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Abstract 

When learning classifiers, more extensive 
seaich for rules is shown to lead to lower prt-
<liftiv( accuracy on many of the leal-world do­
mains investigated Tihs counter-intuitive re 
suit is particularly lchvant to recent system 
the seaich methods that use nsk-fiee prun­
ing to achieve the same outcome as exhaustive 
search We propose an iterated search method 
that commences with greedy search extending 
its scope at each aeration until a stopping cri­
terion is satisfied This layered search is often 
found to produce theories that are more ac­
curate than those obtained with either gree dy 
search or modcratrlv, extensive beam search 

1 Introduction 
Mitchell [1982] observes that the generalization implicit 
in learning from examples can beviewed as a search over 
the space of possible theories From this perspective 
most machine learning methods carry out a scries of local 
searches m the vicinity of tht current theorv selecting 
at each stop the most promising improvement Cover­
ing algorithms like AQ [Michalski 1980] CN2 [Clark and 
Niblett 1989] and FOnl [Quinlan 1990] add new rules or 
Horn clauses to a developing theory divide-and-conquer 
methods such as c ARI [Biennan, Friedman, Olshen and 
Stone, 1984] and C4 5 [Quinlan, 1993] extend or re-vise a 
node of the current theory and selective mstance-based 
learners as exemplified by [Cameron-Jones 1992] add an 
item to the current set of retained instances 

Theory spaces tend to be very large, so even these 
local searches must be constrained in the interests of 
efficiency Decision tree methods typically use greedy 
search (CART C4 5) or low-plv lookahead {CLS [Hunt, 
Marin and Stone, 1966]) while covering methods such as 
A Q l l and CN2 employ small-width beam search This 
limited search is guided by heuristics that are intended 
to identify simple theories consistent with the training 
set 
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In stark contrast to this l imited search Murphy and 
Pa/7am [1994] tackle the daunting task of generating i l l 
such consistent decision trees In extensive experiments 
with four datasets they find that the smallest trees typ­
ically have lower predictive accuracy than slightly larger 
trees, exhaustive search for the simplest consistent the­
ories does not necessarily lead to improvement 

Several investigators, notablv [Rvmon 1993 Schhm-
mer 1993 Webb 1993], have recently developed brant h 
and-bound systematic search methods that have the 
same outcome as exhaustive search Again ths more 
extensive search has not led to the discovery of markedly 
better theories Rvmon reports non-monotonic improve­
ment using three artificial datasets Webb describes 
opus, a system that resembles r N2 Both are covering 
algorithms that repeatedly look for a rule with minimal 
Laplace predicted error (discussed in Section 2) Despite 
the fact that OPl s effectivelv explores all rules whereas 
e N2 uses limited beam search the latter finds more pre­
dictive theories on four of the five datasets studied 

We believe that these rather discouraging results can 
be explained by noting that, for anv collection of train­
ing data there are 'fluke1 theories that fil the data well 
(according to whatever criterion is employed) but haye 
low predictive accuracy When a very large nuinbei of 
hypotheses is explored the probability of encountering 
sueh a fluke increases Since systematic search has the 
same outcome as exhaustive search it wil l always find 
such a fluke if one exists On the other hand heuristic 
search explores only a vanishingh small propoition of 
the space of theories and so is less likely 1o encounler a 
fluke It is commonly held that the construction of the 
ones that are more complex than can be justified by the 
data leads to poor predictive performance [Breiman 11 al 
1984, but see also Schaffer 1993] Overfitting refers to 
the construction of a theory tailored to the data that has 
high (but misleading) apparent accuracy By analogy we 
use the term oversearching to describe the discovery by 
extensive search of a theorv that is not necessarily oycr-
complex but whose apparent accuracy is also misleading 

In this paper we present empiric al evidence for the 
oversearching phenomenon and piopose a partial rem-
ed> First, exploring larger numbers of potential theo-
ries consistently leads to selection of better theories in 
only one of twelve domains investigated We deyelop a 
simple criterion for deciding whether a rule found after 
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some amount of search should be preferred to an appar­
ently superior ru le found after more extensive search 
Th is c r i te r ion leads to a me thod for cu r ta i l i ng search 
and we r t p o r t results demons t ra t ing the benefits of th is 
strategy bo th for f inding i nd i v i dua l rules and for learn­
ing (omplete theories Fma ly we offer l im i t ed evidence 
for the proposi t ion that oversear thmg is or thogonal to 
overfitting 

