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Abstract

In this work we use contact alignments as qual-
itative landmarks to discretize the relative mo-
tion between two 3D objects. We use assem-
bly planning as a sample domain, and address
the question of obtaining the assembly block-
ing graphs from the geometry and the mo-
tion constraints. Starting from a geometri-
cal description of the objects we characterize
contacts involving topologically distinct feature
sets, called contact formations (CF), and ob-
tain a qualitative decomposition of the configu-
ration space based on CFs. We show how stan-
dard algorithms for finding the configuration-
space routinely discard CF information, and
how these can be extracted at no additional
computational cost. Finally we show how CFs
can be used to generate assembly solutions and
for correcting jamming and other assembly er-

Keywords: Qualitative Spatial Reasoning, Assembly
Planning, Contact Formations

1 Introduction

Contact preserving motions between spatial objects is
a question that is central to qualitative spatial reason-
ing [I], constructing assembly plans [7], kinematics [10],
fine motion planning [8], gross motion planning [12], and
other tasks. In this work we use contact alignments as
qualitative landmarks to discretize the relative motion
between 3D objects. We focus on assembly planning as
an example domain, and show how to obtain a search
space from geometric and motion constraint considera-
tions and provide algorithms for the 2-body motion prob-
lem in any dimension.

Consider a sequence of motions such as: "Incline the
peg and trail it along the top face until you find the hole.
Align the edges, straighten and insert it. If jammed,
you may be touching a side wall." Intuitively this in-
volves a decomposition of the motion space between the
peg and the hole into regions such as "inclined-peg-top-
face", "aligned-edges", "straight-peg", "touching-side-
wall" etc. Much of Al is concerned with the problem
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of how to develop this type of discretization - in the as-
sembly problem, for example, the question is: given two
objects in contact, how can one characterize the relative
motion between them into regions that are qualitatively
distinct?

Such a discretization is crucial to reducing the size
of the search space for fine motions, which in a general
configuration space approach results in a topological par-
tition with an exponential number of manifolds [5], and
in practice, it is unlikely (PSPACE hard [18]) that one
can test the feasibility of the large number of proposals
made by the typical assembly sequencers [3]. Compu-
tationally such a discretization reduces the search from
the continuous domain of part configurations to a finite
set of contact regions. Furthermore, associated charac-
teristics of each region help in correcting errors - e.g.
when jammed, the reason can be found by investigat-
ing neighbouring contacts (see [8] for an error recovery
application).

Yet, surprisingly little work has been done on the pro-
cess of finding such discretizations for general geome-
tries. In constructing assembly plans, one assumes the
existence of such a decomposition: AND/OR graphs
[7], Precedence graphs [4], Backward Assembly Plan-
ning [13], Assembly Constraint Graph [20], etc. The
closest approach to handling general geometries is that
of Wilson and Latombe [19], which extends the blocking
graph model to identify a discretization in the transla-
tion space in two dimensions. The model works only for
assembly, and is not useful in spatial reasoning, kine-
matics, or other tasks. Also, it is restricted to 2D and
does not handle rotations. Another class of models used
in qualitative kinematics, also approaches this work by
forming discretizations along the boundaries of the con-
figuration [9]. However, these approaches discard the
internal points of the C-space, which are necessary for
recording relative motions between faces in 3-D for ex-
ample, and do not use contact analysis as a mechanism
for capturing the discretization in the spatial positions as
such. In terms of the assembly problem, some special-
ized geometries belonging to classes like nuts on bolts
can be analyzed using knowledge-based techniques, but
this cannot extend to the general class of geometries, nor
can the correctness of the knowledge database be verified
without more general purpose algorithms.

