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Abstract

When learning classifiers, more extensive
seaich for rules is shown to lead to lower prt-
<liftiv( accuracy on many of the leal-world do-
mains investigated Tihs counter-intuitive re
suit is particularly Ichvant to recent system
the seaich methods that use nsk-fiee prun-
ing to achieve the same outcome as exhaustive
search We propose an iterated search method
that commences with greedy search extending
its scope at each aeration until a stopping cri-
terion is satisfied This layered search is often
found to produce theories that are more ac-
curate than those obtained with either gree dy
search or modcratrlv, extensive beam search

1 Introduction

Mitchell [1982] observes that the generalization implicit
in learning from examples can beviewed as a search over
the space of possible theories From this perspective
most machine learning methods carry out a scries of local
searches m the vicinity of tht current theorv selecting
at each stop the most promising improvement Cover-
ing algorithms like AQ [Michalski 1980] CN2 [Clark and
Niblett 1989] and FOnl [Quinlan 1990] add new rules or
Horn clauses to a developing theory divide-and-conquer
methods such as ¢ ARI [Biennan, Friedman, Olshen and
Stone, 1984] and C4 5 [Quinlan, 1993] extend or re-vise a
node of the current theory and selective mstance-based
learners as exemplified by [Cameron-Jones 1992] add an
item to the current set of retained instances

Theory spaces tend to be very large, so even these
local searches must be constrained in the interests of
efficiency  Decision tree methods typically use greedy
search (CART C4 5) or low-plv lookahead {CLS [Hunt,
Marin and Stone, 1966]) while covering methods such as
AQIl and CN2 employ small-width beam search This
limited search is guided by heuristics that are intended
to identify simple theories consistent with the training
set

This research was made possible by a grant from the Aus-
tralian Research Council and assisted by research agreements
with Digital Equipment Corporation

R M
Department of Applied Computing

Cameron-Jones

University of Tasmania
Launceston 7250
Australia
mcameronOleven appcomp utas edu au

In stark contrast to this limited search Murphy and
Pa/7am [1994] tackle the daunting task of generating ill
such consistent decision trees In extensive experiments
with four datasets they find that the smallest trees typ-
ically have lower predictive accuracy than slightly larger
trees, exhaustive search for the simplest consistent the-
ories does not necessarily lead to improvement

Several investigators, notablv [Rvmon 1993 Schhm-
mer 1993 Webb 1993], have recently developed brant h
and-bound systematic search methods that have the
same outcome as exhaustive search Again ths more
extensive search has not led to the discovery of markedly
better theories Rvmon reports non-monotonic improve-
ment using three artificial datasets Webb describes
opus, a system that resembles r N2 Both are covering
algorithms that repeatedly look for a rule with minimal
Laplace predicted error (discussed in Section 2) Despite
the fact that OPI s effectivelv explores all rules whereas
e N2 uses limited beam search the latter finds more pre-
dictive theories on four of the five datasets studied

We believe that these rather discouraging results can
be explained by noting that, for anv collection of train-
ing data there are 'fluke' theories that fil the data well
(according to whatever criterion is employed) but haye
low predictive accuracy When a very large nuinbei of
hypotheses is explored the probability of encountering
sueh a fluke increases Since systematic search has the
same outcome as exhaustive search it will always find
such a fluke if one exists On the other hand heuristic
search explores only a vanishingh small propoition of
the space of theories and so is less likely 10 encounler a
fluke It is commonly held that the construction of the
ones that are more complex than can be justified by the
data leads to poor predictive performance [Breiman 171 al
1984, but see also Schaffer 1993] Overfitting refers to
the construction of a theory tailored to the data that has
high (but misleading) apparent accuracy By analogy we
use the term oversearching to describe the discovery by
extensive search of a theorv that is not necessarily oycr-
complex but whose apparent accuracy is also misleading

In this paper we present empiric al evidence for the
oversearching phenomenon and piopose a partial rem-
ed> First, exploring larger numbers of potential theo-
ries consistently leads to selection of better theories in
only one of twelve domains investigated We deyelop a
simple criterion for deciding whether a rule found after
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some amount of search should be preferred to an appar-
ently superior rule found after more extensive search
This criterion leads to a method for curtailing search
and we rtport results demonstrating the benefits of this
strategy both for finding individual rules and for learn-
ing (omplete theories Fmaly we offer limited evidence
for the proposition that oversearthmg is orthogonal to
overfitting

