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Abstract 

The long-term goal of our field is the creation and 
understanding of intelligence. Productive research 
in AI , both practical and theoretical, benefits from 
a notion of intelligence that is precise enough to 
allow the cumulative development of robust systems 
and general results. This paper outlines a gradual 
evolution in our formal conception of intelligence 
that brings it closer to our informal conception and 
simultaneously reduces the gap between theory and 
practice. 

1 Artificial Intelligence 
AI is a field in which the ultimate goal has often been some
what ill-defined and subject to dispute. Some researchers aim 
to emulate human cognition, others aim at the creation of 
intelligence without concern for human characteristics, and 
still others aim to create useful artifacts without concern for 
abstract notions of intelligence. 

This variety is not necessarily a bad thing, since each ap
proach uncovers new ideas and provides fertilization to the 
others. But one can argue that, since philosophers abhor a 
definitional vacuum, many of the damaging and ill-informed 
debates about the feasibility of AI have been about definitions 
of AI to which we as AI researchers do not subscribe. 

My own motivation for studying AI is to create and under
stand intelligence as a general property of systems, rather than 
as a specific attribute of humans. I believe this to be an appro
priate goal for the field as a whole, and it certainly includes the 
creation of useful artifacts—both as a spin-off and as a focus 
and driving force for technological development. The diffi
culty with this "creation of intelligence" view, however, is that 
it presupposes that we have some productive notion of what 
intelligence is. Cognitive scientists can say "Look, my model 
correctly predicted this experimental observation of human 
cognition " and artifact developers can say "Look, my system 
is saving lives/megabucks," but few of us are happy with pa
pers saying "Look, my system is intelligent." This difficulty 
is compounded further by the need for theoretical scaffolding 
to allow us to design complex systems with confidence and 
to build on the results of others. "Intelligent" must be given 
a definition that can be related directly to the system's input, 
structure, and output.1 

'Such a definition must also be general. Otherwise, AI sub-

In this paper, I shall outline the development of such defi
nitions over the history of AI and related disciplines.2 I shall 
examine each definition as a predicate P that can be applied, 
supposedly, to characterize systems that are intelligent, For 
each P, I shall discuss whether the statement "Look, my sys
tem is P" is interesting and at least sometimes true, and the 
sort of research and technological development to which the 
study of P-systems leads. 

I shall begin with the idea that intelligence is strongly re
lated to the capacity for successful behaviour—the so-called 
"agent-based" view of AI . The candidates for formal defini
tions of intelligence are as follows: 

• P1: Perfect rationality, or the capacity to generate maxi
mally successful behaviour given the available informa
tion. 

• P2 Calculative rationality, or the in-principle capac
ity to compute the perfectly rational decision given the 
initially available information. 

• P3: Metalevel rationality, or the capacity to select the op
timal combination of computation-sequence-plus-action, 
under the constraint that the action must be selected by 
the computation. 

• P4: Bounded optimality, or the capacity to generate max
imally successful behaviour given the available informa
tion and computational resources. 

All four definitions will be fleshed out in detail, and I will de
scribe some results that have been obtained so far along these 
lines. Then I will describe ongoing and future work under the 
headings of calculative rationality and bounded optimality. 

I shall be arguing that, of these candidates, bounded op
timality comes closest to meeting the needs of AI research. 
There is always a danger, in this sort of claim, that its accep
tance can lead to "premature mathematization," a condition 
characterized by increasingly technical results that have in
creasingly little to do with the original problem—in the case 
of AI , the problem of creating intelligence. Is research on 
bounded optimality a suitable stand-in for research on in
telligence? I hope to show that P4, bounded optimality, is 
closer than P\ through P3 because it is a real problem with 
real and desirable solutions, and also because it satisfies some 

sides into a smorgasbord of fields—intelligence as chess playing, 
intelligence as vehicle control, intelligence as medical diagnosis. 

2In doing so I shall draw heavily on previous work with Eric We-
fald [Russell and Wefald, 1991 a] and Devika Subramanian [Russell 
and Subramanian, 1995]. The latter paper contains a much more 
rigorous analysis of the concepts presented here. 
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essential intuitions about the nature of intelligence. Some im
portant questions about intelligence can only be formulated 
and answered within the framework of bounded optimality or 
some relative thereof. Only time wi l l tell, however, whether 
bounded optimality research, perhaps with additional refine
ments, can generate enough theoretical scaffolding to support 
significant practical progress in A I . 

