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Abstract 

Probabil istic networks which provide compact 
descriptions of complex stochastic relationships 
among several random variables are rapidly be­
coming the tool of choice for uncertain reason­
ing in artif icial intelligence We show that net­
works wi th fixed structure containing hidden vari­
ables can be learned automatically f rom data using 
a gradient-descent mechanism similar to that used 
in neural networks We al io extend the method 
to networks wi th intensionally represented d is t r i ­
butions, inc luding networks wi th continuous vari­
ables and dynamic probabil ist ic networks Because 
probabil ist ic networks provide expl ici t representa­
tions of causal structure human experts can easily 
contribute pnor knowledge to the training process, 
thereby signif icantly improving the learning rate 
Adaptive probabilistic networks (APNs) may soon 
compete directly w i th neural networks as models in 
computational neuroscience as wel l as in industrial 
and financial applications 

1 Introduction 
Intel l igent systems whether biological or artif icial require the 
abi l i ty to make decisions under uncertainty using the avail­
able evidence Several computational models exhibit some 
of the required funct ional i ty For example, neural networks 
which represent complex input/output relations using combi ­
nations of simple nonlinear processing elements are a famil iar 
tool in AI and computational neuroscience Probabilistic net­
works (also called belief networks or Bayesian networks) are 
a more expl ici t representation of the jo in t probabi l i ty distr ibu­
t ion characterizing a problem domain providing a topological 
description of the causal relationships among variables 

Computational models in AI are judged by two main c r i ­
teria ease of creation and effectiveness in decision making 
(Cognit ive science and neuroscience add the criterion of bio­
logical plausibi l i ty ) Some computational models are associ­
ated w i th learning algorithms that construct specific models 
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automatically f rom data, adapting to reality rather than to an 
expert s conception thereof Neural networks for example 
use a localized gradient-descent scheme to learn the model 
f rom the data The result ing ease of construction and the bio 
logical plausibi l i ty of this approach have contributed signif i 
cantly to the popular i ty of neural networks The drawbacks ol 
current learning schemes include the need for large amounts 
of training data and the incomprehensibi l i ty of the resulting 
models Furthermore many of the computational models that 
are associated w i th a learning algori thm are not the most et 
fective models for decision making Probabil ist ic networks 
on the other hand, perform wel l in complex decision-making 
domains such as medical diagnosis but have usually required 
a good deal of construction effort 

In this paper we present a new learning a lgor i thm for prob­
abilistic networks that is effective even when some of the 
variables are hidden—that is their values are not observable 
This makes probabil ist ic network;, competit ive w i th neural 
networks in terms of ease of creation In fact because prob 
abilistic networks have a precise local semantics it is quite 
possible for human experts or other computational systems 
to provide prior knowledge to the learning process thereby 
reducing the need for training data Moreover the output of 
the learning process is comprehensible to humans 

The paper begins wi th a basic introduct ion to probabil istic 
models in AI We then present the fo l l ow ing results 

• Derivation of a gradient-descent learning algori thm for 
probabil ist ic networks w i t h hidden variables, where the 
gradient can be computed locally by each node using in ­
format ion that is available in the normal course of prob 
abilistic network calculations 

• Extensions of the algori thm to handle mtensionally rep 
resented distributions (such as noisy-OR nodes) con 
tinuous variables and dynamic probabil ist ic networks 
representing temporal processes 

• Experimental demonstration of the a lgor i thm on small 
and large networks showing a dramatic improvement in 
learning rate resulting f rom inclusion of hidden variables 

• Experimental demonstration of the extended algori thm 
applied to a dynamic probabi l ist ic network 

We conclude that adaptive probabil ist ic networks (APNs) may 
provide an excellent tool for scientists and engineers in bui ld­
ing complex models f rom noisy data Our results also mo 
tivate the use of a much broader class of models satisfying 
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the basic requirements of computational neuroscience than is 
commonly considered 

