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Abstract 

This paper investigates the problem of auto­
matical ly learning declarative models of infor­
mat ion sources available on the Internet. We 
report on ILA, a domain-independent program 
that learns the meaning of external informa­
t ion by explaining it in terms of internal cat­
egories. In our experiments, ILA starts wi th 
knowledge of local faculty members, and is able 
to learn models of the Internet service whois 
and of the personnel directories available at 
Berkeley, Brown, Caltech, Cornell, Rice, Rut­
gers, and UC1, averaging fewer than 40 queries 
per informat ion source. ILA's hypothesis lan­
guage is compositions of first-order predicates, 
and its bias is compactly encoded as a deter­
minat ion. We analyze ILA's sample complex­
i ty both wi th in the Valiant model, and using a 
probabilistic model specifically tailored to ILA. 

1 Introduction and Motivation 
The number and diversity of informat ion sources on the 
Internet is increasing rapidly. A number of tools such 
as Gopher, WAIS, and Web Crawlers are available to 
help people search for the information they need. How­
ever, these tools are unable to interpret the results of 
their searches and are unable to use mult ip le informa­
t ion sources in concert. A number of more sophisticated 
AI systems have emerged, including SIMS [Knoblock ei 
a/., 1994], the Informat ion Manifold at A T & T [Kirk ei 
a/., 1995], and the Internet softbot [Etzioni and Weld, 
1994]. However, each of these AI systems requires so­
phisticated models of the different information sources 
it is able to access. As a result, there are two barriers 
that prevent AI approaches from keeping up wi th the 

*We thank Dayne Freitag, Craig Knoblock, and Tom 
Mitchell for inspiring discussions that contributed to our 
problem formulation. We thank Dymitr Mozdyniewicz for 
his assistance with experiments, and Anchana Kullavanijaya 
for her transcription help. This research was funded in part 
by Office of Naval Research grant 92-J-1946 and by National 
Science Foundation grant IRI-9357772. Mike Perkowitz is 
supported, in part, by an NSF graduate fellowship. 

explosion of information sources on the Internet. First, 
effort has to be devoted to hand coding a model of each 
source. Second, sources unknown to the programmers 
associated wi th each AI system cannot be modeled. To 
enable the AI approaches to scale w i th the growth of 
the Internet, we explore the problem of automatical ly 
learning models of informat ion sources. This learning 
problem raises four fundamental questions: 
• Discovery: how does the learner f ind new and un­
known information sources? (e.g., a web page repre­
senting the Brown phone directory has recently come 
on-line.) 
• Protocol : what are the mechanics of accessing an in­
formation source and parsing the response into tokens? 
(the Brown directory is searched by sending a str ing such 
as " k a e l b l i n g " to the Brown server, and receiving back 
a string.) 
• Semantics: how does the learner come to understand 
the information available at the source? (the tokens de­
scribe Kaelbling's e-mail address, phone number, depart­
ment, etc.) 
• Qua l i ty : What is the accuracy, rel iabi l i ty, and scope 
of the information source? (the directory contains accu­
rate information about people at Brown, not elsewhere.) 

Satisfactory answers to all of these questions would 
enable us to construct an autonomous Internet learn­
ing agent able to discover and use informat ion resources 
effectively. As a first step, this paper investigates the 
question of learning semantics. 

Our learning method is based on the fol lowing idea, 
due to St. Augustine [Wittgenstein, 1958]. Consider how 
you might learn the Lat in term uxor by example. Sup­
pose I tell you "George Washington's uxor was Mar tha." 
You might reason that , because "Mar tha" was the name 
of Washington's wife, perhaps "uxor" means "wi fe" . If, 
however, you knew that Washington also had a sister 
named "Mar tha " , you might wait unt i l you saw another 
example, perhaps asking "Who was Jefferson's uxor?" 
This method of learning relies on three key assumptions. 
First, you are famil iar w i th George Washington. Second, 
you have a concept corresponding to uxor, e.g. wife. 
Th i rd , you are wi l l ing to establish a general correspon­
dence between your concept wife and the concept uxor 
based on the example given. As we show below, this leap 
of fa i th can be viewed as an inductive bias and formal­
ized as a determination. We refer to this determination 
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hypotheses for the second field because Etzioni's userid 
is his last name. To discriminate between the two hy­
potheses, ILA wi l l at tempt to query wi th someone whose 
userid is different f rom her last name. If no discriminat­
ing query is possible, ILA wi l l at tempt to find an object-
that has the potential to disconfirm the leading hypoth­
esis. In the above example, if ILA hypothesizes that 
the th i rd field is phone-number, it wi l l choose a per­
son whose phone number is known over a person whose 
phone number is not. Finally, if neither a discriminat­
ing nor a disconfirming query is possible, ILA wi l l query 
w i th an object about which it has much informat ion, 
in order to increase the l ikelihood of recognizing some 
token in the response. Discr iminat ing queries typically 
accelerate ILA's abi l i ty to converge on a satisfactory hy­
pothesis; in the case of s t a f f d i r , for example, when ILA 
does not make use of discriminating queries, it requires 
50% more queries to converge on the same hypotheses. 

