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Abstract

When specificity considerations are incorpo-
rated in default reasoning systems, it is hard
lo ensure that exceptional subclasses inherit
all legitimate features of their parent classes
To reconcile these two requirements specificitv
and inheritance, this paper proposes the addi-
tion of a new rule called coherence rule, to the
desiderata for default inference The coherence
rule captures the intuition that formulae which
are more compatible with the defaults in the
database are more believable We offer a for-
mal definition of this extended desiderata and
analyze the behavior of its associated closure
relation which we call coherence closure We
provide a concrete embodiment of a system sat-
isfying the extended desiderata by taking the
coherence closure of system Z A procedure
for computing the (unique) most compact, be
lief ranking in the coherence closure of svstem
Z is also described

1 Introduction

It has been proposed [Makinson, 1989 hrauh et al, 1990]
that default reasoning systems be analyzed in terms of
their (default) consequence relations A number of in
ference rules (or axioms) have generally been accepted
[Pearl, 1991 Makinson, 1989] as a reasonable set of
desiderata for a commonsense consequence relation De
spite (lie general acceptance of these detiderata, they
fail to reconcile two accepted lines of reasoning widely

known as "inheritance" and 'specificity' These can
be illustrated by the classical Tweety example as fol-
lows Consider the database (Figure 1) containing four
defaults, "penguins are birds', 'penguins do not fly',
birds fly' and'birds have wings' "Specificity' tells us.
that If Tweety is a penguin, then Tweety does not fly be-
cause penguin is a more specific classification of Tweety
than bird "Inheritance", on the other hand, does equip
Tweety with wings by virtue of being a bird albeit an
exceptional bird with respect to flying ability
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Figure 1 Specthiaity and inhentance example

The inheritance and specificity lines of reasoning de-
pend on the interactions among the defaults in the
database An inspection of the rules proposed in past
desiderata reveals that, invariably, each rule refers to the
defaults database as one unit no reference is made to
specific subsets of defaults, the interaction among which
produces the tension between inheritance and specificity
In this paper we propose a new rule, called coherence,
that resolves this tension Intuitively, the coherence rule
prefers formulas that are more compatible with the de-
faults database We will formalize the requirements of
inheritance and specificitv, and show that any conse-
quence relation that satisfies the coherence rule (and
the standard desiderata) will honor both requirements
In the next section, we review the accepted desiderata
(including rational monotony) [Pearl, 199I] before intro-
ducing the coherence rule We will analyze the behavior
of the closure of the extended desiderata which we call
coherence closure

In Section 3 we refine the semantics of system Z [Pearl
1990] to satisfy the coherence rule First we review the
semantics of system Z and the definition of belief rank-
ings Coherence constraints arc then further imposed on
admissible rankings to make them satisfy the coherence
rule We show that the resulting system IS sound with
respect to the extended desiderata We also present a
procedure for computing the most compact admissible
belief ranking in the coherence closure In the last sec
tion we compare related work

2 An Extended Desiderata

Normality defaults are formulas of the form — V' where
if and ip are wffs, and —P> is a new binary connective <p
IB called the antecedent of the normality default and

is its consequent The intended meaning of f —* U 16



n

“typically f ¢, then ¥ ” We use a new symbol b Lo
represent a default consequence relation The intended
reading of @ |~ ¥ 15 given a set of facts (observations)
», We can conclude by default v We will also write K
to represent the default consequence relation induced by
the default data base A

21 The Standard Desiderata

(1ven a fixed sel of defaults A, the desiderata for its
defaull consequence relation f~ are

Rule 1 (Logic) If ¢ D o, then pp y

Rule 2 {Cumulative) If oh 7, then o ¢ of and
only f @ A o

Rule 3 {Cases) Ifpb ¢ andy oy lhrr oV b

Rule 4 (Direct Inference) [ ¢ — ¢ € A, then
P ¥

Rule 5 (Rational Monotony) ff ¢ v and tt 15 not
the case that phv —y, then @ Ay of

