## Relating Belief Revision and Circumscription\* Paolo Liberatore and Marco Schaerf Dipartimento di Informatica e Sistemistica Universita di Roma "La Sapienza" via Salaria 113, 1-00198 Roma, Italy email {liberato,schaerf}@assi dis uniromal it #### Abstract Nonmonotonic formalisms and belief revision operators have been introduced as useful tools to describe and reason about evolving scenarios Both approaches have been proven effective in a number of different situations However, little is known about their relationship Previous work by Winslett has shown some correlations between a specific operator and circumscription In this paper we greatly extend Winslett's work by establishing new relations between circumscription and a large number of belief revision operators This highlights similarities and differences between these formalisms Furthermore these connections provide us with the possibility of importing results in one field into the other one # 1 Introduction During the last years, many formalisms have been proposed in the AI literature to model commonsense reasoning Particular emphasis has been put in the formal modeling of a distinct feature of commonsense reasoning, that is, its nonmonotonic nature. The AI goal of providing a logic model of human agents' capability of reasoning in the presence of incomplete or contradictory information has proven to be a very hard one. Nevertheless, many important formalisms have been put forward in the literature. Two main approaches have been proposed to handle the nonmonotonic aspects of commonsense reasoning. The first one deals with this problem, by defining a new logic equipped with a nonmonotonic consequence operator. Important examples of this approach are default logic proposed in [Reiter, 1980] and circumscription introduced in [McCarthy, 1980]. The second one relies on preserving a classical (monotonic) inference operator, but introduces a revision operator that accommodates a new piece of information into an existing body. 'Work partially supported by the ESPRIT Basic Research Action N 6810 COMPULOG II, N 6471 MEDLAR and the Progetlo Finalizzato Informatica & Calcolo Parallelo of the CNR (Italian Research Council) of knowledge Specific revision operators have been introduced, among the others, in [Ginsberg, 1986] and in [Dalai, 1988] A general framework for revision has been proposed by Alchourron Gardenfors and Makinson in [Alchourrn et of, 1985, Gardenfors, 1988] A close variant of revision is *update* The general framework for update has been studied in [Katsuno and Mendelzon, 1989, 1991] and specific operators have been proposed in [Winslett 1990] and [Forbus 1989] In this paper we investigate the relationship between circumscription and many operators for belief revision and update A first study of these relations has been done in [Winslett, 1989], where she relates her operator to circumscription We expand her results showing similar connections between several other belief revision operators and circumscription. To this end we also in troduce a variant of circumscription based on cardinality rather than set-containment. The established correlations highlight the relations between the two fields Moreover, as side benefits, they provide us with the opportunity to import results in one field into the other one A distinct approach to model the nonmonotonic aspect of commonsense reasoning is via a logic of actions Even though this aspect is out of the scope of this paper, we want to point out the results presented in [Kharta and Lifschitz, 1994] where it is shown how to express a very general logic of action using circumscription The paper Ib organized as follows In Section 2 we recall some key definitions and results for belief revision and circumscription, introduce a variant of circumscription (NCIRC) and explain the notation used throughout the following sections Jn Section 3 we show the main relations between revision operators and circumscription, while in Section 4 we show relations and reductions between the vancus operators. In Section 5 we focus on syntactically restricted knowledge bases. Section 6 discusses the impact of our results with particular attention to the computational complexity analysis. Finally, in Section 7 we draw some conclusions. #### 2 Preliminaries In this section we (very briefly) present the background and terminology needed to understand the results presented later in the paper For the sake of simplicity, throughout this paper we restrict our attention to a (fi- nite) propositional