2 Learning Individual Rules 
This paper addresses the fami l ia r p ropos i t iona l fo rmal ­
ism in which each i tem belongs to one of it discrete classes 
and is specified by its valess for a fixed col lect ion of at­
t r ibutes [ Q u u l a n 1993] The goal is to learn a classifier 
f r om a t ra in ing set that predicts classes of unseen i tems 
We concentrate on classifiers expressed as a sequence of 
rules of the f o rm 

if T\ and T2 and and Tu then class CT 

where a test T, takes one of four forms A j = t or A# 
for disciete a t t r i bu te 4, and value v and 4 j < f o r 4_,>/ 
for cont inuous a t t r ibu te 4j and constant th resho ld t 

In the f irst exper iment we focus on learn ing single 
rules fo l lowing Webb [1993] in searching for one tha i 
min imizes the Laplace pred ic ted error Define the t rue 
error rate of a rule as the p robab ih ty t ha t an i tem tha t 
satisfies the rule's le f t -hand side does not belong to the 
class given bv its r i gh t -hand side If a rule such as the 
above is satisfied b\ n t r a i n ing i tems c of wh ich belong 
to classes other than the class Cx nomina ted bv its r igh t -
hand side the est imated error rate of the rule on unseen 
i tems is given bv 

£{71 C) = 
f + A- - 1 

n + k 
where k is again the number of classes 

To show the effects of increasing amounts of search 
rules art found w i t h beam search of w i d t h u varv ing 
exponent ial ly f rom 1 to 512 For a given class Cr the 
in i t i a l beam at level 1 consists of th t w single tests that 
have the lowest Laplace error rate as abovt A.t each 
subsequent level w i t h up to u conjuncts in the current 
beam al l wa \ s of ex tend ing each conjunct w i t h an addi 
t ional test are considered and the bestn of them retained 
for the next beam 

Not ice that we can prune some combinat ions of tests 
w i thou t add ing t h e m to the beam If a con junct R 
matches n t r a i n ing i tems w i t h e errors, add ing fu r the r 
tests to R can only make it more specific and thereby de­
crease the number of i tems tha t i t covers An> con junc t 
of the f o rm R and S can thus do no bet ter t han match 
n-t i tems w i t h no errors Unless £ ( T W , 0 ) IS less t han 
the Laplace error est imate of the best conjunct found so 
far, no descendant of R could ever improve on th is best 
con junct a l lowing R to be discarded 

Search proceeds un t i l the current beam is empty, 
whereupon the best con junct found so far becomes t h t 
le f t -hand side of the rule for Cx 

We have carr ied out exper iments on twelve rea l -wor ld 
datasets f r om the U C I Reposi tory t ha t are described in 

Table 1 the hrst four being t h t rea l -wor ld domains stuc 
led bv Webb The size of each datasct the number i 
classes and the numhers of discrete (d) and eontirn 
ous (() a t t r ibu tes are shown The fo l lowing t r ia l we 
repeated 500 t imes for each dataset 

Split the data randomly into 50% trainnig and 
50% test sets making the class distributions 
as uniform as possible 

For beam widths u = 1 2 4 §12 
For each class in turn 

Identify the rule with lowest £ value found 
dunnq a beam search of width u 
Determine the rule s error rate on the 
test set 

Results of the se expe rime nts appear in F igure 1 in whre 
error rates are p lo t ted against beam w i d t h These < 
ror rates are weighted averages across the classes tl 
weights being the class re lat ive frequencies in The t ra i l 
ing set Th t do t ted lines in each graph show the ave 
age £ values of th t r u l t s selected w i t h o u t cxcep lmi 
£ values decline w i t h beam w i d t h as more e xtcnsiy 
search discovers rules w i t h lower pred ic ted error rate 
The sol id lines however, show the average t rue erre 
rate of the rules as measured on the unseen test dat . 
(The ver t ica l bars show one s tandard error either sir 
of the mean, the open circles f lag the beam corrcspone 
ing to the lowest t rue error rate and the asterisks ai 
expla ined in the next section ) As can be seen the hi 
havior of t h t t rue error rate is qui te unl ike t ha t of t r 
es t imated ra te £ W i t h some datasets such as the pre 
mote r doma in , increasing search f i rst lowers the t rue e 
ror ra te , then causes i t to rise, an example of the san 
non-mono ton ic i t y observed bv R y m o n [1993] On oth< 
domains such as hepat i t i s , more extensive search is un 
f o r m l y counter -p roduc t ive O n l y for the glass datasi 
does the t rue error rate of the selected ru le decline nea 
mono tomca l l y w i t h increased search 