In what sense is this a "qualitative" discretization of
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the spatial 2-body problem? Many applications of QR
involve parameter spaces that reduce to one-dimensional
points (-,0,+) or intervals on the real line ([2]). We
were encouraged in this work by qualitative models that
discretize visibility regions of an object into "aspect
graphs" [Il], and by recent work on modeling 3D posi-
tions using a qualitative-quantitative hybrid [15]. Earlier
work in modeling contacts, using the name Contact For-
mations [8], uses boundary features such as edges, ver-
tices, faces, to generate a search space in error recovery
situations. Other models of qualitative spatial reasoning
have attempted connections among spatial objects us-
ing rectangular enclosures or other approximations [6],
and have failed to define a clearly defined, usable set
of parameters for qualitatively discriminating the inter-
actions. Cognitive studies of assembly tasks also seem
to indicate the importance of "haptic landmarks" which
are formed while playing around with the parts prior to
actual assembly. Thus just as the alignment orientation
provide "visual landmarks" in constructing a qualitative
model for recognition, the contact formations provide a
qualitative set of haptic landmarks for fine motion, kine-
matics, and other tasks. In connection with recognizing
landmarks, the new statistical learning techniques for
finding landmarks is of particular note [17].

Bafter

Figure 1: Transletional Contact Motion. As B slides
from left to right, the relative posilion of B w.rt. A is
characterized by the interval relations between a;a; and
byby: overleps to egual to afier.

contaliee by Bolsher

Figure 2: Sliding contact in one dimension: Transition
graph between two intervals [Allen]

We claim that haptic landmarks are obtained by align-
ments between boundary features of the objects (such as
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that involving an edge from one 3D object and a face in
another). Such alignments mark regions of change in the
contact forces as the set of surface features in contact
are altered. For example, considering purely sliding mo-
tion, we observe that the transitions closely resemble the
interval relations well-known in temporal logic and one-
dimensional qualitative spatial reasoning (fig. 1). As the
edge B slides along the edge a and its interval relations
change, so does the set of contacts occurring between
boundary features in A and B. Thus the B overlaps a
configuration is characterized by the following contacts:

a) vertex a; and edge §

b) edge o and verlex b,

c) edge o and edge
This is represented as a contact formation with three
elemental contacts: {(aj,8), (e, b2),(a,8)} The entire
set of transitions possible in such motion is illustrated in
the transition graph (Fig 2) [14], where the tri-furcation
indicates the three possibilities with relative size:

(@) B smaller than A (starts) (laj > |#])
(alﬁ)l (ﬂl, b]}l {aa '52)
(b) A equal than B (equals) (ja] = |8])

(a1, b1}, (o, B), (a3, b2)

(c) B longer than A (started-by) (lal] < \BY)

(“Pltqﬁ)re(‘éliu%b (f3t#hs can be modeled in this way, but
what about rotations? One way to map the linear inter-
val problem to a cyclic space (fig. 3), where alignments
between surface features such as vertices and edges pro-
vide decompositions of qualitative interest. Here also,
intervals exhibit the same relations except that "after"
and "before" in the transition graph of fig. 2 have been
joined to form a circle topology. The CF model can cap-
ture both the translation model of 1-D intervals as well
as the rotation zones between alignment positions. This
allows us to handle complex spatial reasoning queries
using the CF model.

topt)

Figure 3: Rotation about a vertex as A slides fur-
ther left. The middle position {{w,b;)} represents
a qualitative zone between the two alignment CFs

{(Ql b2)= (Q’,ﬁ}, {ﬂ?‘ﬁ)} and {(0:, bj)‘ (G‘, .Sl}r (u‘l] nﬁl}}-



'To generalize to bigher dimensions, we approach the
configuration space models, which look at the motion
space of two bodies in general. The conact forma-
tions are then discretizations on the surface of the
configuration-space obstacle ([8] [12]}. Next we show
how any assembly motion can be expressed as a sequence
of contact formations, & concept first explored in [8] in
the context of Robot Grasping. Thus the chief contri-
bution of this wark is to extend the contact formation
paradigm to the problem of constructing assemblies.

2 Qualitative Contacts

[Def} An object A is a bounded set in E" with boundary
§A. Aboul a point on the boundary, any finile neigh-
bourhood contains J)uints both ib A and not in A. A
d-fece (written as f¢), is a subset of the boundary topo-
logically mappable onto an open disk in B2, ie. a d-
manifold. A d-face is bounded by lower order hyperedges
ihat are not contained in the face - e.g. Lhe (d— 1)-faces,
which distinguish it from other d-faces. Typically, some
geometric change is associated with the lower order faces;
e.g. in polyhedra, 1-faces correspond to slope disconti-
nuities, and constitute part of the boundary of a 2-face.
For abject A in £, $A is decomposable into manifolds
of order (n-1) or less; the union of all the faces of orders
0 to (n-1) consitutes the boundary of A: 84 = | J{(n—1)-
faces, (n — 2)-faces, ..., 0-faces).