2 Agents 
Until fairly recently, it was common to define AI as the compu
tational study of "mental faculties" or "intelligent systems," 
catalogue various kinds, and leave it at that. This doesn't 
provide much guidance. Instead, one can define AI as the 
problem of designing systems that do the right thing. Now 
we just need a definition for "right." 

This approach involves considering the intelligent entity 
as an agent, that is to say a system that senses its envi
ronment and acts upon it. Formally speaking, an agent is 
defined by the mapping from percept sequences to actions 
that the agent instantiates. Let O be the set of percepts 
that the agent can observe at any instant, and A be the set 
of possible actions the agent can carry out in the external 
world. Thus the agent function f : O* -* A defines how 
an agent behaves under all circumstances (including those 
where it does nothing). What counts in the first instance 
is what the agent does, not necessarily what it thinks, or 
even whether it thinks at all. This initial refusal to con
sider further constraints on the internal workings of the agent 
(such as that it should reason logically, for example) helps in 
three ways: first, it allows us to view such "cognitive facul
ties" as planning and reasoning as occurring in the service of 
finding the right thing to do; second, it encompasses rather 
than excludes the position that systems can do the right thing 
without such cognitive faculties [Agre and Chapman, 1987; 
Brooks, 1989]; third, it allows more freedom to consider var
ious specifications, boundaries, and interconnections of sub
systems. 

The agent-based view of AI has moved quickly from work
shops on "situatedness" and "embeddedness" to mainstream 
textbooks [Russell and Norvig, 1995; Dean et al, 1995] and 
buzzwords in Newsweek. Rational agents, loosely speaking, 
are agents whose actions make sense from the point of view 
of the information possessed by the agent and its goals (or, 
the task for which it was designed). Rationality is a property 
of actions and does not specify—although it does constrain— 
the process by which the actions are selected. This was a 
point emphasized by Simon 11958], who coined the terms 
substantive rationality and procedural rationality to describe 
the difference between the question of what decision to make 
and the question of how to make it. That Rod Brooks's 1991 
Computers and Thought lecture was titled "Intelligence with
out Reason" emphasizes the fact that reasoning is (perhaps) a 
derived property of agents that might, or might not, be a good 
implementation scheme to achieve rational behaviour. The 
justification of cognitive structures that many AI researchers 
take for granted is not an easy problem. 

One other consequence of the agent-based view of intelli
gence is that it opens AI up to competition from other fields 
that have traditionally looked on the embedded agent as a nat
ural topic of study. Control theory is foremost among these, 
but evolutionary programming and indeed evolutionary biol
ogy itself also have ideas to contribute.3 The prevalence of 

the agent view has also helped the field move towards solving 
real problems, avoiding what Brooks calls the "hallucina
t ion" problem that arises when the fragility of a subsystem is 
masked by having an intelligent human providing input to it 
and interpreting its outputs. 

3 Perfect Rationality 
Perfect rationality constrains an agent's actions to provide 
the maximum expectation of success given the information 
available. We can expand this notion as follows (see Figure 1). 
The fundamental inputs to the definition are the environment 
class E in which the agent is to operate and the performance 
measure U which evaluates the sequence of states through 
which the agent drives the actual environment. Let V(f, E, U) 
denote the expected value according to U obtained by an agent 
funct ion/ in environment E. Then a perfectly rational agent 
is defined by an agent funct ion/^ , such that 

fopt = argmaxfV(f,E,U) 

This is just a fancy way of saying that the best agent does 
the best it can. The point is that perfectly rational behaviour 
is a well-defined function of E and U, which I wi l l call the 
task environment. The problem of computing this function is 
addressed below. 

Figure 1: The agent receives percepts from the environment 
and generates a behaviour which in turn causes the environ
ment to generate a state history. The performance measure 
evaluates the state history to arrive at the value of the agent. 

The theoretical role of perfect rationality within AI is well-
described by Newell's paper on the Knowledge Level [Newell, 
1982]. Knowledge-level analysis of AI systems relies on an 
assumption of perfect rationality. It can be used to establish 
an upper bound on the performance of any possible system, 
by establishing what a perfectly rational agent would do given 
the same knowledge. 