Rules 1-5 above represent the standard desiderata which
is supported by two different interpretations of de-
faults, probabilistic semantics [Adims 1970 Pearl, 1991]
and model preference semantic [Shoham 1988] Thr
desiderata (excluding rational monotony) offers a rom-
plete characterization [Adams 1975, Pfarl, 1991] of r-
cntailment, a consequence relation induced by inter-
preting each default sentence as a stalemenl of condi-
tional probability assertion, infinitesimal!l} removed from
certainty 4 By contrast, in model preference semantics a
default ¢p—> 4 is interpreted as % holds in all the most
preferred worlds compatible with 4 It has been shown
[Tehmann 1988] that the ability to represent preference
among worlds by some numerical rank is a necessary and
sufficient condition for the satisfaction of the desider
at a This confluence of two diverse interpretations offers
a strong argument for the acceptance of the rules as a
desiderata for default reasoning

The logic rule says that logical conclusions are also
default conclusions The cumulative rule tells us that,
default conclusions are preserved when default conclu-
sions are added to or removed from the set of facts The
cases rule says that the default conclusions of two facts
also follows from their disjunction The direct inference
rule allows us to conclude the consequent of a default
regardless of the contents of the database when its an-
tecedent is all that has been learned Finally, rational
monotony captures the intuition that new observations
(7) can be assumed to be "irrelevant' (does not affect
the default conclusions) unless they arc implausible 1o
begin with

"In t-eemantics, a default sentence IS interpreted as a con
straint on the infinitesimal conditional probabilities The de-
fault conclusions arc then the formulae that are forced to
have extremely high probabilities by the constraints Ra
tional monotony is satisfied by restricting our attention
to distributions that are parameterized by ¢ and are ana-
lytic in f Alternatively, the interpretation of defaults as
statements in nonstandard probabdity theory [Pearl, 1990,
Goldszmidt and Pearl, 199I] also gives us rational monotony

2 2 The Coherence Rule

The ralionale for the coherence rule 18 that wils (well
formed formulas) that are more rompatible with the de-
faulis in A should he more helievable and, 10 thus pro-
posal, iIncompatibility 1s measured by the set of defaults
that 1s falssficd by the wif A wif ¢ falsificy a defauli
p—vil¢ DAy and sahisfies it if ¢ D (@ D )
Note that some defaults may neither be {alsified nor sat-
isfied by a wl The A paerfatzon {(of the scl of worlds Q)
wdentafies the wife whose degrec of compatibility can be
easily and unambiguously determined

Defimition 1 {A-partition) A sel of uffs & 5 a A-
partition ¢f

I foralldc & and ¢ €@ ¢ rither falsifics or satssfies
d

2 forallw €l we can find a g € Q such thatw | &
and

$ wl ¢ andu ¢, vmplics that 1 =

The first requirement of the definition ensures (hat Lhe
stalus {{alsified or salisfied) of each defaull 15 unambigu-
ous with respect 10 the member< of @  1lic second and
third regquirements of the definition ensures {hat Lhe scls
of models of ¢ 18 a partition of 2

We write ®(A’) 1o reprevenl the element of & that
falsfies precsely A" C A Iaking the set of falsihed
difaults as a measure of incompatibility, it 1s therefore
reasonable Lo requite that ®{A’) he judged more coher-
eni than ®{A") whenever A’ € A”  Thus, if we know
that either ®(4') or #(A"”) 1s truc we should believe the

lormer, wrtton
(A v (A h;d’(.i'}

Rule § lurther «xtends this requirement Lo hold m thc
context of every obsgervation ¢

Rule 6 (Coherence) fei A' C A" C A and ¢ bec a
uff If ¢ AB(A) 15 satisfiable lhen

$ AB(A) Y B(A")) fx 6 A B(A)

We will call the st of rules 1 o 6 the extended
desiderata

The eoherence rule turns oul (o he equvalent 10 a
simple constraint on prefercnces among worlds  For no-
tational convemience we will usc Lhe same symbol w
to represent the world (the truth assignment on atomie
propositions) and Lhe conjunctive clanse (a conjunetlion
of hiterals, a wifT) whosc only modelisw  We say a world
w falsifies a default @ — ¥ 1ffw | g A Afw] rep
resenis the set of defaults 1n A falsihed by the world
!