2 P r o b a b i l i s t i c n e t w o r k s 
Systems based on probability theory now dominate the fields 
of expert systems and speech recognition, and are making 
rapid progress in language understanding and computer vi 
won Here we provide only a brief introduction For a 
thorough treatment see Pearl [1988] 

Probability theory views the world as a set of random vari­
ables X1 X„ each of which has a domain of possible val­
ues For example in describing cancer patients the variables 
LungCancer and Smoker can each take on one of the values 
True and False The key concept in probability theory is the 
point probability distribution, which specifies a probability tor 
each possible combination of values for all the random vari­
ables Given this distribution one can compute any desired 
probability given any combination ot evidence For exam­
ple given observations and test results one can compute the 
probability that the patient has lung cancer 

Unfortunately, an explicit description of the joint distri 
bution requires a number of parameters that is exponential 
in n the number of variables Probabilistic networks derive 
their power from the ability to represent conditional indepen­
dences among variables, which allows them to take advantage 
of the locality of causal influences Intuitively a variable 
is independent of its indirect causal influences given its direct 
causal influences In Figure 1 for example the outcome ot 
the X-ray does not depend on whether the patient is a smoker 
given that we know that the patient has lung cancer If each 
variable has at most k other variables that directly influence 
it then the total number of required parameters is linear in n 
and exponential in k This enables the representation ot quite 
large problems For example the CPCS network [Pradhan et 
al 19941 contains 448 variables and compares well with the 
world s leading diagnosticians in internal medicine 

Figure 1 (a) A Simple probabilistic network showing a proposed 
causal model (b) A node with associated conitional probability 
table The table gives the conditional probability of each possible 
value of the variable Emphysema, given each possible combination 
of values of the parent nodes Smoker and Coalminer 

Formally a probabilistic network is defined by a directed 
acyclic graph together with a conditional probability table 
(CPT) associated with each node (see Figure 1) ' Each node 

lWe have described the simplest form of network Networks 
can include continuous as well as discrete variables provided the 
representation of the conditional density function is finite CPTs 

represents a random variable The CPT associated with vari-
able X specifies the conditional distribution P(X | Parents(X)) 
The arcs encode probabilistic dependence in the sense that 
each variable must be conditionally independent of its non-
descendants in the graph given its parents This constraint 
implies that the network provides a complete representation 
of the joint distribution through the following equation 

n 
P(X1 Xn = IIP(x, I Parents(X,)) (1) 

I=I 

where P(X1 xn) is the probability of a particular combina 
tion of values for X\ Xn 

Once a network has been constructed inference algorithms 
operate on it to calculate probabilities for query variables 
given values for evidence variables It is important to note 
that the distinction between evidence and query variables is 
entirely flexible—any variable can be set and any variable 
can be queried The best exact inference algorithms typi­
cally use a transformation to Markov random fields [Lau-
ntzen and Spiegelhaller 1988] Stochastic approximation 
algorithms using Monte Carlo simulation have also been de­
veloped [Pearl 1988] Although the general inference prob­
lem is likely to be of exponential complexity in the worst 
case large networks are often solvable in practice Massive 
parallelism can easily be applied particularly with simulation 
algorithms 

3 L e a r n i n g p r o b a b i l i s t i c n e t w o r k s 
How can probabilistic networks be learned from data? There 
are several variants of this question The structure of the 
network can be known or unknown and the variables in the 
network can be observable or hidden in all or some of the data 
points (The latter distinction is also described by the terms 
complete data and incomplete data ) 

The case of known structure and fully observable Variables 
is the easiest In this case we need only learn the CPT 
entries Since every variable is observable each data case 
can be pigeonholed into the CPTentries corresponding to the 
values of the parent variables at each node Simple Bayesian 
updating then computes posterior values for the conditional 
probabilities based on Dirichlet priors fOlesen et al 1992 
Spiegelhalterer al 19911 