The question of learning in perfectly rational agents is much 
less well-understood than the question of action selection, yet 
it is equally essential in the specification of perfectly ratio
nal behaviour since it determines the agent's expectations. In 
the logical view of rationality, learning has received almost no 
attention—indeed, Newell's analysis precludes learning at the 

3I view this as a very positive development. AI is a field defined 

by its problems, not its methods. Its principal insights—among 
them the learning, use, and compilation of explicit knowledge in the 
service of decision making—can certainly withstand the influx of 
new methods from other fields. This is especially true when other 
fields are simultaneously embracing the insights derived within AI. 
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knowledge level. In the decision-theoretic view, Bayesian up
dating provides a model for rational learning, but this pushes 
the question back to the prior [Carnap, 1950). The question 
of rational priors remains unsettled. 

Another aspect of perfect rationality that is lacking is the 
development of a suitable body of techniques for the specifi
cation of utility functions. In economics, many results have 
been derived on the decomposition of overall utility into at
tributes that can be combined in various ways [Keeney and 
Raiffa, 1976], yet such methods have made few inroads into 
AI (but see [Wellman, 1985]). We also have little idea how to 
specify utility over time, and although the question has been 
raised often, we do not have a satisfactory understanding of 
the relationship between goals and utility. 

The good thing about perfectly rational agents is that if you 
have one handy, you prefer it to any other agent. Furthermore, 
if you are an economist you can prove nice results about 
economies populated by them. The bad thing is that the 
theory of perfect rationality does not provide for the analysis 
of the internal design of the agent: one perfectly rational 
agent is as good as another. The really bad thing, as pointed 
out by Simon, is that perfectly rational agents do not exist. 
Physical mechanisms take time to process information and 
select actions, hence the behaviour of real agents includes 
long sequences of inaction. Unless the environment is static 
(see below), inaction is suboptimal. 

4 Calculative Rationality 
Before discussing calculative rationality, it is necessary to 
introduce a distinction between the agent function and the 
agent program. In AI , an agent is implemented as a program, 
which I shall call /, running on a machine, which I shall call 
M. An agent program receives as input the current percept, 
but also has internal state that reflects, in some form, the 
previous percepts. It outputs actions when they have been 
selected. From the outside, the behaviour of the agent consists 
of the selected actions interspersed with inaction (or whatever 
default actions the machine generates). 

Calculative rationality is displayed by programs that, if 
executed infinitely fast, would result in perfectly rational be
haviour. Unlike perfect rationality, calculative rationality is 
a requirement that can be fulfilled by many real programs. 
Also unlike perfect rationality, calculative rationality is not 
necessarily a desirable property. For example, a calculatively 
rational chess program will choose the "right" move, but may 
take 1050 times too long to do so. 

The pursuit of calculative rationality has nonetheless been 
the main activity of theoretically well-founded research in AI . 
In the early stages of the field, it was important to concentrate 
on "epistemological adequacy" before "heuristic adequacy" 
— that is, capability in principle rather than in practice. The 
methodology that has resulted involves designing programs 
that exhibit calculative rationality, and then using various 
speedup techniques and approximations in the hope of getting 
as close as possible to perfect rationality. Another common 
aspect of the methodology is the imposition of restrictions on 
the task environment to render decision problems tractable. 

This methodology has been pursued in both the logical 
and the decision-theoretic traditions. In the logical tradi
tion, the performance measure accepts behaviours that achieve 
the specified goal in all cases and rejects any others. Thus 
Newell [1982] defines rational actions as those that are guar
anteed to achieve one of the agent's goals. Logical plan

ning systems, such as theorem-provers using situation cal
culus, satisfy the conditions of calculative rationality under 
this definition. In the decision-theoretic tradition, the design 
of calculatively rational agents has largely gone on outside 
AI—for example, in stochastic optimal control theory. Rep
resentations have usually been very impoverished (state-based 
rather than sentential) and solvable problems have been either 
very small or very specialized. Within AI , the development 
of probabilistic networks or belief networks has opened up 
many new possibilities for agent design. Systems based on 
influence diagrams (probabilistic networks with action and 
value nodes added) satisfy the decision-theoretic version of 
calculative rationality. 

