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Abstract 
In this work we use contact alignments as qual­
i tat ive landmarks to discretize the relative mo­
tion between two 3D objects. We use assem­
bly planning as a sample domain, and address 
the question of obtaining the assembly block­
ing graphs f rom the geometry and the mo­
tion constraints. Start ing from a geometri­
cal description of the objects we characterize 
contacts involving topologically distinct feature 
sets, called contact formations (CF)) and ob­
tain a qualitative decomposition of the configu­
ration space based on CFs. We show how stan­
dard algorithms for finding the configuration-
space routinely discard CF information, and 
how these can be extracted at no addit ional 
computational cost. Final ly we show how CFs 
can be used to generate assembly solutions and 
for correcting jamming and other assembly er-
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1 Introduction 
Contact preserving motions between spatial objects is 
a question that is central to qualitative spatial reason­
ing [ l ] , constructing assembly plans [7], kinematics [10], 
fine motion planning [8], gross mot ion planning [12], and 
other tasks. In this work we use contact alignments as 
qualitative landmarks to discretize the relative motion 
between 3D objects. We focus on assembly planning as 
an example domain, and show how to obtain a search 
space f rom geometric and motion constraint considera­
tions and provide algorithms for the 2-body motion prob­
lem in any dimension. 

Consider a sequence of motions such as: "Incline the 
peg and t ra i l it along the top face unt i l you find the hole. 
Al ign the edges, straighten and insert i t . If jammed, 
you may be touching a side wal l . " Intui t ively this in­
volves a decomposition of the mot ion space between the 
peg and the hole into regions such as "inclined-peg-top-
face", "aligned-edges", "straight-peg", "touching-side-
wal l " etc. Much of AI is concerned wi th the problem 

of how to develop this type of discretization - in the as­
sembly problem, for example, the question is: given two 
objects in contact, how can one characterize the relative 
motion between them into regions that are qualitatively 
distinct? 

Such a discretization is crucial to reducing the size 
of the search space for fine motions, which in a general 
configuration space approach results in a topological par­
t i t ion wi th an exponential number of manifolds [5], and 
in practice, it is unlikely (PSPACE hard [18]) that one 
can test the feasibility of the large number of proposals 
made by the typical assembly sequencers [3]. Compu­
tat ional ly such a discretization reduces the search from 
the continuous domain of part configurations to a finite 
set of contact regions. Furthermore, associated charac­
teristics of each region help in correcting errors - e.g. 
when jammed, the reason can be found by investigat­
ing neighbouring contacts (see [8] for an error recovery 
application). 

Yet, surprisingly l i t t le work has been done on the pro­
cess of finding such discretizations for general geome­
tries. In constructing assembly plans, one assumes the 
existence of such a decomposition: A N D / O R graphs 
[7], Precedence graphs [4], Backward Assembly Plan­
ning [13], Assembly Constraint Graph [20], etc. The 
closest approach to handling general geometries is that 
of Wilson and Latombe [19], which extends the blocking 
graph model to identify a discretization in the transla­
t ion space in two dimensions. The model works only for 
assembly, and is not useful in spatial reasoning, kine­
matics, or other tasks. Also, it is restricted to 2D and 
does not handle rotations. Another class of models used 
in qualitative kinematics, also approaches this work by 
forming discretizations along the boundaries of the con­
figuration [9]. However, these approaches discard the 
internal points of the C-space, which are necessary for 
recording relative motions between faces in 3-D for ex­
ample, and do not use contact analysis as a mechanism 
for capturing the discretization in the spatial positions as 
such. In terms of the assembly problem, some special­
ized geometries belonging to classes like nuts on bolts 
can be analyzed using knowledge-based techniques, but 
this cannot extend to the general class of geometries, nor 
can the correctness of the knowledge database be verified 
wi thout more general purpose algorithms. 