2 Learning Individual Rules

This paper addresses the familiar propositional formal-
ism in which each item belongs to one of it discrete classes
and is specified by its valess for a fixed collection of at-
tributes [Quulan 1993] The goal is to learn a classifier
from a training set that predicts classes of unseen items
We concentrate on classifiers expressed as a sequence of
rules of the form

if T\ and T2 and and T, then class Cr

where a test T, takes one of four forms Aj=t or A#
for disciete attribute 4, and value v and 4j<for 4_,>/
for continuous attribute 4j and constant threshold ¢

In the first experiment we focus on learning single
rules following Webb [1993] in searching for one thai
minimizes the Laplace predicted error Define the true
error rate of a rule as the probabihty that an item that
satisfies the rule's left-hand side does not belong to the
class given bv its right-hand side |If a rule such as the
above is satisfied b\ n training items c¢ of which belong
to classes other than the class C, nominated bv its right-
hand side the estimated error rate of the rule on unseen
items is given bv

f+A-1

8710 = Lk

where k is again the number of classes

To show the effects of increasing amounts of search
rules art found with beam search of width u varving
exponentially from 1 to 512 For a given class C, the
initial beam at level 1 consists of tht w single tests that
have the lowest Laplace error rate as abovt At each
subsequent level with up to u conjuncts in the current
beam all wa\s of extending each conjunct with an addi
tional test are considered and the bestn ofthem retained
for the next beam

Notice that we can prune some combinations of tests
without adding them to the beam If a conjunct R
matches n training items with e errors, adding further
tests to R can only make it more specific and thereby de-
crease the number of items that it covers An> conjunct
of the form R and S can thus do no better than match
n-t items with no errors Unless £(TW,0) IS less than
the Laplace error estimate of the best conjunct found so
far, no descendant of R could ever improve on this best
conjunct allowing R to be discarded

Search proceeds until the current beam is empty,
whereupon the best conjunct found so far becomes tht
left-hand side of the rule for Cy

We have carried out experiments on twelve real-world
datasets from the UCI Repository that are described in
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Items | Classes | Attributes
breast cancer 286 2 4c ad
house voting 435 2 16d
lymphography 148 4 18d
primary tumor 339 21 17d
auto msurance 205 6 14¢ 10d
chess cudgame 551 2 39d
credht approval 690 2 G6c 9d
glass 214 T ity
hepatitis 155 2 6 13d
Pima diahetes 768 2 B
promoters 106 2 57d
sovbean 683 19 35d

Table 1 Datawets used in the (xporume nts

Table 1 the hrst four being tht real-world domains stuc
led bv Webb The size of each datasct the number i
classes and the numhers of discrete (d) and eontirn
ous (() attributes are shown The following trial we
repeated 500 times for each dataset

Split the data randomly into 50% trainnig and
50% test sets making the class distributions
as uniform as possible

For beam widths u = 1 2 4 §12
For each class in turn
Identify the rule with lowest £
dunnq a beam search of width u
Determine the rule s error rate on the
test set

value found

Results of the se expe rime nts appear in Figure 1 in whre
error rates are plotted against beam width These <
ror rates are weighted averages across the classes tl
weights being the class relative frequencies in The trail
ing set Tht dotted lines in each graph show the ave
age £ values of tht rults selected without cxceplmi
£ values decline with beam width as more e xtcnsiy
search discovers rules with lower predicted error rate
The solid lines however, show the average true erre
rate of the rules as measured on the unseen test dat.
(The vertical bars show one standard error either sir
of the mean, the open circles flag the beam corrcspone
ing to the lowest true error rate and the asterisks ai
explained in the next section ) As can be seen the hi
havior of tht true error rate is quite unlike that of tr
estimated rate £ With some datasets such as the pre
moter domain, increasing search first lowers the true e
ror rate, then causes it to rise, an example of the san
non-monotonicity observed bv Rymon [1993] On oth<
domains such as hepatitis, more extensive search is un
formly counter-productive Only for the glass datasi
does the true error rate of the selected rule decline nea
monotomcally with increased search