AI has also developed a very powerful armoury of meth
ods for reducing complexity, including the decomposition of 
state representations into sentential form; sparse representa
tions of environment models (as in STRIPS operators); so
lution decomposition methods such as partial-order planning 
and abstraction; approximate, parameterized representations 
of value functions for reinforcement learning; compilation 
(chunking, macro-operators, EBL etc.); and the application 
of metalevel control. Although some of these methods can 
retain guarantees of optimality and are effective for moder
ately large problems that are well structured, it is inevitable 
that intelligent agents will be unable to act rationally in all cir
cumstances. This observation has been a commonplace since 
the very beginning of AI . There are two common responses: 
one can rule out sources of exponential complexity in the 
representations and reasoning tasks addressed (as described 
in two fascinating Computers and Thought lectures, by Hec
tor Levesque in 1985 and Henry Kautz in 1989); or one can 
design systems that select suboptimal actions. Suboptimal 
methods fall outside calculative rationality per se, however, 
and we need a better theory to understand them. 

5 Metalevel Rationality 
Metalevel rationality, also called Type II rationality by 
I. J. Good, is based on the idea of finding an optimal tradeoff 
between computational costs and decision quality. Although 
Good never made his concept of Type II rationality precise, 
it is clear that the aim was to take advantage of some sort of 
metalevel architecture to implement this tradeoff. Metalevel 
architecture is a design philosophy for intelligent agents that 
divides the agent into two (or more) notional parts. The object 
level carries out computations concerned with the applica
tion domain—for example, projecting the results of physical 
actions, computing the utility of certain states, and so on. 
The metalevel is a second decision-making process whose 
application domain consists of the object-level computations 
themselves and the computational objects and states that they 
affect. Metareasoning has a long history in A I , going back at 
least to the early 1970s. TEIRESIAS [Davis, 1980] established 
the idea that explicit, domain-specific metaknowledge was an 
important aspect of expert system creation. 

The theory of rational metareasoning provides an alter
native to the view that metaknowledge is a sort of "extra" 
domain knowledge, over and above the object-level domain 
knowledge, that one has to add to an AI system to get it to 
work well. The basic idea is that object-level computations 
are actions with costs (the passage of time) and benefits (im
provements in decision quality). A rational metalevel selects 
computations according to their expected utility. The im
portant thing is that the metatheory describing the effects of 
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computations is domain-independent. In principle, no addi
tional domain knowledge is needed to assess the benefits of 
a computation, although in practice the results of metalevel 
analysis for particular domains can be compiled into domain-
specific metaknowledge. Thus, there is an interesting sense in 
which algorithms are not a necessary part of AI systems. In
stead, one can imagine a general process of rationally guided 
computation interacting with properties of the environment 
to produce more and more efficient decision making. To my 
mind, this way of thinking finesses one major puzzle of AI: 
if what is required for AI is incredibly devious and superbly 
efficient algorithms far surpassing the best efforts of computer 
scientists, how did evolution (and how will machine learning) 
ever get there? 

Rational metareasoning has as a precursor the theory of 
information value [Howard, 1966]—the notion that one can 
calculate the decision-theoretic value of acquiring an addi
tional piece of information by simulating the decision pro
cess that would be followed given each possible outcome 
of the information request, thereby estimating the expected 
improvement in decision quality averaged over those out
comes. The application to computational processes, by 
analogy to information-gathering, seems to have originated 
with Matheson [1968]. In A I , Horvitz [1987], Breese 
and Fehling [1990], and Russell and Wefald [1989; 1991a; 
1991b] all showed how the idea of value of computation could 
solve the basic problems of real-time decision making. 

The work done with Eric Wefald was aimed especially 
at revising the traditional notion of algorithms. We looked in 
particular at search algorithms, in which the object-level com
putations extend projections of the results of various courses 
of actions further into the future. For example, in chess pro
grams, each object-level computation expands a leaf node 
of the game tree. The metalevel problem is then to select 
nodes for expansion and to terminate search at the appro
priate point. The principal problem with metareasoning in 
such systems is that the local effects of the computations do 
not directly translate into improved decisions, because there 
is also a complex process of propagating the local effects at 
the leaf back to the root and the move choice. It turns out 
that a general formula for the value of computation can be 
found in terms of the "local effects" and the "propagation 
function," such that the formula can be instantiated for any 
particular object-level system (such as minimax propagation), 
compiled, and executed efficiently at runtime. This method 
was implemented for two-player games, two-player games 
with chance nodes, and single-agent search. In each case, the 
same general metareasoning scheme resulted in efficiency im
provements of roughly an order of magnitude over traditional, 
highly-engineered algorithms. 