The case of unknown structure and fully observable vari­
ables has also received some attention In this case the prob­
lem is to reconstruct the topology of the network—a dis­
crete optimization problem usually solved by a greedy search 
in the space of structures [Cooper and Herskovits 1992 
Heckerman et al 1994] For any given proposed structure 
the CPTs can be reconstructed as described above The result­
ing algorithm-, are capable of recovering fairly large networks 
from large data sets with a high degree ot accuracy 

In this paper we are mostly concerned with problems in 
which the structure is fixed but some variables are hidden 2 

can be represented implicitly by paramelenzed lunctions instead ot 
explicit tables 

'We also note that an algorithm for learning CPTs on a fixed 
structure with hidden variables can be applied to the general case 
of hidden vanables and unknown structure by wrapping a structural 
search algorithm around it. However the structural search algonlhm 
must be more powerful than Lhose described above for the fully 
observable case since it may need to introduce new hidden variables 
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This case often occurs 1 n practice since causal structure is a lot 
easier to el ic i t from experts than numbers, whereas data cases 
are unl ikely to contain values for all the relevant variables For 
example the causal connections between diseases and their 
symptoms are often known and medical records can easily 
provide a large number of data cases But the medical records 
are not typical ly complete data points the actual disease 
is often not observed directly we rarely have results for all 
possible cl inical tests and so on Furthermore causal models 
often contain variables that are sometimes inferred but never 
observed directly such as syndromes in medicine 

The fixed-structure, hidden-variable case has been stud 
led by several researchers The earliest work of wh ich 
we are aware is thai by Golmard and Mal let [1991] who 
describe an a lgonthm for learning in tree-structured net 
works The general case of directed acyclic graphs was 
addressed by Launtzen 11991 1995] (See also the dis­
cussions in ISpiegelhalter et al 1993 Olesen et al 1992 
Spiegelhalter and Cowel l , 1992]) These papers describe 
the application of the EM (Expectation Maximizat ion) algo-
r i thm [Dempster et al 1977] to probabil ist ic networks EM 
l ike gradient descent, f inds local maxima on the l ikel ihood 
surface defined by the network parameters Launtzen notes 
some diff icult ies w i th the use of EM for this problem and 
suggests gradient descent as a possible alternative Thiesson 
is currently undertaking direct comparison of the performance 
of the two approaches A third possible approach is to use 
Gibbs sampling [Heckerman personal communicat ion] Bun -
tine 11994] in the course of a general mathematical analysis of 
structured learning problems also suggests that one could use 
generalized network dif ferentiat ion for learning probabil ist ic 
networks w i th hidden variables 

As mentioned above the gradient-descent approach for 
bel ief network learning is closely related to neural network 
learning an analogy observed by Neal [19921 Neal derives 
an expression for the l ike l ihood gradient in sigmoid networks 
using stochastic s imulat ion and uses it to show that the Bol tz 
mann Machine (a variety of neural network) is a special cast, 
of a probabil ist ic network The Helmhol tz machine ' [Dayan 
et al in press] is a h y b n d of neural network and probabil ist ic 
network ideas It restricts the kinds of probabil i ty distributions 
that can be represented in an attempt to retain the l inear-t ime 
execution property of neural networks 

One might ask why the known-structure hidden vanable 
problem cannot be reduced to the fu l ly observable case by 
el iminat ing the hidden variables using marginalization ( av­
eraging out ) There are two reasons for this First it is not 
necessarily the case that any particular vanable is hidden in all 
the observed cases (although we do not rule this out) Second 
networks wi th hidden variables can be more compact than the 
corresponding fu l ly observable network (see Figure 2) In 
general if the underly ing domain has significant local struc­
ture, then w i th hidden vanables it is possible to take advantage 
of that structure to find a more concise representation for the 
jo in t distr ibution on the observable vanables This in turn 
makes it possible to learn f rom fewer examples 

Before describing the details of our solution we w i l l explain 
the task in more detail The algori thm is provided wi th a 
network structure and ini t ia l (randomly generated) values for 
theCPTs It is presented w i th a set D of data cases D1 Dm 

We assume that the cases are generated independently f rom 
some underlying distr ibut ion In each data case values are 