To understand what is going on, we examine in moi
detail the chess endgame dataset, a particularly strikin
example of non-monotonicity Separating results for the
two classes (Figure 2), we can see that good rules ft
the majority class are found from the complete datase
with relatively small beam widths and thereafter in
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Figure 1 Effects of varving beam width

provenent is slight The | shape of the curve is due
to th( mnioritv class fur wihch a marked change occurs
at beam width 1G

In one typical tral search at beam width 8 finds a con-
junction of three tests (R7) that is satisfied h\ 18 items
of the minority class and none of the other class Fur-
ther specialization of Ri can only decrease its cover and
hence its £ value Howe\er there is also a conjunction of
five tests (R,) that covers 32 items of the minority class
and 7 items of the other class Now, in order to discover
a rule with left-hand side T1 and T, and and T, the
beam at level i must contain at least one conjunction oft
of these tests for all values of z from 1 to n-/ Conjunct
R, is difficult to find because no single test or pair of
tests has a low £ value For this trial the £ value of the
best single test ranks sixth among all single tests so R2
is eliminated unless the beam width is at least G The

best combination of two of the fi\e tests has an £ \alut
that ranks thirteenth among all two-test combinations
so the beam width needs to be al least 13 if R2 is not
to be eliminated at the second le\el of the beam search
Once it is found however the large number of attnbules
in this domain allows R2 to be refined b\ the addition
of seven further tests giving a rule R; that covers 30
nems without error In terms of the £ measure, R; has
a lower predicted error than R\ and so is preferred

When evaluated on the test data howevei the com
plex rule Ra misclassifies five items of the 31 that it
matches, approximately the same error rate as the con-
junct R2 from which it was derived On the other hand,
the rule R1 is more accurate, misclassifving one of the
thirteen items that it covers Increasing the beam width
from 8 to 16 allows the "fluke' Ra to be discovered with
a consequent increase in the error rate
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Figure 2 Chess endgame showing individual classe,

3 Selecting a Beam Width

Having e-stabhshed that extensive search can lead to less
accurate rules we now discuss a method for limiting
search

For the domains of Figure 1, the most accurate rule is
often found with a beam width w greater than 1 (where
u=l corresponds to greedy search) but less than 512
taken here as an approximation to exhaustive search
Suppose now that a layered search were conducted b\
starting with u<=\ and doubling the beam width at each
iteration Could we select the appropriate beam width
so as to obtain the most accurate rule' This decision
clearly cannot be made with reference to the £ \alue
alone since this alwas decreases with further search

The following probabilistic argument was inspired b\
the famous Occam paper [Blumer Ehrenfeucht Haus-
sltr and Warmuth, 1987] If the true error rate of a rule
is r the probability that the rule will give no more than
e errors m n trials is given bv

(oo

i=0

P(TLFT]:

If then art h rules all having an error rate of r or inore
the probability that an\ one of them will give e or less
errors in n trials is at most h x P(n ¢ r} whether or not
the rules are independent

Now let h, denote the number of rules examined dur-
ing the search with beam width u, and let r, satisfy

hy % Plr, e, ) =05

If all these rules had error rate greater than or equal to
TV there would be up to an even chance that one of
them would give no more than r, errors in n, trials
We use this value of r,, as a gut estimate of t he accuracy
of the best rule selected from the h, candidates As w
takes on the values 12 4 the corresponding values of
h,,, n, and e,, can be determined and the value of r,
computed We take the overall best rule to be that for
which r, is minimal

There are numerous over-simplifications m this argu
ment For instance, it ignores the effect of beam selection
at each level search for the rule with minimal £ value
is guided bv the C values of partial rules, so that the

1022 LeARNING

mnority clase (26%)

l:ml 2 4 81632 128 512

Beam Items Rules Computed
Width | Covered Examined | Estimatc
w €y Thu fa Tw
1 { 10 168 {1 441
2 0 17 330 0317
q 0 21 699 0292
B 0 21 1265 0311
16 0 23 2771 313
32 0 23 4758 {329
64 0 23 Ti58 0 341
128 0 23 11768 0354
256 0 23 17417 0 365
512 0 23 24902 0375