To unders tand wha t is go ing o n , we examine in moi 
deta i l the chess endgame dataset , a pa r t i cu la r l y s t r i k in 
example of non-mono ton ic i t y Separat ing results for the 
two classes (F igure 2) , we can see t ha t good rules ft 
the m a j o r i t y class are found f r o m the complete datase 
w i t h re la t ive ly smal l beam w id ths and thereafter in 
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provenent is slight The I shape of the curve is due 
to th( mnioritv class fur wihch a marked change occurs 
at beam width 1G 

In one typical tral search at beam width 8 finds a con­
junction of three tests (R1) that is satisfied h\ 18 items 
of the minority class and none of the other class Fur­
ther specialization of Ri can only decrease its cover and 
hence its £ value Howe\er there is also a conjunction of 
five tests (R2) that covers 32 items of the minority class 
and 7 items of the other class Now, in order to discover 
a rule with left-hand side T1 and T2 and and Tn, the 
beam at level i must contain at least one conjunction o f t 
of these tests for all values of z from 1 to n-l Conjunct 
R2 is difficult to find because no single test or pair of 
tests has a low £ value For this tr ial the £ value of the 
best single test ranks sixth among all single tests so R2 
is eliminated unless the beam width is at least G The 

best combination of two of the fi\e tests has an £ \alut 
that ranks thirteenth among all two-test combinations 
so the beam width needs to be al least 13 if R2 is not 
to be eliminated at the second le\el of the beam search 
Once it is found however the large number of attnbules 
in this domain allows R2 to be refined b\ the addition 
of seven further tests giving a rule R3 that covers 30 
nems without error In terms of the £ measure, R3 has 
a lower predicted error than R\ and so is preferred 

When evaluated on the test data howevei the com 
plex rule Ra misclassifies five items of the 31 that it 
matches, approximately the same error rate as the con­
junct R2 from which it was derived On the other hand, 
the rule R1 is more accurate, misclassifving one of the 
thirteen items that it covers Increasing the beam width 
from 8 to 16 allows the "fluke' Ra to be discovered with 
a consequent increase in the error rate 
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3 S e l e c t i n g a B e a m W i d t h 

Hav ing e-stabhshed that extensive search can lead to less 
accurate rules we now discuss a method for l i m i t i n g 
search 

For the domains of F igure 1, the most accurate rule is 
of ten found w i t h a beam w i d t h w greater than 1 (where 
u=l corresponds to greedy search) but less than 512 
taken here as an app rox ima t i on to exhaust ive search 
Suppose now that a layered search were conducted b\ 
s ta r t i ng w i t h u<=\ and doub l ing the beam w i d t h at each 
i te ra t ion Cou ld we select the appropr ia te beam w i d t h 
so as to ob ta in the most accurate r u l e ' Th i s decision 
clearly cannot be made w i t h reference to the £ \alue 
alone since this a l w a s decreases w i t h fur ther search 

The fo l lowing probabi l is t ic argument was inspi red b\ 
the famous Occam paper [B lumer Ehrenfeucht Haus-
s l t r and W a r m u t h , 1987] If the true error rate of a rule 
is r the probab i l i t y tha t the rule w i l l give no more than 
e e rrors m n t r ia ls is given bv 

i = 0 

If then art h rules all having an error rate of r or inore 
the probability that an\ one of them will give e or less 
errors in n trials is at most whether or not 
the rules are independent 

Now let hu denote the number of rules examined dur­
ing the search with beam width u, and let r„ satisfy 