Once a particular object is chosen, ILA has to decide 
which query str ing to actually send to the IS. Ini t ia l ly, 
ILA w i l l t ry all known facts about the object as possible 
query strings, at tempt ing to learn the appropriate query 
str ing for the IS. The learning mechanism used is, in 
essence, the same as the one described below for learning 
to interpret the IS's output . 

Once ILA obtains a response from the external IS, it 
attempts to explain each token in the response. An ex­
planation is a chain of one or more model attr ibutes com­
posed into a relation between the object and the token 
seen. For example, in ILA's model, people are associated 
w i th departments and departments associated w i th mai l -
stops. The relation between a person and her mail-stop, 
then, is a composition of department and m a i l - s t o p — 
the mail-stop of P is m a i l - s t o p ( d e p a r t m e n t ( P ) ) . 

We employ a variant of relational pathfinding 
[Richards and Mooney, 1992] to discover a relation 
between the query object and each response token. 
Richards and Mooney's pathf inding technique performs 

a bidirectional breadth-first search in which constants 
are nodes in the graph and attr ibutes on constants are 
edges between nodes. We use & fuzzy matcher to compare 
tokens from the IS to constants in ILA's model. Our 
current matching function ignores punctuation and spac­
ing and can allow substring matches (e.g., the learner 
can recognize "(206) 616-1845" and "616.1845" as being 
the same token). Consequently, our pathf inding is uni­
directional, proceeding f rom the query object to fuzzily-
matched tokens.1 

Suppose the agent starts w i th the model shown in Ta­
ble 1. It queries the IS w i th the last name of object 
Pi and gets the response O r e n E t z i o n i 685-3035 F R -
35. It wi l l now try to explain each response token in 
tu rn . For example, in order to explain "FR-35" , ILA 
wil l start w i th Pi and spread out one step through the 
model, e.g., to CS and E t z i o n i . Since neither matches 
the target token "FR-35" , ILA wi l l continue spreading 
out from the current frontier, retaining the path to each 
current node (e.g., the at tr ibute path f rom Pi to CS is 
depar tment (x) ) . From CS, ILA w i l l get to FR-35. Thus, 
the path to FR-35 is m a i l - s t o p ( d e p a r t m e n t ( x ) ) . Since 
FR-35 matches the target, this path wi l l be returned as 
an explanation. 

Next, ILA evaluates the hypothesized explanation. 
W i t h respect to a particular query, a hypothesis may 
be explanatory ( i t predicted the output actually seen), 
inconsistent ( i t predicted something else), or consistent 
( i t made no prediction). Thus, a hypothesis h par t i ­
tions the set of responses to queries into Explanatory, 
Inconsistent, and Consistent subsets. We denote the 
number of elements in each subset by the ordered tr iple 
(E(h), 1(h), C(h)). We refer to the tr iple as the score of 
the hypothesis h. Since a hypothesis is only generated 
when it successfully explains some response, we know 

1To perform bidirectional pathfinding, we would have to 
find the set of matching tokens in ILA'B model, an expensive 
computation due to the size of the model. 

9 3 2 KNOWLEDGE REPRESENTATION 



that, for any h, E(h) > 1. 
The predictions of a new hypothesis are compared 

against old responses to compute the hypothesis's score. 
Overall, ILA compares each hypothesis against each re­
sponse exactly once, so learning time is linear in both 
the number of responses and the number of hypothe­
ses. To determine whether one hypothesis is better than 
another, ILA compares the number of inconsistent pre­
dictions by the two hypotheses. If the number of incon­
sistent predictions is equal, ILA compares the number of 
explanatory predictions. More formally, we say that the 
hypothesis h is better than the hypothesis h' if and only 
if: 

Better(h,h') = [/(h) < I(h')] V [1(h) = I(h') A E(h) > E(h')] 