Figure 2 (a) A probabilistic network with a hidden vanable la 
belled H (H is two valued and the other vanables are three valued ) 
The network requires 45 independent parameters (b) The corre 
sponding fully observable network which requires 168 parameters 

given for some subset of the vanables this subset may differ 
f rom case to case The object is to find the CPT parameters 
w that best model the data We adopt a Bayesian notion 
of best More specifically we assume that each possible 
setting of w is equally l ike ly a prion so that the maximum 
likelihood model is appropriate This means that the arm is to 
maximize Pw(D) the probabi l i ty assigned by the network to 
the observed data when the CPT parameters are set t o w 1 

4 Gradient-descent algorithms 
Our approach is based on v iewing the probabi l i ty PW (D) as a 
funct ion of the CPT entnes w This reduces the problem to one 
of f inding the max imum of a mult ivanate nonlinear function 
A lgon thms for solving this problem typical ly take small steps 
on the surface whose coordinates are the parameters and 
whose height is the value ot the funct ion t ry ing to get to the 
highest point on the surface In fact it turns out to be easier 

to maximize the log- l ikel ihood function In Pm(D) Since the 
two functions are monotonical ly related max imiz ing one is 
equivalent to maximiz ing the other 

The simplest variant of this approach and the one we use 
is gradient descent (also known as "h i l l - c l imb ing ) At each 
po in tw i t computesVw the gradient vector of partial denva 
lives wi th respect to the CPT entries The algor i thm then 
takes a small step in the direction of the gradient Naively 
this would be to the point w + o V w where a is the step-size 
parameter However we need to be more careful We ac 
tually want to maximize PW(D) subject to the constraint that 
w consists of condit ional probabi l i ty values wh ich must be 
between 0 and 1 Furthermore in any CPT the entnes corre 
sponding to a particular condi t ioning case (an assignment of 
values to the parents) must sum to 1 Standard results show 
that taking a step in the direction Vw and then renormalizing 
to the constrained surface achieves the same effect In par 
ticular when an edge of the parameter space is reached this 
algori thm w i l l have the effect of f o l l ow ing i t The algonthm 
terminates when a local max imum is reached that is when 
the renormalized gradient is zero 

3Compare this to the neural network task minimize EW(D) the 
sum of squared differences between observed and predicted data val 
ues when the network weights arc set to w It has been pointed out 
that both maximum likelihood and neural network methods some 
umes find local maxima at extreme values of their parameters which 
can cause problems It is possible that such problems can be avoided 
by carrying through the analysis for nonuniform pnors 
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By moving in the direction of the gradient this simple al­
gorithm executes a greedy h i l l -c l imbing procedure A variety 
of techniques can be used to speed up this process, such as 
Polak-Ribiere conjugate gradient methods Variants of this 
basic technique are the standard approach for training the pa 
rameters (weights) of a neural network Our results along 
with the results of Bunt ine and Neal demonstrate a very close 
connection between neural networks and probabilistic net 
works Our results are a significant extension of Neal s result 
since they apply to any probabil istic network 

5 Local computat ion of the gradient 
The usefulness of gradient descent depends on our ability 
to compute the gradient efficiently This is one of the main 
keys to the success of gradient descent in neural networks 
There back-propagation is used to compute the gradient of 
the funct ion encoded by the neural network with respect to 
the network parameters (i e , the weights on the links) The 
existence of a simple local algori thm for training the network 
allows one to use the same network and algorithms for both 
training and inference Furthermore the similarity to real 
biological processes lends a certain plausibility to the entire 
neural-network paradigm 

We now show that a similar phenomenon occurs in prob­
abilistic networks In fact for probabilistic networks, no 
back-propagation is needed The gradient can be computed 
locally by each node using information that is available in the 
normal course of probabil ist ic network calculations In our 
derivation we w i l l use the standard notation Wrjk to denote a 
specific CPT entry the probability that variable X, takes on its 
j l h possible value assignment given that its parents U, take on 
their kth possible value assignment 