Theorem 1 (Coherence Constraints) Lef |y be a
defaslt consequence relation that satisfies the desiderzia
bz satisfies the coherence rule 1f and only of for all worlds
wand v, Alw] C Alv) impheswVirhw

This theorem [ollows from the fact that for every pair
(w, A" C A)

w | ®(A") 1f and only 1f A = Alw)

The theorem tells us that for a delaull consequence rela-
tion satisfying the desiderata, conforming to the coher-
ence rule 18 equivalent to ensuring that worlds which aze
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Figure 2 Penguin daia base

more compatible are conaidered more believable This
leads directly to a simple scheme for refining ranking
systems (satisfying Lhe desiderata) to make them sat-
16fy the extended desiderata This will be considered 1n
Section 3

23 The Inheriiance Rule

1t 15 easy to show that the coherence rule ensures the
mheritance of wings by penguins in the example of Fig-
ure 2 This example also shows that the coherence rule
15 not demivable from the standard desiderata However,
mstead of focusing on a mngle example, we will propose
a general] formulation of the inheritance requirement and
show that 1t 15 satisfied by any defaull system thal sat-
isfies the extended desiderata

Che mnintion behind inheritance reasoning 15 Lhat
since every member of a class 18 also a member of 1ts
superclass, the properties of the superelass should also
be the properties of Lhe class 1lself

Rule 7 (Inheritance) Let A be a data base of defeults
of the form !l — V where l and I are ltterals [fio— 1} —

L, ts a ckan of defaulls m A and =l 15 not the final
consequent of another chamn of defaulls :n A beqinning

unth Iy foralla =1, .n, then

1 AT bl and

2 iyl
The inhentance rule says that if thete 18 a chamn of 1n-
creasiigly general superclasses (or properties) I I

then a member of Iy will wnhent the properties of the
superclasses until the chain of inhenitance 15 'severed’
by another contradictory chamn In the data base shown
1n Figure 2, the chain of rules

pengutn — bird — wings

allows us to conclude that the penguin Tweety has wings
However, we cannot conclude that Tweety 15 mobile as
the chain

penguin — bird — fly — mobile
15 “severed” by the contradictory cham

penguin — —fly
This behavior 19 11 general agreement with our intuitions
. IR

ATNMIC & s

The following theorem tells us that any defeult con
sequence relation that satisfies the extended desiderata
suppoerts inhentance of properties by subelnsses

Theorem 2 (Inheritance) Lei A be a deta base of de-
faulta of the form | — ! where | and V' are hicrals If
by satisfies the extended desideraia then by saltsfies the
tnhertiance rule

24 The Specificity Rule

Specificity arguments are usvally defended by examples
guch as the one in Figure 2 We now cast these ar-
guments {ormally, as a general rule and show thal any
defanlt consequence relation that satisfies the extended
desiderata will satisly the specifialy rule as well

Definition 2 (Specificity) A wff ¢ 15 more specific
than @' m A wrilten o >a ¢ f oy end ¢’ Ky
Nole that specificity 18 not limited to strict subelasa re-
lationships, 1t 15 defined 1n terms of the consequence re
lation itself which, being besed on defaulis, allows for
cxceplions and abnormalities  Yve say thal a defaull
¢ — ¢ 1s more specific than another ' — 3" written
@ = Y >a @ = ¢ if 11s antecedent ¢ 15 more specifie
than ¢’