If all these rules had error rate greater than or equal to 
TV there would be up to an even chance that one of 
them would give no more than ru errors in nu trials 
We use this value of ru, as a gut estimate of t he accuracy 
of the best rule selected from the hy candidates As w 
takes on the values 12 4 the corresponding values of 
hu,, nv and e„, can be determined and the value of rw 

computed We take the overall best rule to be that for 
which ru is minimal 

There are numerous over-simplifications m this argu 
ment For instance, it ignores the effect of beam selection 
at each level search for the rule with minimal £ value 
is guided bv the C values of partial rules, so that the 

k c u errors in n„ t r ia ls is not a fa ir exper iment Agam 
'number of rules examined ' is an imprecise concept 

manv p u t a t i \ e rules cover no examples and some i n k s 
are p runed as described in See t ion 2 For these expel 
iments hu is t a k t n as the number of dist inct a l t i i b u u 
combinat ions considered d u r i n g search on the basis that 
for each such comb ina t ion there w i l l be some test on ev-
ery selected a t t r i b u t e that min imizes the inle s £ value 

Table 2 i l lust rates the values for the positive class of 
the promoters dataset in one t r ia l Greedy searc h finds 
a rule tha t covers 10 i tems w i t h o u t error Inecreading t in 
beam w i d t h to 2 causes a larger number of mles to be 
examined but vields a bet ter rule cover ing 17 items st i l l 
bet ter rules are found at beam w id ths 4 and 1G In the 
la t ter case the number of rules examined mcieases (lie 
chance tha t the rule is a f iuke as reflected by its highe I 
r „ value The rule encountered at beam w i d t h =4 is 
consequently chosen as the overal l best 

We can now exp la in the asterisks in Figure 1 \\ each 
t r ia l and for each class a best beam w i d t h is selected 
as above using only the t ra in ing da ta The astensk nul l 
rates the average beam w i d t h selec te d and the neiage of 
the corresponding error rates on the unseen test da ta ' 
W i t h the notable exceptions of the chess endgame md 
glass datasets, the average beam w id ths chosen arc iu ai 
the lowest po ints on the curves, p i o v i d m g some empiric L1 
suppor t for the beam w i d t h selec t ion strategv 

4 Learn ing Complete Classifiers 
The search for i nd i v idua l rules can be extended to learn 
complete classifiers using the s tandard cover ing method 
[Michalsk i 1980] 

For each class Cx in turn 
Mark all items of class CT as uncovered 
While uncovered items of class Cx remain 

Find and retain the best rule 
Mark as covered all class Cx items that 
satisfy the rule 

The asterisk wi l l not normally he on the solid curve be-
cause the beam width selected varies from class to class and 
from tr ia l to tr ia l 
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breast cancer 
hoiiiie voting 
lymphography 
primary tumor 
auto insurance 
chess. endgarne 
(rrdiL approval 
glass 
hepatitis 
Pima diabetes 
promoters 
soybean 

Ratio to LS 

Tab le 3 Results wi th greedv (GS) layered (LS) and extensive (ES) search 

When (leterunning the best rule above onl\ uncovered 
items. of class CT and all items of other classes are con-
sidtrcd Whereas Wlrbh [1993] finds the rule with the 
guaranteed lowest C value at each iteration, we use the 
best ruk encountered l)\ three kinds of h( unstir seaich 

GS Greed\ search with beam width 
LS Layered seanh wit l i beam widths u = 1 , 2 4, 8 and 

so on ro a maximum of 512 For (cach beam width 
the rule with lowest L value entountcrcd during 
searrh is if tamed and its i„ value determined the 
DVERALL best rail best rule bemg the ond of these with lowest 
r„ Th( layered se-inh is terminated whenever two 
successive valuesof in fail lo improve on the best 
valu( of „ found so far 

ES Fxtuisive seairh Willi fixed beam width w=512 
again taken to appioxnnate exhaustive search 

An unsern item is classified by the ruleset b\ finding the 
rule with lowest £ value that matches it then assigning 
the item to the class speufied in that ruk s right-hand 
side item that satisfies no rule is assigned the most 
frequent class observed in the training set 

The experimental design was similar to that described 
m Secttion 2 for each dataset 500 trials were conducted 
splitting the data into stratified equal-sized training and 
test sets Three classifiers were constructed from the 
training set using greedy (GS) layered (LS) and exten­
sive (ES} search, respectively and each clabsiher evalu­
ated on the test set Results averaged over the 500 rep­
etitions appear in Table 3 A. simple indicator of theorv 
complexity is provided by theory size, the total number 
of tests in all rules Times are for a DEC AXP 3000/800 
workstation 

Those error rates for GS and ES shown in bold face 
are significantly2 different from LS Layered search is sig­
nificantly better than greexly search in five domains and 
worse in three When compared with extensive search 
layered search is significantly better in six domains and 
worse in only one Over the 6000 trials, LS is better than 
GS in 2822 trials and worse in 2534, while it is better 