Another general class of metareasoning problems arises 
with anytime [Dean and Boddy, 1988] or flexible [Horvitz, 
1987] algorithms, which are algorithms designed to return re
sults whose quality varies with the amount of time allocated 
to computation. The simplest type of metareasoning trades 
off the expected increase in decision quality for a single al
gorithm, as measured by a performance profile, against the 
cost of time [Simon, 1955]. A greedy termination condition 
is optimal if the second derivative of the performance profile 
is negative. More complex problems arise if one wishes to 
build complex real-time systems from anytime components. 
First, one has to ensure the interruptibility of the composed 
system—that is, to ensure that the system as a whole can 
respond robustly to immediate demands for output. The solu
tion is to interleave the execution of all the components, allo

cating time to each component so that the total time for each 
complete iterative improvement cycle of the system doubles at 
each iteration. In this way, we can construct a complex system 
that can handle arbitrary and unexpected real-time demands 
exactly as if it knew the exact time available in advance, with 
just a small (< 4) constant factor penalty in speed [Russell and 
Zilberstein, 1991]. Second, one has to allocate the available 
computation optimally among the components to maximize 
the total output quality. Although this is NP-hard for the gen
eral case, it can be solved in time linear in program size when 
the call graph of the components is tree-structured [Zilberstein 
and Russell, 1995]. Thus, although these results are derived in 
the relatively clean context of anytime algorithms with well-
defined performance profiles, there is reason to expect that 
the general problem of robust real-time decision-making in 
complex systems can be handled in practice. 

Significant open problems remain in the area of rational 
metareasoning. One obvious difficulty is that almost all 
systems to date have adopted a myopic strategy—a greedy, 
depth-one search at the metalevel. Obviously, the problem 
of optimal selection of computation sequences is at least as 
intractable as the underlying object-level problem. Nonethe
less, sequences must be considered because in some cases 
the value of a computation may not be apparent as an im
provement in decision quality until further computations have 
been done. This suggests that techniques from reinforcement 
learning could be effective, especially as the "reward func
tion" for computation—that is, the improvement in decision 
quality—is easily available to the metalevel post hoc. Other 
possible areas for research include the creation of effective 
metalevel controllers for more complex systems such as ab
straction hierarchy planners, hybrid architectures, and so on. 

Although rational metareasoning seems to be a useful tool 
in coping with complexity, the concept of metalevel rationality 
as a formal framework for resource-bounded agents does not 
seem to hold water. The reason is that, since metareasoning 
is expensive, it cannot be carried out optimally. Within the 
framework of metalevel rationality, there is no way to under
stand the appropriate tradeoff of time for metalevel decision 
quality. Any attempt to do so via a metametalevel simply 
results in a conceptual regress. Furthermore, it is entirely 
possible that in some environments, the most effective agent 
design will do no metareasoning at all, but simply to respond 
to circumstances. These considerations suggest that the right 
approach is to step outside the agent, as it were; to refrain from 
micromanaging the individual decisions made by the agent. 
This is the approach taken in bounded optimality. 

6 Bounded Optimality 
The difficulties with perfect rationality and metalevel rational
ity arise from the imposition of constraints on things (actions, 
computations) that the agent designer does not directly con
trol. Specifying that actions or computations be rational is 
of no use if no real agents can fulfill the specification. The 
designer controls the prog ram. In [Russell and Subramanian, 
1995], the notion of feasibility for a given machine is intro
duced to describe the set of all agent functions that can be im
plemented by some agent program running on that machine. 
This is somewhat analogous to the idea of computability, but 
is much stricter because it relates the operation of a program 
on a formal machine model with finite speed to the actual 
temporal behaviour generated by the agent. 