6 Extensions for generalized parameters 
Our analysis above applies only to networks where there is 
no relation between the different parameters (CPT entries) 
in the network Clearly this is not always the case If we 
do a particular clinical test twice the parameters associated 
wi th these two nodes in the network should probably be the 
same (even though the results can differ) In many situations 
the causal influences on a given node are related so that 
more compact representations than an explicit CPT are called 
tor Viewing a CPT as a funct ion f rom the parent values U ik 

and the chi ld value xrj to the number P (X1 -xt) | Ur =Urk), it is 
often reasonable to describe this funct ion intensionally using a 
small number of parameters For example, we may choose to 
describe this function as a neural network In other contexts 
we might have more information about the structure of this 
function A noisy or model for example encodes our belief 
that a number of diseases all have an independent chance of 
causing a certain symptom We then have a parameter A, 
describing the probabil i ty that disease i in isolation causes 
the sympiom The probabil i ty ot the symptom appearing 
given a combination of diseases is fu l ly determined by these 
parameters It the symptom node has k parents the CPT for 
the node can De described using k rather than 2k parameters 
(assuming that all nodes are binary-valued) Using noisy-
or nodes can make an otherwise intractably large network 
practical For example the CPCS network mentioned above 
has only 8 254 parameters but would require 133 931 430 
parameters if the CPTs were defined by expl ici t tables 

Given that we want our network to be defined using param­
eters that are different f rom the CPT entries themselves, we 
would like to learn these parameters f rom the data Our basic 
algorithm remains unchanged rather than doing gradient as­
cent over the surface whose coordinates are the CPT entries 
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This last equation allows us to piggyback the computation 
ot the gradient on the calculations of posterior probabil i t ies 
done in the normal course of probabil istic network opera­
tion Essentially any standard probabil istic network algo­
r i thm when executed wi th the evidence D1 w i l l compute the 
term Pw,(xrl urk | D1) as a by-product We are therefore able to 
use a standard commercial package (Hugin) for the required 
inference calculations 

The gradient vector can now be obtained as fol lows We 
run an inference algorithm on each data case D1 separately 
computing Pw(Xsl ulk |D| ) for each tjk in the process We 
then sum these expressions over the different data cases / and 
divide by wrjk This is then used as outl ined above Section 7 
describes results obtained f rom our implementation 



we do gradient ascent over the surface whose coordinates are 
these new parameters The only issue we need to address is 
the computation of the gradient w i th respect to these parame­
ters As we now show our analysis can easily be extended to 
this more general case using a simple application of the Chain 
Rule for derivatives Technically assume that the network is 
defined using some vector of parameters A whose values we 
are t ry ing to adjust Each CPT entry wyk can be viewed as a 
funct ion wyk(x) Assuming these functions are differentiable 
we obtain the fo l l ow ing 

Our analysis above shows how the first term in each product 
can be easily computed as a by-product of any standard prob-
abil istic network algor i thm The second term requires only a 
simple funct ion application 

The abi l i ty to learn intensionally represented probabil is­
tic networks confers many advantages First as we argued 
certain networks are s imply impractical unless we reduce the 
size of their representation in this way This is even more 
important when learning such networks since learning each 
CPT entry separately would almost certainly require an un­
reasonable amount of training data This is another instance 
where our algor i thm is able to uti l ize prior knowledge in the 
r ight way to speed up the learning process But even more 
importantly this abi l i ty al lows us to learn networks that oth­
erwise wou ld not fit into this f ramework For example as 
we mentioned above, probabil ist ic networks can also contain 
continuous-valued nodes The 'CPT" for such nodes must be 
intensionally defined, for example as a Gaussian distr ibution 
w i th parameters for the mean and the variance [Launtzen and 
Wermuth 1989] Equation 5 gives us the fundamental tool 
needed for learning such networks 