Rule 8 (Specificity) fo —= v >a ' = ¢ thrnpn
¢ v

The speaficaty rule captures the mtmtion that, when
two (possiblv conflicting) defaults are apphcable, the
more specific default prevails [t 15 a generalization of
the standard triangle pengum — bird — fly where the
specificity penguin >4 bird 15 diclated by a single de-
fault and yields penguea A bird | =fly 1t turns out Lhat,
i this formulation, the speaficity rule follows from the
cumulative and direct inference rules

Theorem 3 (Specthaty) If b 5 a consequence re-
lation that satesfies the cuomulatue and direct inference
rules then |~ salisfies the spectficity rule

25 Other Examples

In addition Lo the standard penguin examples, a number
of “particularly naaty” [sic] examples were considered 1m
[Delgrande, 1994] It was suggested thal these examples
llustrate some hines of reasoning that are intuitively de-
sirable for any default consequence relation We will
congsider these hines of reasoning and show that every
default consequence relation that satisfy the extendced
desiderata will handle them torreclly The first line of
reasomng captures the intuition that defaults should be
assumed to be independent and that they should he ac-
Livated whenever posgible Let A be a set of n default
o — i, =1, .n Wewnte ™ and ¢™ to represent
AT ¢ and AT ¢, respectively, form=1, ,n

Rule 9 —g"™ Ap™ [x 9™ forallm < n

This means thet, although not all consequents can be
true together, any proper subset of Lhe consequenls
should still follow from their observed antecedents

The next line of reasoning concerns the case where all
the antecedents have been observed and 1t 18 known that
at least one of the consequents 15 false, we should be
adventurous and conclude that one and only one conse-
quent 18 false This 18 the essence of the following rule



Rule 10D '111‘5" A‘Pn I‘E V?:I(Alij w' A _";JJ)

The next rule pays that if &ll the antecedents are true,
a proper aubset of falee consequents should not interfere
with the (default) conclusion of the other consequents

Rule 11 ﬁon AIEI —'\1’: I'X A.g] wl fO‘l" ﬂ.” I C {ll In]

While the independence rules are intuitive in the ex-
amples considered in [Delgrande, 1994], some may ar-
gue that there may be occasions when we will want to
override these rules by more compelling considerations
For example if we discover an individual that falsifies all
but one of the normality defaults we may become con-
cerned about the whether this individual should not be
treated as a class in itself, thus exonerated from inherit-
ing any of its class properties However, we feel that in
such extreme cases it should the burden of the knowledge
provider (the programmer) to deviate from the normal
style of knowledge representation and provide an explicit
instruction for handling the case in question

We agree with [Delgrande, 1994] that the above rules
represent intutitive default inferences The following the-
orem tells us that these inferences are guaranteed when-
(\cr we satisfy the extended desiderata

Theorem 4 (Independence) If fx catisfies the ez
tnded desiderata, then b satisfies rales 9 1o 11

3 Realizing the Extended Desiderata

Having axiomatized the desired behavior of a default
consequence relation, we will now present an interpre
lation of defaults that satisfies the extended desiderata
The approach is to extend system Z by adding con
straints on admissible belief rankings Since system 7
baa been shown to be characterized bv Rule 1-5 the
added constraints should enforce the coherence rule We
call this new system the coherence closure? of system Z

31 Rankings and System Z A Review

Defimition 3 (Behef Rankings) A belief ranking &
1s @ non negative anteger function on the sel of worlds
such that x{w) = 0 for some w € &t The behef rank of a
uff @ s defined as

_ | muingp, c(w)  of @ 22 satrsfiable
wlp) = { 20 ¢ atherwtse

Believability 1s associated with a lower rank and surprise
or abnormality with a higher rank Therefore, Il £(y) <
(1) then ¢ 15 more behevable than A defaull ¢ — ¥
15 interpreted as the constraint s(pAy) < sy A—y) that
15, » A ¥ 15 more believable than ¢ A~y I'his leads to
the notion of admissibility