Given this view, one is led immediately to the idea that 
optimal feasible behaviour is an interesting notion, and to the 
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possible to define some basic properties of task environments 
that, together with the complexity of the problem, lead to 
identifiable requirements on the corresponding rational agent 
designs [Russell and Norvig, 1995, Ch. 2], The principal 
properties are whether the environment is fully observable or 
partially observable, whether it is deterministic or stochastic, 
whether it is static (i.e., does not change except when the 
agent acts) or dynamic, and whether it is discrete or continu
ous. While crude, these distinctions serve to lay out an agenda 
for basic research in A I . By analysing and solving each sub
case and producing calculatively rational mechanisms with the 
required properties, theoreticians can produce the AI equiv
alent of bricks, beams, and mortar with which AI architects 
can build the equivalent of cathedrals. Unfortunately, many 
of the basic components are currently missing. Others are so 
fragile and non-scalable as to be barely able to support their 
own weight. This presents many opportunities for research of 
far-reaching impact. 

The logicist tradition of goal-based agent design, based 
on the creation and execution of guaranteed plans, is firmly 
anchored in ful ly observable, deterministic, static, and discrete 
task environments. (Furthermore, tasks are usually specified 
as logically defined goals rather than general utility functions.) 
This means that agents need keep no internal state and can 
even execute plans without the use of perception. 

The theory of optimal action in stochastic, partially ob
servable environments goes under the heading of POMDPs 
(Partially Observable Markov Decision Problems), a class of 
problems first addressed in the work of Sondik [1971 ] but al
most completely unknown in AI until recently. Similarly, very 
little work of a fundamental nature has been done in AI on 
dynamic environments, which require real-time decision mak
ing, or on continuous environments, which have been largely 
the province of geometry-based robotics. Since most real-
world applications are partially observable, nondeterministic, 
dynamic, and continuous, the lack of emphasis is somewhat 
surprising. 

There are, however, several new bricks under construc
tion. For example, dynamic probabilistic networks [Dean 
and Kanazawa, 1989] provide a mechanism to maintain be
liefs about the current state of a dynamic, partially ob
servable, nondeterministic environment, and to project for
ward the effects of actions. Also, the rapid improvement 
in the speed and accuracy of computer vision systems has 
made interfacing with continuous physical environments more 
practical. In particular, the application of Kalman filter
ing [Kalman, 1960], a widely used technique in control theory, 
allows robust and efficient tracking of moving objects. Re
inforcement learning, together with inductive learning meth
ods for continuous function representations such as neural 
networks, allow learning from delayed rewards in continu
ous, nondeterministic environments. Recently, Parr and Rus
sell [1995], among others, have had some success in adapt
ing reinforcement learning to partially observable environ
ments. Finally, learning methods for static and dynamic 
probabilistic networks with hidden variables (i.e., for par
tially observable environments) may make it possible to ac
quire the necessary environment models [Lauritzen, 1995; 
Russell etal, 1995]. 

The Bayesian Automated Taxi (a.k.a. BATmobile) 
project [Forbes et al.t 1995] is an attempt to combine all 
these new bricks to solve an interesting application problem, 
namely driving a car on a freeway. Technically, this can be 
viewed as a POMDP because the environment contains rele
vant variables (such as whether or not the Volvo beside you 

is intending to change lanes to the left or right) that are not 
observable, and because the behaviour of other vehicles and 
the effects of ones own actions are not exactly predictable. In 
a POMDP, the optimal decision depends on the joint proba
bility distribution over the entire set of state variables. It turns 
out that a combination of real-time vision algorithms, Kalman 
filtering, and dynamic probabilistic networks can maintain the 
required distribution when observing a stream of traffic on a 
freeway. The BATmobile currently uses a hand-coded deci
sion tree to make decisions on this basis, and is a fairly safe 
driver (although probably far from optimal) on our simulator. 
We are currently experimenting with lookahead methods to 
make approximately rational decisions, as well as supervised 
learning and reinforcement learning methods. 