That is, ILA chooses the hypothesis with the lowest / 
score and uses E scores to break ties. This is a good pol­
icy when incomplete information is more common than 
incorrect information because the / score (how often the 
hypothesis was inconsistent) is a better indicator of the 
accuracy of the hypothesis. An inconsistency arises ei­
ther when the hypothesis is inaccurate or when the in­
formation is incorrect. Because incorrect information is 
rare in our domain, a bad (high) / score indicates an 
inaccurate hypothesis. A hypothesis may fail to explain 
an observation due to incomplete information, because 
if we lack the relevant fact, the hypothesis makes no pre­
dict ion. Since incomplete information is relatively com­
mon, a bad (low) E score does not necessarily indicate 
low accuracy of the hypothesis. Therefore, 1(h) is a bet­
ter indicator of the quality of h than E(h). Suppose 
ILA knows everybody's last name but only a few peo­
ple's userid. When t ry ing to learn the u s e r i d field, the 
u s e r i d hypothesis wi l l explain only a few observations 
(because it w i l l make very few predictions) but wi l l never 
be inconsistent. In contrast, lastname wi l l explain many 
observations but wi l l be inconsistent on others. Because 
ILA prefers low 7 scores, it makes the right choice. 

ILA terminates the learning process when one of two 
conditions occur. One, it has run out of objects with 
which to query the IS. Two, its leading hypothesis is 
"signif icantly" better than its other hypotheses. The dif­
ference in I scores that is deemed significant is controlled 
by a parameter to ILA. Al though ILA's running time 
is exponential in the depth of the relational pathfind-
ing search for an explanatory hypothesis, the maximal 
search depth is typical ly set to a small constant, keep­
ing ILA fast. As mentioned earlier, the running time is 
linear in the number of queries made and the number of 
explanatory hypotheses generated. In fact, as the exper­
iments in Table 2 show, ILA's running time is dominated 
by Internet transmission t ime. 

4 Experimental Results 
In this section, we report on preliminary experiments 
designed to test whether our approach is viable in a real-
world domain. We find that ILA is able to learn models 
of simple informat ion sources on the Internet. 

To factor out the issues of protocol (which we do not 
address in this paper), ILA is provided wi th an interface 
that standardizes the interaction wi th the information 

sources used. Each interface takes query strings as input 
and outputs a list of tokens which ILA attempts to un­
derstand. In our first experiment, ILA is provided wi th 
complete and correct models of faculty in the University 
of Washington's (UW) Computer Science Department, 
and is asked to learn a model of s t a f f d i r , the UW per­
sonnel directory. The first line of Table 2 shows the 
results of this experiment. We see that in 16 queries 
ILA was able to learn a correct model of s t a i f d i r . ILA 
spent 19 seconds interacting wi th s t a i f d i r and 24 CPU 
seconds searching for, and evaluating, hypotheses. 

Below, we show the final scores of the leading hypothe­
ses for interpreting the second field of s t a f f d i r ' s output: 

s t a f f d i r 2 ( x ) = lastname(x) Expl : 11 Incons: 0 
s t a f f d i r 2 ( x ) = u s e r i d ( x ) Expl : 8 Incons: 3 

We see that for eight people, both the lastname and 
u s e r i d hypotheses correctly explained the second field 
in the output of s t a f f d i r . However, for three people, 
the u s e r i d hypothesis failed, leading ILA to consider 
lastname to be the correct hypothesis. 

A general problem that arises in relying on token cor­
respondence to infer type correspondence is the occur­
rence of puns. A pun occurs when matching tokens are 
not actually instances of the same concept. A hypoth­
esis arising from a pun amounts to f inding an incorrect 
composition of model attributes — one that is not true 
for all x and y. A pun is an instance of the general 
problem of an incorrect hypothesis resulting in a correct 
classification of a training example. One type of pun is 
entirely coincidental; a person's area code turns out to 
be the same as his office number. A spurious hypothesis 
resulting from a coincidental pun is easy to reject — it 
is unlikely to prove explanatory for more than a single 
example. However, we also encounter semi-regular puns 

where there is a correlation between the two concepts 
which gives rise to the pun. As pointed out above, many 
people's userids are also their last names. Semi-regular 
puns may require many more queries to converge on the 
correct hypothesis, because both the correct and spuri­
ous hypotheses wi l l make accurate predictions in many 
cases. Discriminating queries aim to address this prob­
lem by finding examples where the correct and spurious 
hypotheses make different predictions. 

No matter how regular a pun, there must eventually 
be a difference between the correct hypothesis and the 
competitor.2 How hard it is to choose the best hypoth­
esis is a function of the learner's knowledge and the reg­
ularity of the pun. The system faces a tradeoff: it must 
balance t ime spent learning against confidence in the re­
sult. If ILA collects more examples, it can be more con­
fident in the correctness of its conclusions. The learner 
can never be fully certain it is not the v ic t im of a partic­
ularly regular pun, but it wi l l have some estimate of the 
likelihood that it has the right solution. We provide a 
quantitative analysis of this intui t ion in the next section. 