[Def] The colleclion of all the faces of the object (as
distinct from their union), is the doundary-fist oA =
{{r = 1)-faces,(n — 2)-faces, ..., 0-faces} eg. in E?
aA = {f},f}}, where f¥ are the individual d-faces in A.
if o,y € oA then a1 Naz = ¢ and Ua; = A Thus
for a polygon in E?, 64 consists of all the points on its
boundary, and is the union of the edges (1-faces) and
ihe vertices {0-faces). The boundarylist #A on the other
hand, is merely a list of all its 1-faces and O-faces.

[Def] The transformation T4 traditionally viewed as
mapping point #z in frame B into a point 4z in frame
A, may also be viewed as a motion that maps an object
A onto a congruent object B through the same motion
thal would map frame A onto frame B. This transfor-
mation is a function T4 = T#(#) of the motion veclor
4 that causes frame A to be coincident with frame B.
This motion alsc describes the configuration of B w.r.t.
A. For transformations in E3 with six degrees of free-
dori, far example, ¥ may consist of three transtations
and three rotations.

Configuration Space

[Def] Configuration space C of a body w.r.t. ancther
is the space of all the configurations & € C the bod-
jes can have w.r.t. one another. The obstacle space
of body B w.rt. A, OS4(B), is defined as the set
of motions that cause a collision between A and B.
O8SA(B) = {ii | Az € ATE(@z € B}. S084(B)
is the boundary of this obstacle space. Figure 4 shows
an example of a 2D translational configuration space for
a peg-in-hole aseembly task. The bodies A and B ate as-
sumed to be rigid bodies; if an assembly motion involves

deformation, the configuration space approach can only
model it by deformirg the obstacle space accordingly. A
motion path i Contact-preserving iff for any configura-
tion # on the path, the interiors of the objects do not
overlap, but the boundaries touch,

Figure 4: Configuration Space far 2D peg-in-hole assem-
bly. The goal CF has seven elemnental contacts.

Contact Formations

[Def] A confact A between objects A and B is defined by
the d-faces that are in contact, A = {ay, F} s.l. o € 0 A
and §; € oB. A contact formation A is a set of simulta-
neous contacts, Aq(B); = {X1, Az,..., As}, where ), are
elemental contacts. H the d-faces are chosen 1o repre-
sel regions of qualitative continuity (such as the faces
of a polyhedron), thenr the contact formation (CF) rep-
resents qualitatively distinguished surface contacts, For
simplicily, we will represent A4{B) by A. The conlact
space £4(B) is the set of all contact formations of B
w.rt. A,

We ohserve that the relative positions of the objects
that correspond to a CF can be codified by a relative
motion vector & and the corresponding rigid transfor-
mation T(&). Thus there exists a mapping from the CF
space ento the space of motion vectors.

3 Discretizing the Configuration Space

Lemmmala:lfde éOSandz € A, yeE Bst. ¢ =
T4 (#)y, then r € 6A and y € 68,

Proof:  Since i is on the boundary 5§08, any finite
neighbourhood of # will include configurations both in
and not in (8, ie. T, [(@F - )| < ¢, and & ¢ OS,
le. (Yy € BYT(B)y ¢ A. Hence (Vif)|T] < ¢ = (36 >
0){T(T+5)y € Baily[T(8)y]}. Hence Balls{T(i}y]—A £
. But T(#)B; € A => T(@)By € 6A => Z € bA.
Similarly € § 5.

Lemma 1b ;Given a configuration 4 1n which the set
of points X C A mapped to B by the transformation
TA (@) is on the boundary of A, i.e. X C 64, then the
configuration i € 80S.

Proof: Since i results in some points from A being
mapped to some points in B, § € {(O08). If i ¢ 608,
then #f must be in the interior of the Obstacle Space,
ie. € intf{O8). But this would imply that there is a
hall around @ which is contained entirely in @S. This
demands that the image of this ball will be a sei of points
all contained in B, and that the points interior 4o this ball
will not be boundary points on B, which imply that the
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points in A mapping to these points will aleo be interior
points in A, violating the conditions. Hence @ € §05.0

Lemma 2; Vi € 808,4(B), T(d) represents a relative
position of A w.r.t. B that represents a unique Contact
Formation A € L4(B).