Table 2 Selecting beam width

kcy errors in n, trials is not a fair experiment Agam
'number of rules examined' is an imprecise concept
manv putatile rules cover no examples and some inks
are pruned as described in See tion 2 For these expel
iments h, is taktn as the number of distinct altiibuu
combinations considered during search on the basis that
for each such combination there will be some test on ev-
ery selected attribute that minimizes the inle s £ value
Table 2 illustrates the values for the positive class of
the promoters dataset in one trial Greedy searc h finds
a rule that covers 10 items without error Inecreading tin
beam width to 2 causes a larger number of mles to be
examined but vields a better rule covering 17 items still
better rules are found at beam widths 4 and 1G |In the
latter case the number of rules examined mcieases (lie
chance that the rule is a fiuke as reflected by its highe |

r, value The rule encountered at beam width =4 is
consequently chosen as the overall best
We can now explain the asterisks in Figure 1 \| each

trial and for each class a best beam width is selected
as above using only the training data The astensk null
rates the average beam width selec te d and the neiage of
the corresponding error rates on the unseen test data '
With the notable exceptions of the chess endgame md
glass datasets, the average beam widths chosen arc iu ai
the lowest points on the curves, piovidmg some empiric L1
support for the beam width selec tion strategv

4 Learning Complete Classifiers

The search for individual rules can be extended to learn
complete classifiers using the standard covering method
[Michalski 1980]

For each class Cy, in tumn

Mark all items of class Cr as uncovered

While uncovered items of class Cy remain
Find and retain the best rule
Mark as covered all class C, items that

satisfy the rule

The asterisk will not normally he on the solid curve be-
cause the beam width selected varies from class to class and
from trial to trial



Error Rate (%n) MNumber of Rules Theory Size Time {secs)
GS LS ES GS LS ES GS LS ES GS LS ES

breast cancer 28 8 28 8 291 430 204 260 1329 1064 1012 01 15 134
hoiiiie voting 57 56 57 143 109 10t 375 A7 33| 01 04 111
lymphography | 221 189 190 | 144 104 95| 336 301 301 00 02 65
primary tumor | 583 585 583l s08 533 459 || 2605 2560 2346 || 02 20 544
auto insurance | 314 311 314 || 334 187 142 701 575 586 | D2 27 254
chess. endgame | 107 103 104 440 289 273 | 1307 1122 mav 03 47 1509
(rrdiL approval | 167 164 164 || 585 317 250 | 1619 1209 11At 04 102 646
glass 62 341 332 273 181 156/ 742 598 565 01 11 80
hepatitis 181 191 200 13 194 94 297 270 279 01 04 18
Pima diabetes | 259 269 272 ( 93 501 4431 3012 2074 2087 08 148 341
promoters 274 246 288 B3 55 41 164 135 141 o0 02 12
soybean 117 124 130 354 356% 295 ) 1124 1089 0BG || D4 24 BT3B

Ratio to LS ™73 Taggg 1084 | 1486 f000 &7 | 1197 1000 0987 | 010 100 1740

Table 3 Results with greedv (GS)

When (leterunning the best rule above onl\ uncovered
items. of class C; and all items of other classes are con-
sidtrcd  Whereas Wirbh [1993] finds the rule with the
guaranteed lowest C value at each iteration, we use the
best ruk encountered I)\ three kinds of h( unstir seaich

GS Greed\ search with beam width it =1

LS Layered seanh witli beam widths u=1, 2 4, 8 and
so on ro a maximum of 512 For (cach beam width
the rule with lowest L value entountcrcd during
searrh is iftamed and its i, value determined the

layered (LS)

and extensive (ES) search

than ES in 2927 trials and worse in 2438
are significant at better than p=0 0001
The ratio to LS figures in the final row g ve an
overview across the twelve domains each is the aver-
age ratio of a result to that for layered search For these
datasets, the theories found using LS have less than 98%
of the error of those produced b\ either greedy or exten-
sive search LS requires 10 times as much computation
as GS but the absolute difference is small since the lat-
ter is so economical Extensive search (where u is hxed
at 512) is 170 times slower than greedy search and 17

both results

DVERALL bestrailbestrule bemg the ond ofthese withlowes§mes siower than layered search even though the latter

r, Th( layered se-inh is terminated whenever two
successive valuesof in fail lo improve on the best
valu( of , found so far

