1990. 

[Agrawal et ai, 1987] Rakesh Agrawal, Michael J. 
Carey, and Miron Livny. Concurrency Control Per­
formance Modeling: Alternatives and Implications. 
ACM Transactions on Database Systems, 12(4) :609-
654, December 1987. 

[Ballou et ai, 1988] Nat Ballou, 
Hong-Tai Chou, Jorge F. Garza, Won Kim, Charles 
Petrie, David Russinoff, Donald Steiner, and Darrell 
Woelk. Coupling an Expert System Shell With and 
Object-Oriented Database System. Journal of Object 
Oriented Programming, 1(2):12-21, 1988. 

[Bernstein et ai, 1987] Philip A. Bernstein, Vassos 
Hadzilacos, and Nathan Goodman. Concurrency Con­
trol and Recovery in Database Systems. Addison-
Welssley Publishing Company, 1987. 

[Borgida and Patel-Schneider, 1994] Alex Borgida and 
Peter F. Patel-Schneider. A Semantics and Com­
plete Algorithm for Subsumption in CLASSIC De­
scription Logic. Journal of Artificial Intelligence Re-
search, 1:277-308, 1994. 

[Caroll, 1988] M. D. Caroll. Data Flow Analysis via 
Dominator and Attribute Updates. Technical Report 
LCSR-TR-111, Rutgers University, May 1988. 

[Chaudhri et ai, 1992] Vinay K. Chaudhri, Vassos 
Hadzilacos, and John Mylopoulos. Concurrency Con­
trol for Knowledge Bases. In Proceedings of the Third 
International Conference on Knowledge Representa­
tion and Reasoning, pages 762-773, 1992. 

[Chaudhri et ai, 1994] Vinay K. Chaudhri, Vassos 
Hadzilacos, John Mylopoulos, and Ken Sevcik. Quan­
titative Evaluation of a Transaction Facility for a 
Knowledge Base Management System. In Proceed­
ings of the Third International Conference on Knowl­
edge Management, pages 122-131, Gaithersberg, MD, 

[Chaudhri, 1995] Vinay K. Chaudhri. Transaction Syn-
chronization in Knowledge Bases: Concepts, Realiza­
tion and Quantitative Evaluation. PhD thesis, Uni­
versity of Toronto, Toronto, January 1995. 

[Eswaran et ai, 1976] K. Eswaran, J. Gray, R. Lorie, 
and I. Traiger. The Notions of Consistency and Pred­
icate Locks in Database Systems. Communications of 
the ACM, 19(9):624-633, 1976. 

[Gray and Reuter, 1993] Jim Gray and Andreas Reuter. 
Transaction Processing: Concepts and Techniques. 
Morgan Kaufmann Publishers, Inc., San Mateo, 1993. 

[Guha and Lenat, 1994] R. V. Guha and Douglas B. 
Lenat. Enabling Agents to Work Together. Commu­
nications of the ACM, 37(7):126-142, 1994. 

[Livny, 1990] Miron Livny. DeNeT User's Guide (Ver­
sion 1.5). Technical report, University of Wisconsin, 
1990. 

[Mays et ai, 1991] E. Mays, S. Lanka, B. Dionne, and 
R. Weida. A Persistent Store for Large Shared Knowl­
edge Bases. IEEE Transactions on Knowledge and 
Data Engineering, 3(1):33-41, 1991. 

[Mylopoulos and Brodie, 1990] John Mylopoulos and 
Michael Brodie. Knowledge Bases and Databases: 
Current Trends and Future Directions. In Lecture 
Notes in Computer Science, Vol. 474: Information 
Systems and Artificial Intelligence: Integration As­
pects, New York, 1990. 

[Mylopoulos et ai, 1992] J. Mylopoulos, B. Kramer, 
H. Wang, M. Benjamin, Q. B. Chou, and S. Mensah. 
Expert System Applications in Process Control. In 
Proceedings of the International Symposium on Artifi­
cial Intelligence in Materials Processing Applications, 
Edmonton, August 1992. 

[Patil et ai, 1992] Ramesh Patil, Richard E. Fikes, Pe­
ter F. Patel-Schneider, Don Mackay, Tim Finin, 
Thomas Gruber, and Robert Neches. The DARPA 
Knowledge Sharing Effort: Progress Report. In 
The Third International Conference on Principles of 
Knowledge Representation and Reasoning, pages 777-
788, Boston, MA, 1992. 

[Plexousakis, 1993] D. Plexousakis. Integrity Constraint 
and Rule Maintenance in Temporal Deductive Knowl­
edge Bases. In Proceedings of the 19th International 
Conference on Very Large Databases, pages 146-157, 
Dublin, IR, August 1993. 

[Salem et ai, 1994] Kenneth Salem, Hector Garcia-
Molina, and Jeannie Shands. Altruistic Locking. 
ACM Transactions on Database Systems, 19(1): 117— 
164, 1994. 

[Shasha, 1994] Dennis E. Shasha. Database Tuning — 
A Principled Approach. Prentice Hall, NJ, 1994. 

[Silberschatz and Kedem, 1980] A. Silberschatz and 
Z. M. Kedem. Consistency in Hierarchical Database 
Systems. Journal of the Association for Computing 
Machinery, 27(l):72-80, 1980. 

[Yannakakis, 1982] Mihalis Yannakakis. A Theory of 
Safe Locking Policies in Database Systems. Journal of 
the Association for Computing Machinery, 29(3) :718-
740, July 1982. 

766 KNOWLEDGE BASE TECHNOLOGY 