Proof: Let X C A be the sel of points mapped to B
by T4(%), and let Y be its image from B, By Lemma 1,
XCéAand Y C 6B. X and Y comprise of some subset
of d-faces from the boundarylists oA and oB. Lei any
mapped pair of points (x,y} be on the faces {f;l,ff,,_),
which must be unique by the definition of Objects {(no
faces overlap). Hente any pair of points defines an el-
emental contact A which exists and 15 unique. A finite
number of such contacts occurring simultaneously then
define a unique Contact Formation A. O

[Def] Given any Contact Formation A, the Configure-
tzon Paich is a set of configurations I' C 808 such that
any 4 € I causes a contact in the CF A, and nod ¢ I'
causes the CF A.

1. Any non-null CF A € L£L,4{B) corresponds to a
I C 408,

2.UlG =808 .
InT;=¢,i#j.
Proof:

1. That all CF's must have a corresponding configura-
tion patch T follows from lemma 1b,

2. Lel & be a configuration s.t. @ € 608 but i ¢ UI".-,

By lemma 2, this corresponds to an unique CF A and
from patt 1 above, this must map to a Configuration
Patch T. Hence if # € 60§ then ¥ € JIi. Hence

UT; = 60S.
]

3. Say a4 € I'y and 4 € ;. Then # corresponds to A; and
A; which is not possible since the CF-mapping is unique
[Lemma 2].

[Def] Contact Formations A; and A; with corresponding
configuration patches I'; and T'; are adjacent iff 3 (4 € T
and ¥ € I';) s.t. a path P exists from & to ¥ and P C
(riur;).

For example, in fig. !, the CFs for ‘overlaps’ and
‘equals’ are adjacent, but ‘equals’ and ‘after’ are not.
The transition graph (fig. 2) can be viewed as a map-
ping for adjacent relations in ohe-dimension. Note that
‘after’ and 'before’ are not distinguished in contact for-
mation space since both are aulf CFs. Indeed, the null
CF corresponds to all configurations where there is no
coniacl, and defines the domain for the gross motion
planning problem. It may have digjoint partitions that
are not reachable from one another.

Theorem: Two-body contact maotions

Given a target configuration with object B in contact
with A , if a path to this configuration exists from the
the fully separated configuration, then such a path also
exists in moving through adjacent Contact Formations.
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Proof: The fully separated configuration corresponds
to the null CF, and in any assembly process, there will
be an initial contact, say ;. If the remaining assem-
bly motion remains in contact, then il passes through
a sequence of adjacent contact patches I';’s. I'; is ad-
jacent to T'; iff the path joining any peint of I'; to any
point of I'; lies entirely within I'; and T';. Since the path
is connected such a sequence will always exist. Each I';
corresponds to some CF A;. By definition, A, is adjacent
to A;. If there is a contact break, the assembly returns
to another null CF, and will, by the same arguments,
pasa through another sequence of CFs before reaching
the CF containing the target configuration. Thus the
path hypothesized in the theorem exists. O

This validates our claim that CFs can be used as a
qualitative discretization of the motion space. In the
next section we outline the algorithm for determming
all CFs, and then we show how the related graph can
be searched for determining sclution paths to assernbly
problems.

4 Contact Formations for Polyhedral
Objects

A direct algorithm for obtaining all the CF's would be
to obtain all contact pairs a A x aB, and constrain the
objects based on the contacts. If n and rn are the car-
dinalities of a A and aB respectively, then there will be
2"™ such contact pairs. This is because nm different
kinds of elemental contacts are possible and out of these
0,1,..., nm may occur simultaneously. However, it is
clear that this is a very pessimistic bound, and while
it is easy to show tighter bounds for certain classes like
convex objects, a more general tighter bound appears
difficult to find. For each contact, the constraint space
may either be null (impossible contact), or the same as
another contact (combine these elemental contacts into
a contact formation). Otherwise the CF has only a sin-
gle contact pair. Constraint propagation is expensive,
and we present a more efficient algorithm below. The
algorithm is similar to sweep models for obtaining trans-
lational C-Space, except that instead of discarding the
internal structure within the C-Space we now pay par-
ticular attention to the structure there. We first iden-
tify all primary contact pairs which arise due to single
feature interactions. Intersections between the primary
contact pairs give rise to secondary constraints, which
are essentially CFs with more than one elemental pair.
The algorithm also returns a graph for the CF space in
this translational slice, and the configuration space ob-
stacle OS can be computed from the CF map, since it
is nothing but the outer boundary of the CF map.