One possible criticism of ILA is that it relies on an 

2 If there is no difference in extension between the two hy­
potheses, then they are equally good solutions to the learning 
problem. 
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overlap between the individuals in its model and indiv id­
uals in the IS it is t ry ing to learn. However, ILA ben­
efits f rom the presence of spanning informat ion sources 
on the Internet. A spanning information source is one 
that contains objects f rom a wide variety of information 
sources. For example, the Internet service called whois 
reports information on individuals f rom a wide range of 
sites on the Internet and w i l l , for example, return people 
f rom a particular school when queried w i th that school's 
name. ILA relies on its knowledge of local individuals to 
learn a model of whois , and then leverages its model of 
whois to learn models of a wide variety of remote sites 
on the Internet. Instead of relying on individuals f rom 
its model, ILA w i l l query whois for new individuals at 
the target site. For example, when t ry ing to learn the 
Brown directory, ILA wi l l query whois w i th "Brown" 
to get informat ion about people at Brown and use its 
learned model of whois to interpret the output. Our 
second experiment demonstrates this process (Table 2). 
The second line of the table shows the results of learn­
ing whois f rom knowledge of local people. Given the 
learned model of whois, we report on ILA's performance 
in learning models of the personnel directories available 
at Berkeley, Brown, Cal-Tech, Cornell, Rice, Rutgers, 
and UCI . As the results in Table 2 demonstrate, ILA 
is able to learn fair ly accurate models of these informa­
t ion sources averaging fewer than 40 queries per source, 
most taking less than 15 minutes each, where the bulk 
of that t ime is spent in Internet communication. The 
processing t ime for ILA is less than three CPU minutes 
in most cases. Slow network connections contributed to 
the unusually large Internet times for whois and Cornell. 
The size of the Cornell directory and the generality of 
its matching contributed to the large processing t ime for 
that directory. 

5 Theoretical Analysis 
We would like to understand how the accuracy of (and 
confidence in) ILA's hypotheses scale wi th the number 
of queries it makes, the size of its hypothesis space, the 
correctness of its informat ion, and so on. We consider 
both Valiant 's PAC model and an alternative probabilis-

tic model of ILA. ILA is not a standard concept-learning 
program — ILA is learning a function f rom the query it 
issues to the response of the IS. Furthermore, the or­
acle used by ILA is a generalized membership oracle. 
However, learnabil ity results in function learning the­
ory are specific to classes of functions learned, such as 
polynomial, or real-valued [Auer et a/., 1995]. Similarly, 
although specific concept classes have been shown to be 
learnable under the membership oracle [Anglu in, 1988], 
we are not aware of any sample complexity results that 
apply directly to ILA. For this reason, we chose to make 
a number of strong simpl i fy ing assumptions and analyze 
ILA under the PAC model. 

The PAC model provides a convenient framework for 
analyzing ILA's behavior, under the simpl i fy ing assump­
t ion that queries to the IS are random. IH| is the size 
of the hypothesis space explored by ILA. We posit a 
probabil i ty distr ibut ion P over queries to the informa-
tion source 7. The error E of a hypothesis h is the prob­
abilistic weight of the queries on which the hypothesis h 
disagrees wi th the actual behavior of I: 

tor simplicity, we consider an is w i th a single output 
field, where I(o) is the token returned by the IS, and 
h(o) is the value predicted by h. Haussler [Haussler, 
1988] derives a lower bound on the number of exam­
ples necessary for PAC learning. If h is any hypoth­
esis that agrees wi th at least n queries f rom /, where 

, then we have the fol lowing: 

To apply this bound to ILA, we have to assume that 
the information in / and in ILA's model is error free, that 
a perfect model of / can be found in ILA's hypothesis 
space, and that token matching is working perfectly. We 
can model the violat ion of these assumptions as random 
classification noise and use the bound due to [Angluin 
and Laird, 1988]: , where nb is an 
upper bound on the frequency of noisy classifications, 
and the learner chooses the hypothesis that is correct 
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most often. Unfortunately, the number of queries sug­
gested by the bound is very large. For example, if we set 
6 — 0 .1, nb — 0.05, and \H\ = 2, we see that the number 
of queries necessary to guarantee e < 0.05 exceeds 3,000. 
How does ILA get away wi th relying on far fewer queries 
in our experiments? 