In what sense is this a "qual i tat ive" discretization of 
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the spatial 2-body problem? Many applications of QR 
involve parameter spaces that reduce to one-dimensional 
points ( - , 0 , + ) or intervals on the real line ([2]). We 
were encouraged in this work by qualitative models that 
discretize visibi l i ty regions of an object into "aspect 
graphs" [ l l ] , and by recent work on modeling 3D posi­
tions using a quali tat ive-quanti tat ive hybr id [15]. Earlier 
work in modeling contacts, using the name Contact For-
mations [8], uses boundary features such as edges, ver­
tices, faces, to generate a search space in error recovery 
situations. Other models of quali tat ive spatial reasoning 
have attempted connections among spatial objects us­
ing rectangular enclosures or other approximations [6], 
and have failed to define a clearly defined, usable set 
of parameters for quali tat ively discriminating the inter­
actions. Cognitive studies of assembly tasks also seem 
to indicate the importance of "haptic landmarks" which 
are formed while playing around w i th the parts prior to 
actual assembly. Thus just as the alignment orientation 
provide "visual landmarks" in constructing a qualitative 
model for recognition, the contact formations provide a 
qualitative set of haptic landmarks for fine mot ion, kine­
matics, and other tasks. In connection w i th recognizing 
landmarks, the new statistical learning techniques for 
finding landmarks is of part icular note [17]. 

that involving an edge f rom one 3D object and a face in 
another). Such alignments mark regions of change in the 
contact forces as the set of surface features in contact 
are altered. For example, considering purely sliding mo­
t ion, we observe that the transit ions closely resemble the 
interval relations well-known in temporal logic and one-
dimensional quali tat ive spatial reasoning (fig. 1). As the 
edge B slides along the edge a and its interval relations 
change, so does the set of contacts occurring between 
boundary features in A and B. Thus the B overlaps a 
configuration is characterized by the following contacts: 

This is represented as a contact formation wi th three 
elemental contacts: The entire 
set of transitions possible in such motion is i l lustrated in 
the transit ion graph (Fig 2) [14], where the tr i- furcation 
indicates the three possibilities w i th relative size: 

(a) B smaller than A (starts) 

(b) A equal than B (equals) 

(c) B longer than A (started-by) (|aI| < \B\) : 

Pure sliding motions can be modeled in this way, but 
what about rotations? One way to map the linear inter­
val problem to a cyclic space (fig. 3), where alignments 
between surface features such as vertices and edges pro­
vide decompositions of quali tat ive interest. Here also, 
intervals exhibit the same relations except that "after" 
and "before" in the transit ion graph of fig. 2 have been 
joined to form a circle topology. The CF model can cap­
ture both the translation model of 1-D intervals as well 
as the rotat ion zones between alignment positions. This 
allows us to handle complex spatial reasoning queries 
using the CF model. 
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4 Contact Formations for Polyhedral 
Objects 

A direct algor i thm for obtaining all the CF's would be 
to obtain all contact pairs a A x aB, and constrain the 
objects based on the contacts. If n and rn are the car­
dinalities of a A and aB respectively, then there wi l l be 
2 n m such contact pairs. This is because nm different 
kinds of elemental contacts are possible and out of these 
0 , 1 , . . . , nm may occur simultaneously. However, it is 
clear that this is a very pessimistic bound, and while 
it is easy to show tighter bounds for certain classes like 
convex objects, a more general t ighter bound appears 
difficult to find. For each contact, the constraint space 
may either be null (impossible contact), or the same as 
another contact (combine these elemental contacts into 
a contact formation). Otherwise the CF has only a sin­
gle contact pair. Constraint propagation is expensive, 
and we present a more efficient a lgor i thm below. The 
algor i thm is similar to sweep models for obtaining trans-
lat ional C-Space, except that instead of discarding the 
internal structure wi th in the C-Space we now pay par­
ticular attention to the structure there. We first iden­
t i fy all pr imary contact pairs which arise due to single 
feature interactions. Intersections between the primary 
contact pairs give rise to secondary constraints, which 
are essentially CFs w i th more than one elemental pair. 
The algori thm also returns a graph for the CF space in 
this translational slice, and the configuration space ob­
stacle OS can be computed f rom the CF map, since it 
is nothing but the outer boundary of the CF map. 