[Def] Contact Formation Map Q : A discretization on
on the surface of the obstacle space of B w.r.t. A in
which each region and each bounding face represents a
different Contact Formation. The adjacencies between
map features relate to adjacencies between their corre-
sponding CFs.

CF Algorithm: Rotational Alignment Slices
Objective: Given reference object B and secondary ob-



ject A (AB G Ed) in a face-alignment configuration (a
rotation invariant space), find the CF map ft, i.e., all
CFs that result from contact preserving motions in this
slice. Let the faces in alignment be f4 and fs.

The contact formations in this slice will involve the
faces that are in contact, such as the triangular bottom
face of the prismatic peg and the top face of the cube
in fig. 5a. In this configuration, the two faces are par-
allel, but also one of the edges of the bottom face is
aligned with an edge of the top face; this is not the case
in fig.5c. The objective of this algorithm is to find all
the CFs possible in this sliding motion. Note that the
objects concerned do not have to be convex, and may
even include holes.

Figure 5: A prismatic peg on a cube. (i} The triangular
bottom face of the peg aligned with the rectagular top
face and also front edges parallel, (ii) Edge-face align-
ment, {iii) face-face alignment.

Contact Formation Algorithm for rotational
slices

1. Record the values and ranges of all 1he fixed motion
variables for this slice. lnitiatize 2 10 be null.

2. Construct the objecl g4 by refleciing every vertex
in f7, with respect to the frame of A, and keeping the rest
of the polyhedral topology intact. g, is also an r-face.
Initialize a vertex gil as the reference vertex.

3. AL any vertex fg. on the boundary of the g-face
f& place a translation of the reflected face ga so that
the reference vertex g} is coincident with f§. Add all
vertices and edges of this object 1o Q; e.g. the verlices
are: QO(f9) = {wlui, . .. Wi} = fRIHg4,. 9000
where the vertices g° are Laken in 1he new placement.

4. Al each u;—' € QU f3) translate the face ff such
that f} is coincident with wJ[-J, Add each face of each of
these placed objects as a face in §2.

5. For the original g-face f, at each vertex I3, place
a translation of the reflected face gq such that the ref-
crence vertex g4 coincides with each f§,. All faces of
each of these placed objects (i.e g4's) are added as faces
in {2.

6. The faces added to £ so far correspond to ele
mental contact, arising from a single contacts. Find all
intersections of these elemental contacts Lo form the set
of Contact Formations. Add all inlersection sub-faces as
faces in §2.

Figure 6 shows the result of applying this algorithm to
the two faces of fig 5. The prism faces shown by dotted
and dashed lines are the critical configurations where
the peg has no d.o.f. available if it is to maintain the

nartirnlar rantact frrmation

Given the CF maps for the alignment configurations,
all configurations in the intermediate qualitative zones
have identical topologies, which can be constructed by
considering any instance of a configuration in that zone.
Thus, for the middle configuration of fig 5, the CF map
is obtained by sweeping the edge of the prism along the
rectangle face. Non-alignment motions have no internal
features and are added to ft directly.

A

/5:'.'_':"_. —

i) Reciangle on Rectanglc

iy Triapple on Rectangle
in alignment configuraticn

Figure 6: The CF maps for the configurations (i) and
(iii) in the previous figure. The upper part shows the two
faces in contact positions; the lower part the CF map.
The regions correspond to the contact formations where
two d.o.f.'s are available which maintain the contact, the
lines where only one is available and so on.