As well as extending the scope of AI applications, new 
bricks for planning under uncertainty significantly increase 
the opportunity for metareasoning to make a difference. With 
logical planners, a plan either does or does not work; it has 
proved very difficult to find heuristics to measure the "good
ness" of a logical plan that does not guarantee success, or to 
estimate the likelihood that an abstract logical plan wi l l have 
a successful concrete instance. This means that it is very hard 
to identify plan elaboration steps that are likely to have high 
value. In contrast, planners designed to handle uncertainty 
and utility have built-in information about the likelihood of 
success and there is a continuum from hopeless to perfect 
plans. Getting metareasoning to work for such systems is a 
high priority. It is also important to apply those methods such 
as partial-order planning and abstraction that have been so 
effective in extending the reach of classical planners. 

7.2 Directions for Bounded Optimality 
Ongoing research on bounded optimality aims to extend the 
initial results of [Russell and Subramanian, 1995] to more 
interesting agent designs. The general idea is that the space 
of agent designs can be divided up into "architectural classes" 
such that in each class the structural variation is sufficiently 
limited. Then ABO results can be obtained either by analytical 
optimization within the class or by showing that an empirical 
adaptation process results in an approximately ABO design. 
Once this is done, it should be possible to compare architecture 
classes directly, perhaps to establish asymptotic dominance of 
one class over another. For example, it might be the case that 
the inclusion of an appropriate "macro-operator formation" 
or "greedy metareasoning" capability in a given architecture 
wi l l result in an improvement in behaviour in the limit of 
very complex environments—that is, one cannot compensate 
for the exclusion of the capability by increasing the machine 
speed by a constant factor. 

Work by Tash and Russell [1994] can be seen as a step in 
this direction, although the ABO results have not yet been 
established. The basic architecture investigated is a decision-
theoretic planner based on applying policy iteration within 
a limited "envelope" of states around the current state. The 
agent can either extend the envelope and recompute the locally 
optimal policy or act based on the current policy. When an 
approximately rational metareasoning component was added, 
the agent was able to do a much better job of selecting states to 
add to the envelope. It also exhibited some basic behaviours 
appropriate to a real-time environment: reducing the amount 
of deliberation in response to an increase in time pressure 
or a decrease in predictability. Addition of a simple met-
alevel reinforcement learning mechanism (see above) led to 
a significant improvement in performance. When a "reflec-
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tive" capability was added that took into consideration the 
amount of computation already expended in ascertaining the 
desirability of a given state, the agent exhibited beaten paths 
behaviour—that is, it often preferred to follow paths within 
the environment with which it was familiar even if this meant 
taking a long detour around unfamiliar territory. 

Showing that these agent designs will converge to ABO 
configurations within each class involves showing that the 
adaptation mechanism is in approximate equilibrium if and 
only if the agent is in an ABO configuration. In this sense, the 
notion of bounded optimality helps to distinguish correct from 
incorrect adaptation mechanisms. One can imagine that such 
mechanisms could become quite complex, especially when 
they include inductive learning methods for improving the 
agent's knowledge of the environment as well as reinforce
ment learning methods for improving the utility function at 
the object level and metalevel. It is to be expected that the 
topic of agnostic learning [Kearns et a/., 1992], which analy
ses the convergence of inductive learning algorithms working 
in arbitrary environments within a fixed hypothesis language, 
will be an important adjunct to the theory of bounded optimal 
agent design. 

Besides inductive and reinforcement learning, probably the 
most important mechanisms for adaptation are the compi
lation of the results of decision-making into more efficiently 
executable forms and the formation of new abstractions within 
abstraction-based planners. Getting all these architectural de
vices to work together smoothly is an important unsolved 
problem in AI and must be addressed before we can make 
progress on understanding bounded optimality within these 
more complex architectural classes. Extending these devices 
to the decision-theoretic context is also a vital task. 

It has been noted that this gradual accumulation of 
performance-enhancing and scope-enhancing devices such as 
abstraction, partial ordering, first-order expressiveness, and so 
on would lead to the emergence of the LAP, or Long Acronym 
Problem—the spectre of systems with names such as FO-
PLBMLDTHTNIPEMUCPOPMEA (interpretation left to the 
reader). This is an inevitable result of one of the intuitions 
behind bounded optimality, namely that complex system de
signs are needed to overcome computational complexity. As 
mentioned above, the complexity of the design is needed to 
ensure that high-value computations are available to the agent 
whenever possible. If the notion of "architectural device" 
can be made sufficiently concrete, then AI may eventually 
develop a grammar for agent designs, describing the devices 
and their interrelations. As the grammar develops, so should 
the accompanying ABO dominance results. 