[Def] Contact Formation Map Q : A discretization on 
on the surface of the obstacle space of B w.r.t . A in 
which each region and each bounding face represents a 
different Contact Formation. The adjacencies between 
map features relate to adjacencies between their corre­
sponding CFs. 

CF A l g o r i t h m : R o t a t i o n a l A l i g n m e n t Slices 
Objective: Given reference object B and secondary ob-
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ject A (A,B G Ed) in a face-alignment configuration (a 
rotat ion invariant space), find the CF map ft, i.e., all 
CFs that result f rom contact preserving motions in this 
slice. Let the faces in alignment be fA and fB. 

The contact formations in this slice wi l l involve the 
faces that are in contact, such as the triangular bot tom 
face of the prismatic peg and the top face of the cube 
in fig. 5a. In this configuration, the two faces are par­
allel, but also one of the edges of the bot tom face is 
aligned wi th an edge of the top face; this is not the case 
in fig.5c. The objective of this algorithm is to find all 
the CFs possible in this sliding mot ion. Note that the 
objects concerned do not have to be convex, and may 
even include holes. 

Given the CF maps for the alignment configurations, 
all configurations in the intermediate qualitative zones 
have identical topologies, which can be constructed by 
considering any instance of a configuration in that zone. 
Thus, for the middle configuration of fig 5, the CF map 
is obtained by sweeping the edge of the prism along the 
rectangle face. Non-alignment motions have no internal 
features and are added to ft directly. 

Figure 6: The CF maps for the configurations (i) and 
( i i i ) in the previous figure. The upper part shows the two 
faces in contact positions; the lower part the CF map. 
The regions correspond to the contact formations where 
two d.o.f.'s are available which maintain the contact, the 
lines where only one is available and so on. 

Note that this algori thm is used to find the slices cor­
responding to purely translational mot ion such as (i) in 
fig 5, but also for a representative instance of a quali­
tatively invariant zone, such as all rotations about the 
alignment edge, for which the CF map in fig 6(i i i) is a 
boundary slice. 
Complexity: Let n and m be the total number of faces in 
A and B. The number of alignment relations depends on 
the number of faces that are 1-manifold or above (Ver­
tices sliding on an object reproduce that object itself), 
a number that is bounded by n. In general, there are 
O(nm) candidate alignment configurations. For each of 
these, the algorithm above requires 0(nm) t ime in com­
puting the translated objects, and 0(k + nrnlog(rmi)) 
t ime in evaluating the intersections for 2-faces, where 
k is the number of actual intersections (For 3D faces, 
whatever that may mean, it would be 0(n2m2)). Thus, 
for objects upto E3 the complexity of the algorithm for 
finding all CF maps for all the slices is 0(n2m2 \og(mn)) 
i f k is less than nmlog(nra) . If n = max(n,m), then this 
is 0(n4 logn) . 

There are several other aspects of this algori thm. If 
one of the faces is non-convex, or even has a hole, the 
algori thm sti l l determines the CF maps correctly, since 
it is based on a linear sweep between the edges, which lo­
cally results in the correct translational boundary (Fig. 
7). A side benefit of this computat ion is that it makes 
it simple (an O(nm) planar sweep postprocessing), to 
compute the C-spaces for polyhedral obstacles, a prob­
lem for which solutions appear to be known only in the 
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convex cases [16]. A simple strategy like plane-sweep can 
be used to determine the boundary of the map which is 
then the C-space of the objects in question. Note that 
taking just the convex hu l l , as suggested earlier, wi l l not 
give the C-space. A traversal through the face-list in 
this map, yields the CF connectivity graph as in figure 8 
which can be used for assembly. In the fol lowing section, 
we integrate the above methodology to provide a search 
space for Fine Mot ion Planning. 