Note that this algorithm is used to find the slices cor-

responding to purely translational motion such as (i) in
fig 5, but also for a representative instance of a quali-
tatively invariant zone, such as all rotations about the
alignment edge, for which the CF map in fig 6(iii) is a
boundary slice.
Complexity: Let n and m be the total number of faces in
A and B. The number of alignment relations depends on
the number of faces that are 1-manifold or above (Ver-
tices sliding on an object reproduce that object itself),
a number that is bounded by n. In general, there are
O(nm) candidate alignment configurations. For each of
these, the algorithm above requires 0(nm) time in com-
puting the translated objects, and O(k + nrnlog(rmi))
time in evaluating the intersections for 2-faces, where
k is the number of actual intersections (For 3D faces,
whatever that may mean, it would be 0(n’m?). Thus,
for objects upto E° the complexity of the algorithm for
finding all CF maps for all the slices is 0(n’m? \og(mn))
ifk is less than nmlog(nra). If n = max(n,m), then this
is 0(n* logn).

There are several other aspects of this algorithm. If
one of the faces is non-convex, or even has a hole, the
algorithm still determines the CF maps correctly, since
it is based on a linear sweep between the edges, which lo-
cally results in the correct translational boundary (Fig.
7). A side benefit of this computation is that it makes
it simple (an O(nm) planar sweep postprocessing), to
compute the C-spaces for polyhedral obstacles, a prob-
lem for which solutions appear to be known only in the
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convex cases [16]. A simple strategy like plane-sweep can
be used to determine the boundary of the map which is
then the C-space of the objects in question. Note that
takingjust the convex hull, as suggested earlier, will not
give the C-space. A traversal through the face-list in
this map, yields the CF connectivity graph as in figure 8
which can be used for assembly. In the following section,
we integrate the above methodology to provide a search
space for Fine Motion Planning.

DM

Figure 7: A CF map for a non-convex peg on a rectangle
with hole.

5 The 2-Body Problem

The assembly problem consists of taking a set of bodies
that were initially separated into contact. The principal
difference with path planning is that there are multiple
bodies (although they are often considered monotoni-
cally in subassemblies), and that the initial configuration
is not fixed. Other differences include the occasional
need to find space to temporarily hold subassemblies.
The part of this problem that has received the maxi-
mum attention is the sequence planning problem, and
the part that has received the least attention, undoubt-
edly because of its intrinsic difficulty, is relating it to the
geometry. In the following, we present an algorithm for
obtaining the contact motions of two objects, or what we
call the 2-body problem. This constitutes a single link
in an AND/OR or other "high-level" assembly graph.
To our knowledge this is the first model that provides a
reasonable process for mapping these connectivity links
directly to the geometries of the objects. We now give an
algorithm for assembly by searching through the contact
formations .

Algorithm

1. Construct the contact formation map assuming full
domain degrees of freedom (i.e. no limit angles etc).
Also, obtain the C-space in this process.

2. Adding the constraints, consider the surfaces
caused by the constraints. These surfaces do not have
any internal CF features, since the entire surface corre-
sponds to a stop position. In other words, these surfaces
can delete some CF maps that arise in inaccessible re-
gions, but cannot add any new CFs.

3. For each CF identify the configuration patch (CP)
corresponding to it on the C-space. If this region is not
connected (e.g. for null CF) then split the separate con-
nected components, and label these as separate sub-CFs.

4. Scan all the CPs and connect adjacent CF's corre-
sponding to adjacent regions on the slice by undirected
edges.

920 KNOWLEDGE REPRESENTATION

This returns a CF graph indicating connections in
the Contact Formation space and provides a very basic
search space for further queries and operations. Each
region in this space can be directly related to boundary
features on the object. All standard Al methodologies
such as learning based on densities, incremental defini-
tion etc. can be used on this graph to reduce the search
complexity. It may be noted that all those regions which
formed the boundary of the original C-space are part of
the boundary of the constrained C-space also, except
that they have added internal features on these indicat-
ing the richness of the CF structure in it.

The CF graph is useful in solving a variety of spatial
problems. To answer the query about the cube rolling
down a plane, originally posed in [I], we can move from
slice to slice as the cube rotates, to obtain directly the
sequence of vertex edge and face contacts as they are
made and broken. To investigate the kinematic problem
posed by Forbus et al in [IO], where one would like to
say how two wheels "one with a bump on it and the
other with a notch carved out of it" will travel, one can
build the CF map, which provide a discretization for the
Configuration Space methods proposed earlier. As for
assembly, we illustrate the applicability of the CF map
by outlining the solution to the peg insertion problem
posed (Fig. 4). The graph resulting from the CF map is
shown in Fig. 8, and the set of CFs is listed below (the
edge between vertices i and j is represented by .