The above discussion of adaptation in ABO agents makes 
the simplifying assumption that the adaptation process it-
self is not subject to the requirement of asymptotic bounded 
optimality—the results that would be obtained are "eventu
ally converges to ABO" results. When the architectural class 
within which optimization takes place includes the learning 
mechanism, some very interesting questions arise. For exam
ple, one can imagine that the appropriate initial design for an 
agent will depend on the relationship between the degree of 
variability to be expected in the environment and the size of 
the agent's memory. It is possible that the best strategy is for 
the agent to retain very little in the way of declarative knowl
edge, but to continually compile its experience into reactive 
policies that are expected to be appropriate only in the medium 
term. As the environment changes, the agent might effectively 
rewrite its entire internal state to fit the new world order, re
taining only the basic structure needed to repeat the process in 

the future. With Devika Subramanian, I am planning to inves
tigate the possible paths followed by such an agent viewed as 
a dynamical system with internal state in the form of various 
amounts of compiled and uncompiled knowledge and internal 
processes of inductive learning and compilation. 

My hope is that with these kinds of investigations, it will 
eventually be possible to develop the conceptual and math
ematical tools to answer some basic questions about intel
ligence. For example, why do complex intelligent systems 
(appear to) have declarative knowledge structures over which 
they reason explicitly? This has been a fundamental assump
tion that distinguishes AI from other disciplines for agent 
design, yet the answer is still unknown. Indeed, Rod Brooks, 
Hubert Dreyfus, and others flatly deny the assumption. What 
is clear is that it will need something like a theory of bounded 
optimal agent design to answer this question. 

Most of the agent design features that I have discussed 
here, including the use of declarative knowledge, have been 
conceived within the standard methodology of "first build 
calculative rationality and then speed it up." Yet one can 
legitimately doubt that this methodology will enable the AI 
community to discover all the design features needed for gen
eral intelligence. The reason is that no conceivable computer 
will ever be remotely close to approximating perfect rational
ity for even moderately complex environments. It may well 
be the case that agents based on improvements to calculatively 
rational designs are not even close to achieving the level of 
performance that is potentially achievable given the under
lying computational resources. For this reason, I believe it 
is imperative not to dismiss ideas for agent designs that do 
not seem at first glance to fit into the "classical" calculatively 
rational framework. Instead, one must attempt to understand 
the potential of the bounded optimal configurations within the 
corresponding architectural class, and to see if one can de
sign the appropriate adaptation mechanisms that might help 
in realizing these configurations. 

8 Summary 
I have outlined some directions for formally grounded AI re
search based on bounded optimality as the desired property 
of AI systems. I have suggested that such an approach should 
allow synergy between theoretical and practical AI research 
of a kind not afforded by other formal frameworks. In the 
same vein, I believe it is a satisfactory formal counterpart of 
the informal goal of creating intelligence. In particular, it 
is entirely consistent with our intuitions about the need for 
complex structure in real intelligent agents, the importance of 
the resource limitations faced by relatively tiny minds in large 
worlds, and the operation of evolution as a design optimization 
process. One can also argue that bounded optimality research 
is likely to satisfy better the needs of those who wish to em
ulate human intelligence, because it takes into account the 
limitations on computational resources that are presumably 
responsible for most of the deviation from perfect rationality 
exhibited by humans. 

Bounded optimality and its asymptotic cousin are, of 
course, nothing but formally defined properties that one may 
want systems to satisfy. It is too early to tell whether ABO 
will do the same kind of work for AI that O() complexity has 
done for theoretical computer science. Creativity in design is 
still the prerogative of AI researchers, but it may be possible to 
systematize the design process somewhat and to automate the 
process of adapting a system to its computational resources 
and the demands of the environment. The concept of bounded 
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optimality provides a way to make sure the adaptation process 
is "correct." 

As mentioned in the previous section, there is still plenty of 
work to do in the area of making more general and more robust 
"bricks" from which to construct AI systems for more realistic 
environments, and such work wi l l provide added scope for 
the achievement of bounded optimality. In a sense, under this 
conception AI research is the same now as it always should 
have been. 
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