Figure 7: A CF map for a non-convex peg on a rectangle 
wi th hole. 

5 The 2-Body Problem 
The assembly problem consists of taking a set of bodies 
that were ini t ia l ly separated into contact. The principal 
difference wi th path planning is that there are mult ip le 
bodies (although they are often considered monotoni-
cally in subassemblies), and that the in i t ia l configuration 
is not fixed. Other differences include the occasional 
need to find space to temporari ly hold subassemblies. 
The part of this problem that has received the maxi­
mum attention is the sequence planning problem, and 
the part that has received the least attent ion, undoubt­
edly because of its intrinsic difficulty, is relating it to the 
geometry. In the fol lowing, we present an algor i thm for 
obtaining the contact motions of two objects, or what we 
call the 2-body problem. This constitutes a single link 
in an A N D / O R or other "high-level" assembly graph. 
To our knowledge this is the first model that provides a 
reasonable process for mapping these connectivity links 
directly to the geometries of the objects. We now give an 
algori thm for assembly by searching through the contact 
formations . 

Algorithm 
1. Construct the contact format ion map assuming ful l 
domain degrees of freedom (i.e. no l im i t angles etc). 
Also, obtain the C-space in this process. 

2. Adding the constraints, consider the surfaces 
caused by the constraints. These surfaces do not have 
any internal CF features, since the entire surface corre­
sponds to a stop posit ion. In other words, these surfaces 
can delete some CF maps that arise in inaccessible re­
gions, but cannot add any new CFs. 

3. For each CF identify the configuration patch (CP) 
corresponding to it on the C-space. If this region is not 
connected (e.g. for nul l CF) then split the separate con­
nected components, and label these as separate sub-CFs. 

4. Scan all the CPs and connect adjacent CF's corre­
sponding to adjacent regions on the slice by undirected 
edges. 

This returns a CF graph indicat ing connections in 
the Contact Formation space and provides a very basic 
search space for further queries and operations. Each 
region in this space can be directly related to boundary 
features on the object. A l l standard AI methodologies 
such as learning based on densities, incremental defini­
t ion etc. can be used on this graph to reduce the search 
complexity. It may be noted that all those regions which 
formed the boundary of the original C-space are part of 
the boundary of the constrained C-space also, except 
that they have added internal features on these indicat­
ing the richness of the CF structure in i t . 

The CF graph is useful in solving a variety of spatial 
problems. To answer the query about the cube rol l ing 
down a plane, originally posed in [ l ] , we can move from 
slice to slice as the cube rotates, to obtain directly the 
sequence of vertex edge and face contacts as they are 
made and broken. To investigate the kinematic problem 
posed by Forbus et al in [lO], where one would like to 
say how two wheels "one w i th a bump on it and the 
other w i th a notch carved out of i t " wi l l travel, one can 
bui ld the CF map, which provide a discretization for the 
Configuration Space methods proposed earlier. As for 
assembly, we i l lustrate the applicabi l i ty of the CF map 
by out l in ing the solution to the peg insertion problem 
posed (Fig. 4). The graph resulting f rom the CF map is 
shown in Fig. 8, and the set of CFs is listed below (the 
edge between vertices i and j is represented by ij). 

Another aspect of the CF graph is that each constraint-
reveals the degrees of freedom that exist in maintaining 
that constraint, e.g in f ig. 6( i) , the slice is ful ly con­
strained in rotat ion, and hence the vertices in the graphs 
represent zero degrees of freedom (annotated as (CF°'s). 
The edges in this diagram, as well as the vertices in ( i i i ) 
which permit a rotat ion, permit one degree of freedom 
and constitute C F ' s . The intersection process results in 
a depletion of freedom; the intersection of CFr and CFq 

results in a CFS, where s - d-(d-r)-(d-q) - r+q-d. 
This is an impor tant not ion in designing assemblies to 
have certain d.o.f's and reveals where on the surface to 
place constraining grooves or other similar questions. 

Example 
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