ES Fxtuisive seairh Willi fixed beam width w=512
again taken to appioxnnate exhaustive search

An unsern item is classified by the ruleset b\ finding the
rule with lowest £ value that matches it then assigning
the item to the class speufied in that ruk s right-hand
side item that satisfies no rule is assigned the most
frequent class observed in the training set

The experimental design was similar to that described
m Secttion 2 for each dataset 500 trials were conducted
splitting the data into stratified equal-sized training and
test sets Three classifiers were constructed from the
training set using greedy (GS) layered (LS) and exten-
sive (ES} search, respectively and each clabsiher evalu-
ated on the test set Results averaged over the 500 rep-
etitions appear in Table 3 A. simple indicator of theorv
complexity is provided by theory size, the total number
of tests in all rules Times are for a DEC AXP 3000/800
workstation

Those error rates for GS and ES shown in bold face
are significantly? different from LS Layered search is sig-
nificantly better than greexly search in five domains and
worse in three When compared with extensive search
layered search is significantly better in six domains and
worse in only one Over the 6000 trials, LS is better than
GS in 2822 trials and worse in 2534, while it is better

2Two-tailed sign test p=0 05

requires repeated search with increasing beam widths

5 Theory Complexity and Search

Discussion of the chess endgame example in Section 2
might suggest that this problem is just another instance
of overfittmg extensive search is leading to the con-
struction of elaborate rules Existing mechanisms for
ovrrfitting avoidance such as Rissanen s Minimum DP
scnptiom Principle [Quininlan and Rivest, 1989 Cameron
Jones, 1992], might thus be sufficient to prevent the
choice of rules with low predictive accuracy We offer
two arguments against this hypothesis

\s can be seen in Table 3 ranking the search methods
by the complexity of the theory produced does not cor-
relate well with the accuracy of the theories Although
ES often finds more complex individual rules this com-
plexity is counterbalanced by their increased coverage
Extensive search results in complete theories that arc
simpler than those found by layered search and much
simpler (20%) than those produced with greedy search
Yet on average the FS theories are less accurate than
their LS counterparts and have similar accuracy to the
GS theories

The second is empirical based on preliminary e\
penments that assess the impact of oversearchmg on
instances-based learning For these trials a classifier con-
sists of a subset of the training items, with an unseen
item assigned to the class of the most similar retained
item All classifiers for a domain are constrained to ron-
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sist of exactly the same number m of retained items,
so that all theories have identical complexity Beam
searches of various widths are again carried out, this
time to find the m items that give the lowest classifi-
cation error on the training set Results with the same
twelve datasets are reminiscent of Figure 1 increased
search leads to better and better sets of retained items as
assessed on the training data, but the classifier s perfor-
mance on unseen test data exhibits either a continuous
decline or a | -shaped curve in six of the twelve domains

6 Conclusion

This paper provides further evidence that more search
does not necessarily result in better learned theories
In most of the domains studied litre expanding search
leads eventually to a decline in predictive accuracy as
idiosvncrasies of the training set are uncovered and ex-
ploited Thus phenomenon of oversearching has also been
observed in other domains andindexed with at least one
other heuristic criterion "*

For the twelve datasets reported here an iterative lav-
ered search with beam width limited bv a probabilistic
criterion r, was found to have better overall performance
than either greedy or extensive search Even so, the ar-
gument that underpins the derivation of ther, value
and thereby selection of the best" beam width, is sim-
plistic and we arc confident that a better criterion can
be developed

We believe that oversearching cannot be controlled bv
complexity-based mechanisms such as the MDL prin
ciple, the disadvantages of oversearching seem to be
somehow orthogonal to problems of overfitting MDL is
nghtlv popular because it provides a well-justified frame-
work for mapping apparent accuracv and theory com
pltxitv into a uniform measure based on coding length
Ideallv we would like to see oversearching dealt with in
a similarly clean manner by the development of a single
metric that embodies all three factors accuracy, theory
complexity and extent of search
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®In place of the Laplace estimate we have also tried a
confidence limit function UCF [Quinlan, 1993, page 41] This
function turns out to be even more susceptible to coincidences
in the training data, a majority of the domains discussed
here show a monotonic decrease in predictive accuracv with
increased beam width
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