Another aspect of the CF graph is that each constraint-
reveals the degrees of freedom that exist in maintaining
that constraint, e.g in fig. 6(i), the slice is fully con-
strained in rotation, and hence the vertices in the graphs
represent zero degrees of freedom (annotated as (CF°'s).
The edges in this diagram, as well as the vertices in (iii)
which permit a rotation, permit one degree of freedom
and constitute CF's. The intersection process results in
a depletion of freedom; the intersection of CF and CF?
results in a CF°, where s - d-(d-r)-(d-q) - r+g-d.
This is an important notion in designing assemblies to
have certain d.o.f's and reveals where on the surface to
place constraining grooves or other similar questions.

Example

Null-CF GOAL
Figure 8: Contact Formation Graph. The null CF cor-
responds to the gross motion planning problem, and the
nodes in the graph the different eontact mndalities



yoNal 2. (c,2),{b, 12), {be, 12)
3. (¢, 12),(b,12), (be. 12) | 4. (b, 1} (¢, 12), {Be, 12)
5. (2,12}, (1,8¢), (be, 12 6. {,1)

7. {1,0d),(¢,78),(18,cd) | 8. (1,d),(c,T8),(18.cd)
8. (c,18),(4,78),(cd, 18) | 10. (¢,8),(d,T8), (cd, T8}
11. (8,cd),{d,18),(cd, 18) | 12. (d.8)

13. (4,78), (8,ad),{78,ad) | 14. (8,0}, (4, TE), (75,ad)
15. (s, 78),(d, 78),(78,ad) | 16. {7,d), (a, 7B), (TE, ad)
17. {a, 78),(7,2d),(T8,ad) | 18. (7,0)

19. (a,67),(7, ab), (67,ab) | 20. (7.3), (e, 87), (§7,aB)
21. (a,87),(b,67),(67,a8) | 22. («,6),(b, B7), (57, ab)
23. (6,ab), (b, 67),(67,eb) | 24. (b.6)

25. (6,56), (6,5c), (56, b} | 26. (c,6), (4,56}, (56, be)
27. {6,56), (¢, 56), (56, br) | 28. (b,5),(c,56), (56, be)
29. (5,bc),{¢,36), (B6,bc) | 30. (c,5),(5,2)

:; (b, 12),(2,bc), {bc,12) | 32. (8,32), (r,52), {cd, 59), (2D,
(s, 2),(d,5),(8,32), 34.(e, 57, (6, 32}, (¢, 5A),
(€50, (¢,53), S(cd, 59), (a¥, 32)
gr,;d,.’:*i],(ab, 32)

{b.3),{c,4), (F,ﬁ),{a‘ﬁ),

(4,54),{cd, 59), (s}, 32)

We see from the figure a number of paths exist belween
the START and the GOAL positions eg. 1,30,32,33,34,35
and 1,3,2,31,30,32,33,34,35 ctc. These cotrespond 10 al-
ternate mechanisms for execuling the assembly. Unlike
otlher assemnbly planning systems, the CF map allows one
to distingnish between these choices not only based on
connectivity but also on other funclional issues such as
landmark configurations, the existence of similar error
configurations, ele.

86 Conclusion

This work provides a novel methodology for spatial ob-
Jects in 2D and 3D, to derive qualitative maps of rela-
tive motions. The discretization claims to be gualitative
since it 18 comparcl, the entire set is determinable based
on functiopal features of the domain, and the knowledge
maintained provides direct explanation power since the
set of surface features in contacl are critical to explaining
many tasks. As illustrated in our focus domain involv-
ing parts assembly, the applications of this procedure can
provide rich dividends in a number of problem areas. In
a sense this work is a synthesis of radically different lines
of thought from robotics, qualitative reasoning, assem-
bly planning, and vision, bul the erd result sufficiently
different from the methodologies in any of these to be
viewed as a new tool in ihe arsenal of qualitative reason-
ing.
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