Perhaps the most important application of Equation 5 is 
in learning dynamic probabilistic networks (DPNs) i e , net-
works that represent a temporal stochastic process Such net­
works are typical ly divided into time slices where the nodes at 
each slice encode the state at the corresponding time Figure 3 
shows the coarse structure of a generic DPN The CPTs for 
a D P N include a state evolution model which describes the 
transition probabil i t ies between states and a sensor model, 
which describes the observations that can result f rom a given 
state Typical ly one assumes that the CPTs in each slice do 
not vary over t ime The same parameters therefore w i l l be 
duplicated in every t ime slice in the network In this case 
we can show that Equation 5 simplif ies out to the sum of 
the gradients corresponding to the different instances of the 
parameter (Section 7 demonstrates the application of this 
algor i thm to a simple example ) As a way of model l ing a par­
t ia l ly observable process DPNs compete directly w i th hidden 
Markov models ( H M M s ) DPNs allow the decomposition of 
the hidden state into several variables potential ly revealing 
addit ional structure in the process being modelled and im ­
proving inductive performance Intui t ively a D P N represents 
n bus of state informat ion using O(n) state variables whereas 
an H M M uses 0 (2 n ) states If the state evolution model can 
be described compactly in terms of the the CPTs for the state 
variables we would expect DPNs to outperform H M M s on 
problems w i t h large state spaces 

Figure 3 Generic structure of a dynamic probabilistic network In 
an actual network there may be many state and sensor variables in 
each Lime slice 

7 Experimental results 
We report on three experiments The first shows the impor­
tance of prestructuring the probabil ist ic network using hidden 
variables The second shows the effectiveness of the algo 
n t h m on a large network w i th many hidden variables The 
third demonstrates the capabil i ty for learning a model of a 
temporal process w i th hidden variables 

The basic tools we need are a probabil ist ic inference en­
gine and a gradient-descent algor i thm For the former, we 
use Hug in in the hrst two experiments and our own stochastic 
simulation system for the third experiment For the latter we 
have adapted the conjugate gradient algor i thm [Price 1992] 
to keep the probabil ist ic variables in the legal [0 ]] range as 
described above This uses repeated l ine minimizat ions (wi th 
direction chosen by the Polak-Ribiere method) and a heuristic 
termination condit ion to signal a max imum In each exper 
iment training cases are generated by stochastic sampling 
from the distr ibution defined by each network for the observ 
able variables, new training cases are added incrementally 
into the existing training set 

The performance of the algori thm is measured as a function 
of the number of training cases (X-axis) Among the possible 
choices for the performance metric (Y-axis) the most obvi ­
ous would be the probabil i ty P(D') assigned by the learned 
network to a set of test data D' generated f rom the or iginal net 
work, or possibly the Kul lback-Liebler distance f rom Lhe true 
distr ibution if available However in order to faci l i tate com 
parison w i th tradit ional algorithms which have fixed inputs 
and outputs we designate certain observable nodes as out 
puts ' and measure the abi l i ty of Lhe learned network to predict 
the output values given values for Lhe remaining observable 
nodes More precisely we measure the mean square error for 
each output node probabil i ty value where the mean is taken 
over the distr ibution of input values ( In large networks, this 
is approximated by sampling ) 

The first experiment uses data generated from the 3 - 1 - 3 
network in Figure 2(a) We ran three algori thms on this data 
an A P N w i th the 3 -3 ' structure shown in Figure 2(b) a 
backpropagation neural network w i th a maximum- l ike l ihood 
energy funct ion and an A P N w i th theong ina l 3 - 1 - 3 " struc 
ture The neural network had three nodes for each of the 
three-valued nodes in the probabi l ist ic network, and used lo 
cal coding the number of nodes in the hidden layer was 
opt imized using 10-fold cross-validation The resulls, shown 
in Figure 4, demonstrate the advantage of using the network 
structure that includes the hidden node 

The second experiment uses data generated from a network 
for car insurance risk estimation (Figure 5) The network has 
27 nodes of which only 15 are observable and over 1400 
parameters Three of the observable nodes are designated as 
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Figure 4 The output prediction accuracy as a function of the number 
of cases observed for data generated from the network shown in 
Figure 2(a) The three curves are for the APN algorithm using the 
network structure in Figure 2(b) a back propagation neural network 
using 10-fold cross validation and the APN algorithm using the 
correct network structure 