Defimtion 4 (Admssibihty) A beiref ranking w 13

admissible wiih respect te a defaulls database A of
wip A ) < w(p N Y

for every defoult ¢ — ¥ 1n A We soy A 13 consistent

if it has a A-admassible belief ranking

2This new system may also be called » coherent rational
closure to emphamge that the rational monotony rule 18 alan
saligfied by the system

| w 1l alw] |
bpf bpf bpf
bpf bpf b—f
bof p—f
bpf p—b
bpf p—bhp——f

Table 1 Falmfled defaults

Each belief ranking « induces a default consequence re-
lation v where o fo 1f and only if k(e Af) < w{aA—F)
Civen a defaults database, system Z bases its 1nference
on the most compact helief ranking the umque ranking
that assigns the lowest posaible rank to each world while
respecting the adrmmussibility constraints This reflects the
assumplion that the worlds are considered to he as be-
lievable (normal) as possible It can be shown that the
most compact behefl ranhing (as will as any oiher specific
ranking) induces & consequence relation that s charac-
terized by the desiderata {withoul the coherence rule)

3 2 The Coherence Closure

To support the inhentance line of reasoning we now 1m-
pose coherence constramts on the admissible belief rank-
ings

Definition 5 (Coherence) Grven a defaults database
A we say that world w 13 more coherent than world v
wnittenw <a v f Alw] C Alv] A renking & 13 cobherent
if n(w) < a(2) wheneverw <a v

We will wrie w < » when the defaults database A 1s nol
pertinent to the discussmion The transitivity of the co-
herence constraints follow directly from the transitivily
of the subset relation

Theorem 5 (Transitivity of Coherence) If w > o
and o > w” thenw > w"

As an 1llustration of coherence constramte consider
the standard example, A = {6 — fp — bp — ~f}
Table 1 shows the defaults that are falsified by ecach of
the world _The coherence constraints induced by A are
Bnf > bpf bpf and w > bpJ bpf bpf for all w wih
a non-empty Alw] Clearly not every ranhing satisf-
ing these constraints 15 admissible, we therefore require
both the admissibility and coherence conditions af c-
admssbility

Defimtion 6 (C-Admismbility) Let A be a defauiis
database and lel « be a belsef ranking x 15 c-admissible
with respect to A if K 15 both admissible and coherent
We say thal A s c-conmstent 1f N has a c-admrsstble
belief ranking

Despite 1he addition of coherence conslraints c-
consistency turns oul to he no different from consistency

Theorem 6 {Consistency Equivalence) A sel of de-
Jaults 15 ¢ consistent 1f and orly of 1f 5 consistent

In (Goldszrmdt, 1992, p 25, a procedure for testing the
consistency of a database of defaults was presented The

TAN AND PEARL 1483



procedure requires O(|A)?) satisfiabihity tests on the ma-
terial counterparts® of the defaults m A [Goldszmdt and
Pearl 1091] Therefore the procedure 18 tractable for de-
laults databeses thal have Horn matenal counterparis
{NDowlig and Gallier, 1984]

As n system Z  we select the most compact belief
ranking from the set of c-admissible rankings

Definition 7 (The «° Ranking) Lef A be 8 consisient
set of defaeults A belicf ranking n° 15 the most compact
¢ admassible ranking of for all worlds w

w(w) € Mw)
Jor every n that 12 ¢ admissibie with respect to A

The following theorem shows that the most compact
ranking s unigue

Theorem 7 {Mimimization) Lef n and ko be belief
rankmgs  If &y and s are c-admssible, then o =
nun{ky, x;) 15 ¢ admessible

Dcfimtion 8 (Coherence Closure) Given @ defaults
daiebase A ¢ coherently entmls ¥ writien @by of
and only if

R (p Aw) <kl Aoe]
We call | the coherence closure of system Z

Since h satishes Rule 1-5 [Pearl, 1990] aed Lhe coher-
ence constrainis, 1t constitutes an interpretation of the
extcnded desiderata (by Theorem 1)