The PAC bounds are overly conservative for two rea­
sons. First, the bounds presuppose randomly distributed 
queries, whereas ILA makes discriminating queries which 
enhance its abi l i ty to converge quickly. Second, the PAC 
bounds are based on a worst case analysis where there is 
at least one hypothesis whose accuracy is just less than 
1 — £, where the accuracy of a hypothesis h with respect 
to an IS I is 1 - E(h,I). The learning algorithm has 
to observe enough examples to rule it out and find a 
hypothesis whose accuracy is at least 1 - e with prob­
abi l i ty 1-6. Typical ly, puns are not as pernicious as 
this worst-case analysis would suggest. In the case of 
the lastname-userid pun in s t a f f d i r , for example, the 
best hypothesis ( lastname) has accuracy of 1.0 and the 
next best hypothesis (use r i d ) has accuracy 0.37. Only 
2 queries are required to have 90% confidence that ILA 
wil l prefer the better hypothesis. Below, we derive a 
general bound that yields this observation. 

Instead of asking how likely a learner is to find a hy­
pothesis whose accuracy is at least 1 - E, we ask how 
likely the learner is to pick the best hypothesis in its 
hypothesis space based on its observations. We can no 
longer guarantee that the hypothesis chosen has accu­
racy 1 - e. However, we can guarantee that the learner 
is likely to perform as well as possible, given its hypoth­
esis space. Furthermore, when the best hypothesis is 
much better than the other hypotheses in the space, 
relatively few queries are required to converge on the 
best hypothesis w i th high confidence. Below, we formal­
ize this intu i t ion using elementary probability theory. 

If a hypothesis has probabil i ty p of making a correct 
prediction, then the probabil i ty that the hypothesis wi l l 

3 In our model, if the two hypotheses have equal scores, 
they have equal probability of being chosen. 

4 We assume independence between the errors of g and 6. 
Also, under the worst-case assumption that n — 1 hypotheses 
all have accuracy At,, a similar formula can be derived for a 
hypothesis space of size n [Etzioni and Perkowitz, 1995]. 
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As 7 shrinks, ILA requires more queries to achieve 
high confidence. Note though that when 7 is very small, 
discriminating between g and b is less important. Fur­
thermore, discriminating queries enable ILA to converge 
on the high-accuracy hypothesis quickly even for small 7. 
To demonstrate the advantage of discriminating queries 
over random queries, Figure 1(b) shows the number of 
random and discriminating queries necessary to achieve 
at least 90% confidence that the learner w i l l prefer hy­
pothesis g over hypothesis 6, again as a function of 
7. The accuracy of g is fixed at 0.95. The random-
queries curve is derived f rom Equation 1. Due to lack 
of space, we omi t the derivation and assumptions under­
ly ing the discriminating-queries curve, but see [Etzioni 
and Perkowitz, 1995]. When Ag = 0.95 and 7 = 0.50, 
ILA requires only a single discriminating query to have 
90% confidence that it has found the better hypothesis. 
In essence, it is so unlikely for g to be wrong and for 6 to 
be r ight on the same query that one query is sufficient 
for ILA to choose a hypothesis wi th high confidence. 

In short, if there is a large gap between the best hy­
pothesis and its closest competitor, or we are able to 
perform discriminating queries, our probabilistic model 
shows that relatively few queries are necessary to have 
high confidence in choosing the best hypothesis. The 
model helps to explain how, using a small number of 
queries, ILA was able to learn accurate models of infor­
mat ion sources in the experiments summarized in Table 
2. 

6 Critique and Future Work 
Our contributions include: formulat ing the Category 
Translation problem, developing ILA's a lgor i thm, and 
formalizing its bias as a determination. We have tested 
ILA experimentally on a simple Internet domain, and 
analyzed its sample complexity wi th in the PAC frame­
work and using a specialized probabilistic model. 

We have identified several problems that ILA does not 
yet address. Category mismatch occurs when ILA fails 
to find categories corresponding to those of the external 
informat ion source [Wiederhold, 1992]. For example, the 
IS records fax numbers, of which ILA is ignorant. To­
ken mismatch occurs when, despite having appropriate 
categories, ILA fails to find matching tokens due to a dif­
ference in representation. For example, ILA may record 
prices in dollars, but a Japanese information source may 
store prices in yen. Final ly, ILA's conjunctive bias can 
prevent it f rom learning a category that corresponds to a 
disjunction of ILA's categories. In future work we expect 
to test ILA on substantially more complex Internet do­
mains, explore solutions to the above problems, and in­
vestigate the discovery and quality problems mentioned 
in the introduct ion. 
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