Figure 5 A network for estimating the expected claim costs for 
a car insurance policyholder Hidden nodes are shaded and output 
nodes arc shown with heavy lines 

Figure 6 The prediction accuracy as a function of the number 
of cases observed for data generated from the network shown in 
Figure 5 The two curves are for the APN algorithm using a 12-3 
network and the APN algorithm using the correct structure 

outputs ' We ran an A P N wi th the correct structure, and an 
APN with a 12-1 structure analogous to the 3-3 network in 
Figure 2(b) The correctly structured A P N learns essentially 
the correct distribution f rom around 400 cases whereas the 
12-3 A P N requires many thousands of cases to reach the same 
level (Figure 6) 4 

The third expenment uses data generated f rom the dynamic 
probabilistic network shown in Figure 7 App ly ing the APN 
algorithm wi th the correct network structure and using the 
chain rule extension f rom Section 6 we obtain the learning 
curve shown in Figure 8 For this experiment we used a 
stochastic simulation algorithm based on l ikel ihood weight­
ing [Shachter and Peot 1989] Because this algori thm pro 
vides anytime estimates of the required probabil it ies it suits 
our purposes very wel l early in the gradient descent process 
we need only very rough estimates of the gradient and these 
can be generated very quickly 

Figure 7 A simple dynamic probabilistic network modelling a 
partially observable Markov process with reinforcement Hidden 
nodes arc shaded and output nodes are shown with he ivy lines 

8 Conc lus ions 

We have demonstrated a gradient-descent learning algori thm 
for probabilistic networks wi th hidden variables that uses lo­
calized gradient computations piggybacked on the standard 
network inference calculations A l though a detailed compar­
ison between neural and probabil istic networks, requires more 
extensive analysis than is possible in this paper one is struck 
by the fact that the motivations tor the widespread adoption 
of neural networks as cognitive and neural models—localized 
learning massive parallelism and robust handling of noisy 
data—are also satisfied by probabil istic networks Further­
more the precise local semantics of probabil ist ic networks 
allows humans or other systems to provide prior knowledge to 
constrain the learning process We have demonstrated the dra­
matic improvements that can be achieved by pre structuring 

4 For comparison we applied a two layer neural network learning 
algonthm to the same data using cross validation to find the best 
size of hidden layer The neural net s behavior is interesting For 
all sample sizes it converges to predict just the output proportions 
observed in the training data independent of the particular inputs 
The same behavior was found for decision trees with pruning and for 
k nearest-neighbor learning This suggests that the complex patterns 
found by the structured APN are not discernible by the knowledge 
free algorithms One might imagine that a neural network structured 
similarly to the structured APN would be able to overcome this 
problem There arc two reasons to doubt this first, structure in 
a neural network represents deterministic functional dependencies 
rather than the probabilistic dependencies represented by the APN 
structure second training sparse neural networks with more than 
A few layers seems to be very difficult although we are currently 
trying to make it work 
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Figure 8 The prediction accuracy as a function of the number 
of cases observed for data generated from the network shown in 
Figure 7 The curve is for an APN algorithm using the correct 
structure 

the network especially using hidden variables Theoretical 
analysis of the sample complexity of learning probabil ist ic 
networks is an obvious next step We would also l ike to 
investigate the use of APNs for classification rather than den-
sity estimation this can be done by altering the optimization 
goal to minimize the error on specified variables [Spiegelhal-
ter and Cowel l 1992] Detailed empirical comparisons wi th 
EM Gibbs and neural network methods are urgently needed 

The existence of localized gradient descent algorithms for 
both adaptive probabil ist ic networks and back-propagation 
neural networks is no accident In other work we have 
established general conditions under which any distributed 
computational system is amenable to local learning (see also 
[Buntine, 1994]) Such results suggest that the class of ab 
stract models considered in computational neuroscience can 
be broadened considerably 
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