2Two-tai led sign test p=0 05 

than ES in 2927 tr ia ls and worse in 2438 bo th results 
are signif icant a t be t te r t han p = 0 0001 

The rat io to LS figures in the final row g ve an 
overview across the twelve domains each is the aver­
age ra t io of a result to that for layered search For these 
datasets, the theories found using LS have less than 98% 
of the error of those produced b\ ei ther greedy or exten­
sive search LS requires 10 t imes as much computa t ion 
as GS bu t the absolute difference is smal l since the lat­
ter is so economical Extensive search (where u is hxed 
at 512) is 170 t imes slower than greedy search and 17 
t imes slower than layered search even though the la t ter 
requires repeated search w i t h increasing beam w id ths 

5 Theory Complexity and Search 
Discussion of the chess endgame example in Section 2 
migh t suggest that this p rob lem is just another instance 
of over f i t tmg extensive search is leading to the con­
s t ruc t ion of e laborate rules Ex i s t i ng mechanisms for 
o v r r f i t t i n g avoidance such as Rissanen s M i n i m u m DP 
scnpt iom Pr inc ip le [Quinlnlan and Rivest , 1989 Cameron 
Jones, 1992], m igh t thus be sufficient to prevent the 
choice of rules w i t h low predict ive accuracy We offer 
two arguments against th is hypothesis 

\s can be seen in Table 3 rank ing the search methods 
by the complexi ty of the theory produced does not cor-
relate wel l w i t h the accuracy of the theories Al though 
ES often f inds more complex i nd i v i dua l rules this com­
plexi ty is counterbalanced by their increased coverage 
Extens ive search results in complete theories t ha t arc 
s impler t h a n those found by layered search and much 
s impler (20%) t h a n those produced w i t h greedy search 
Yet on average the FS theories are less accurate than 
the i r LS counterpar ts and have s imi lar accuracy to the 
GS theories 

The second is empi r ica l based on prel iminary e\ 
penments tha t assess the impact of oversearchmg on 
instances-based learn ing For these tr ia ls a classifier con­
sists of a subset of the t ra in ing i tems, w i t h an unseen 
i t e m assigned to the class of the most s imi lar reta ined 
i t e m A l l classifiers for a domain are constrained to ron -
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sist of exactly the same number m of retained items, 
so that all theories have identical complexity Beam 
searches of various widths are again carried out, this 
time to find the m items that give the lowest classifi­
cation error on the training set Results with the same 
twelve datasets are reminiscent of Figure 1 increased 
search leads to better and better sets of retained items as 
assessed on the training data, but the classifier s perfor­
mance on unseen test data exhibits either a continuous 
decline or a I -shaped curve in six of the twelve domains 

6 Conclusion 
This paper provides further evidence that more search 
does not necessarily result in better learned theories 
In most of the domains studied l i tre expanding search 
leads eventually to a decline in predictive accuracy as 
idiosvncrasies of the training set are uncovered and ex­
ploited Thus phenomenon of oversearching has also been 
observed in other domains and indexe d with at least one 
other heuristic criterion "* 

For the twelve datasets reported here an iterative lav-
ered search wi th beam width limited bv a probabilistic 
criterion ru was found to have better overall performance 
than either greedy or extensive search Even so, the ar­
gument that underpins the derivation of t h e r u value 
and thereby selection of the best" beam width, is sim­
plistic and we arc confident that a better criterion can 
be developed 

We believe that oversearching cannot be controlled bv 
complexity-based mechanisms such as the MDL prin 
ciple, the disadvantages of oversearching seem to be 
somehow orthogonal to problems of overfitting MDL is 
nghtlv popular because it provides a well-justified frame­
work for mapping apparent accuracv and theory com 
pltxitv into a uniform measure based on coding length 
ldeallv we would like to see oversearching dealt with in 
a similarly clean manner by the development of a single 
metric that embodies all three factors accuracy, theory 
complexity and extent of search 
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3In place of the Laplace estimate we have also tried a 
confidence limit function UCF [Quinlan, 1993, page 41] This 
function turns out to be even more susceptible to coincidences 
in the training data, a majority of the domains discussed 
here show a monotonic decrease in predictive accuracv with 
increased beam width 
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