33 Computing the Coherence Closure

The algonthm i Table 2 compules the most compact
ranking relaiive 1o A and requires an exponential num-
her G(27n?) of satisfiability tests where n is the size of
A The kev to computing the &° ranking lies in the con
siruction of two non-negative ;mteger-valued funclions, a
ranhing Z7(d) ou the se( of defaults A, and a ranking
r(®) on the A-partition of 2 & = {¢ = B(A) | A' C
Al The £° ranh records the mininal rank of worlds that
verthes' + default while the r rank records the nummal
ranh reymred for c-admssibihity  The ranking function
r on the A-partition ¢ induces a belief ranking r{w) on
(¥ through the assignment

rw) = r(e)

for every world w = ¢
The next theorem leads to a natural scheme of com-
putmg the Z° and r ranhs

Theorem 8 (Goldszmidt [Goldszmdt, 1992, The-
orem 2 4]} A 15 ¢ conststent 1f and only of there 15 a
default d € A’ such that d s toleraled® by A’ far every
non emply subset A'C A

GGiven a c-consstent set of defaults D, we first compute
the Z< rank of every default that 18 tolerated by D and
update the r ranking lo ensure that 1t satisfies the re-
quirements for c-admsmbility Nexl we remove rom D

'The matenal counterpart of o — Yy 16 the wil o D ¢

‘A world w verifies arule p = P w = p A ¥

YA default » — ¢ 15 tolerated by a set S 1f the wif @ A
¥ A\, w D ¥ 15 sausfiable (where ¢ ranges over all Lhe rules
wmn §)
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the default that has the smallest Z° rank We repeat
this procedure until all the defaults have been removed

Some terminology used 1 the procedure We define
Al¢)] = A’ whenever @, = ®(A') If Alg] C Alg,],
then ¢, 18 an ancestor of §, The mimimal ancestors of
¢, are 1ls parents, and ¢, 1s a successor of 1t8 ancestors
and a chi!d of its parents Procedure c-rank assigns a
rank r(¢,) to satisfiable formulas of the form ¢, = ®(A")
where A’ C A The procedure assumes that the formulas
¢, are ordered such that every ¢, has a smaller index +
than all 1ts successors and a larger index than all its
ancestors Thus ¢g = ®(8) and ¢, = $(A)

The following theorem lells us that the ranking r 1s
precisely the £ ranking

Theorem 9 (Rank) The bclief ranking as compuied
by procedure c-rank s precesely the most compact r-
edmissible ranking n°

4 Discussion and Conclusion

(Coherence closure may be viewed as a refinement of ce-
terts paribus (¢p) admssibility condition proposed n
[Tan, 1994] In addition to bemg admussible a cp-
admussible ranhing must satiely additional constraints
requiring a world w to be ranked lower than a world v
whenever there 13 a subset A’ < A such ihat w venfies
all the defaults 1n &', v falsifies all {he defaults 1in A
and w and v agree on all the other defaults wn A\ A’
Clearly every cp-condition 1s also a coherence constramt,
but not the converse

Motivated by Brewka s preferred subtheories [Brewka
1989}, Boutihier [Boutiher, 1992) proposed an alternative
way of resolving the tension between spearficity and in-
hentance Fach default 15 assigned a prionty and the set
of defaults A w partitioned into {A'} according Lo therr
priorities Given {wo worlds w and & attention s [ocused
on the maximum prionty (¢t = max{w, »)) suhset of d¢
faults A* where either A’[w] C A'[v] or A'[v] € A']
The world that falsifies a smaller set of defaulis, say v, 15
Lhen considered strictly more believable than the other
wotld » Since Alw] C Alv] smplies A*fw] C A’[v] for
all 1 and A'[u] € A'[¢] for some + 1 should be clear Lhat
if w < 118 a coherence constraint, then w will also be
considered strictly more behevable than v by [Boutilier,
1892] The converse however 1s nol true and 13 not de-
sirable 1n general The reason 1s that by comparnng only
the maximum priority subset of defaults AMex(w ) ap
impheit interpretation 18 1mposed on the priorities The
impheit inlerpretation 18 that the violation of a defanll
wilh priority 118 somehow more ‘ damaging’ Lhan the vi-
olation of any number of defaults of lower pricnity Whle
[Brewka, 1989] gives Litule mdication of the source of the
prionties, [Boutilier, 1992] equates the priority of a de-
fault to the Z rank [Pearl, 1990] of the negation of its
material connterpart In the following analysis we will
atlempt to show that the implicil interpretation of pri-
orities when compounded with equating prionities to the
Z rank of the negated material counterpart lead to coun-
terintuttive inferences

Consider the familiar example contaning the defaults
5 — g (“students are typically adults”), a — e (“adults



1) r(¢o)=0

2) Foritfroml ton

3) r{é,) = max{r(¢;} + 1| ¢, € parent(4,))

4) Let D= A
E) Whale D#

8) Let [); be the set of defaulta tolarated by D

7} Ford=y¢g— ¢ €D,

8) 'Yd:@Aﬁ’A{‘PID\Ill?l‘—’“ﬁED}

8) Z9d)y = mn{r{¢,) | ¢, Av1q 15 satisfiable)

10) For : from 1 to n

11) 1t d € Alé,] then

12) r(@) = max{r(¢), Z'(d} + 1), 7(6,) + 1 | ¢, € parcnt(g,)}

13) Remove from [) a default in ), with the lowest Z° rank

Tahle 2 Procedure c-rank

are typically employed') and s — ->e (' students art typ-
ically not employed ) to which we add a fourth default
T — e where x is arbitrary Since s —» -if has prior
ily 2 and x —>r has priority 1, violation of the default
students are tvpically not cmplol\ed is considered to
IK more damaging' than the violation of the default
is art typically employed in [Bouther 1992] This is
counterintuitive as this conclusion is obtained indepen
dently of the meaning of T Thus even if " represents the
statement sells hamburgers in MacDonald s violation
of this statement is still considered less ' damaging than
I he violation of the default students are tvpicallv not
< mplo>ed Such counterintuitive behavior is not present
in our semantics

In [Delgrande 1994], an approach based on preference
ordenngs between worlds was presented B< ginning with
in extant theory of default conditionals an\ dt faull that
is true in tins original theorv prefers a world in which the
material counterpart is true over a world in which it is
filse In the new theorv a preference between two worlds
is true when it can bt attributed to some default and
(litre is no more specific default that has a contradictory
preference  The notion of specificity is also defined in
terms of the truth of defaults in the original theory Tins
reliance on an extant theorv of defaults make the system
unnatural and complex | he intuitiveness of such a two
step definition of a default Lheorv is questionable and
lacks a good philosophical justification It is also not
known if the desiderata is satisfied bv the system

In [Geffner, 19891 inference rules 1 to 4 wtre supple-
mented by an irrelevance rule which, unfortunate!}, in-
volves the evaluation of a meta-logical irrelevance pred-
icate I{ ) The proposed default consequence relation
called conditional entailment was also shown to satisfy
inference rules 1 to 4 together with irrelevance rule Con-
ditional entailment like coherence closure is also denned
m terms of preferences among worlds | he preference
among worlds, in turn, depends on a priority relation
among normality defaults specified by the user Il turns
out that if the priority relation is erupt} (I e all de-
faults have the same priority) then conditional entail-
ment turns out to be equivalent to coherence closure

Much work in default reasoning has been guided by

examples rather than on generally accepted principles
of reasoning We hope our general formalization of no-
tions such as specificity, inheritance and coherence will
help change this trend It remains to be seen, though,
whether the extended desiderata is sufficient for captur-
ing other patterns of plausible reasoning
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