language The alphabet of a propositional formula is the set of all propositional atoms occurring in it. Formulae are built over a finite alphabet of propositional letters using the usual connectives $\neg$ (not), $\lor$ (or) and $\land$ (and). Additional connectives are used as shorthands, $\alpha \to \beta$ denotes $\neg \alpha \lor \beta$ , $\alpha = \beta$ is a shorthand for $(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$ and $\alpha \neq \beta$ denotes $\neg (\alpha = \beta)$ An interpretation of a formula is a truth assignment to the atoms of its alphabet. A model M of a formula F is an interpretation that satisfies F (written $M \models F$ ). Interpretations and models of propositional formulae will be denoted as sets of atoms (those which are mapped into 1). A theory T is a set of formulae. An interpretation is a model of a theory if it is a model of every formula of the theory. Given a theory T and a formula F we say that T entails F written $T \models F$ , if F is true in every model of T. Given a propositional formula or a theory T we denote with $\mathcal{M}(T)$ the set of its models. We say that T is consistent, written $T \not\models L$ , if $\mathcal{M}(T)$ is non-empty ## 2.1 Belief Revision and Update Belief revision is concerned with the modeling of accommodating a new piece of information (the revising formula) into an existing body of knowledge (the knowledge base), where the two might contradict each other. A slightly different perspective is taken by knowledge update. An analysis of the relative merits of revision and update is out of the scope of this paper, or an interesting discussion on the differences between belief revision and update we refer the reader to the work [Katsuno and Mendelzon 1991]. We assume that both the revising formula and the knowledge base can be either a single formula or a theory. We now recall the different approaches to revision and update, classifying them into formula-based and model-based ones. A more thorough exposition can be found in [Eiter and Gottlob 1992]. We use the following conventions the expression card(S) denotes the cardinality of a set S, and symmetric difference between two sets $S_1$ , $S_2$ is denoted by $S_1\Delta S_2$ . If S is a set of sets, $\cap S$ denotes the set formed intersecting all sets of S, and analogously $\cup S$ for union $\min_{C} S$ denotes the subset of S containing only the minimal (wrt set inclusion) sets in S, while $\max_{C} S$ denotes its maximal sets Formula-based approaches operate on the formulae syntactically appearing in the knowledge base K. Let C(K,A) be the set of the subsets of K which are consistent with the revising formula K $$C(K,A) = \{K' \subseteq K \mid K' \cup \{A\} \not\models \bot\}$$ and let W(K,A) be the set of the maximal sets of C(K,A) $$W(K,A) = max \in C(K,A)$$ The set W(K,A) contains all the plausible subsets of K that we may retain when inserting A Ginsberg in [Ginsberg, 1986] the revised knowledge base is defined as a set of theories $K *_G A = \{K' \cup \{A\} \mid K' \in W(K,A)\}$ . That is, the result of revising K is the set of all maximal subsets of K consistent with A, plus A. Logical consequence in the revised knowledge base is defined as logical consequence in each of the theories, i.e. $A *_C A \models Q$ iff for all $A' \in W(A,A)$ , $A' \cup \{A\} \models Q$ . In other words, Ginsberg considers all sets in W(A,A) equally plausible and inference is defined skeptically, i.e. Q must be a consequence of each set Model-based approaches instead operate by selecting the models of A on the basis of some notion of proximity to the models of K. Model-based approaches assume K to be a single formula, if K is a set of formulae it is implicitly interpreted as the conjunction of all the elements. Many notions of proximity have been defined in the literature. We distinguish them between pointwise proximity and global proximity. We first recall approaches in which proximity between models of A and models of K is computed pointwise with each model of K. That is they select models of K one-by-one and for each one choose the closest model of K. These approaches are considered as more suitable for knowledge update [Katsuno and Mendelzon, 1991]. Let K be a model, we define K as the set containing the minimal differences (with the set inclusion) between each model of K and the given K, more formally, K and K is is K. Winslett The work [Winslett, 1990] defines the models of the updated knowledge base as $\mathcal{M}(K *_W A) = \{N \in \mathcal{M}(A) \mid \exists M \in \mathcal{M}(K) \mid M \Delta N \in \mu(M, A)\}$ In other words for each model of K it chooses the closest (w r t set-containment) model of K Borgida This operator $*_B$ , defined in [Borgida 1985], coincides with Winslett's one, except in the case when A is consistent with A in which case Borgida's revised theory is simply $A \cup \{A\}$ Forbus This approach [Forbus, 1989] takes into account cardinality. Let $k_{M,A}$ be the minimum cardinality of sets in $\mu(M,A)$ . The models of Forbus updated theory are $\mathcal{M}(K *_F A) = \{N \in \mathcal{M}(A) \mid \exists M \in \mathcal{M}(K) \ card(M\Delta N) = k_{M,A}\}$ . Note that by means of cardinality, Forbus can compare (and discard) models which are incomparable in Winslett's approach We now recall approaches where proximity between models of A and models of K is defined considering globally all models of K. In other words, these approaches consider at the same time all pairs of models $M \in \mathcal{M}(K)$ and $N \in \mathcal{M}(A)$ and find all the closest pairs. Let $\delta(K,A) = \min_{\mathbf{C}} \bigcup_{M \in \mathcal{M}(K)} \mu(M,A)$ Satch In [Satch, 1988], the models of the revised knowledge base are defined as $\mathcal{M}(K *_S A) = \{N \in \mathcal{M}(A) \mid \exists M \in \mathcal{M}(K) \mid N \triangle M \in \delta(K, A)\}$ That is, Satch selects all closest pairs (by set-containment of the difference set) and then projects on the models of A Dalal This approach is similar to Forbus', but global Let $k_{K,A}$ be the minimum cardinality of sets in $\delta(K,A)$ , in [Dalal, 1988] the models of a revised theory are defined as $\mathcal{M}(K*_DA) = \{N \in \mathcal{M}(A) \mid \exists M \in \mathcal{M}(K) \text{ card}(N\Delta M) = k_{K,A}\}$ That is, Dalal selects all closets pairs (by cardinality of the difference set) and then projects on the models of A The complexity of deciding $K * A \models Q$ (where \* is one of $\{*_G, *_W, *_B, *_F, *_S, *_D\}$ , K, K, and K are the input) was studied in [Eiter and Gottlob, 1992] in Dalal's ap- proach, the problem is $\Delta_2^p[\log n]$ -complete, while in all other approaches it is $\Pi_2^p$ -complete ## 2 2 Circumscription Circumscription has been originally introduced in [Mc-Carthy, 1980] Further extensions have been proposed by several authors. Here we stick to the semantic formulation of circumscription and restrict our interest to a propositional language. Following [Lifschitz, 1985], we define **Definition 1** Let T be a propositional formula, $X = \{x_1, \dots, x_n\}$ its alphabet, P and Z disjoint sets of letters partitioning X (i.e. $P \cup Z = X$ ) and $M \in \mathcal{M}(T)$ . M is called a P-minimal model of T if there is no model N of T such that $(N \cap P) \neq (M \cap P)$ and $(N \cap P) \subset (M \cap P)$ **Definition 2** The circumscription of T wrt the two sets of letters P and Z, denoted as CIRC(T,P,Z), is the set of all P-minimal models of T, i.e. $M \models CIRC(T,P,Z)$ iff M is a P minimal model of T Informally, P is the set of letters we want to minimize while letters in Z are allowed to vary. Notice that we are using a version of circumscription where fixed predicates are not allowed. Due to the results of [de Kleer and Konolige 1989] on eliminating fixed predicates, this restriction does not lead to any loss of expressiveness. ## 2 3 Cardinality-based Circumscription The minimality criterion of circumscription is based on set-containment. We now introduce for propositional languages, a version of circumscription based on cardinality. **Definition 3** Let T be a propositional formula $X = \{x_1, x_n\}$ its alphabet P and Z disjoint sets of letters partitioning X (i.e. $P \cup Z = X$ ) and $M \in \mathcal{M}(T)$ . M is called a P-cardinality-minimal model of T if there is no model N of T such that $|N \cap P| < |M \cap P|$ **Definition 4** The cardinality-based circumscription of T w r t the two sets of letters P and Z denoted as NCIRC(T,P,Z), is the set of all P-cardinality-minimal models of T, i.e. $M \models NCIRC(T,P,Z)$ iff M is a P-cardinality-minimal model of T In other words I am preferring models with the least number of true letters of the set P rather than models with a least set of true letters #### 2 4 Notations In order to make formulae more compact and easier to understand, we introduce a number of notations that we use in the rest of the paper In the following sections, we make use of variable renaming To make this clear, we explicitly mention over which alphabet a formula is built upon. More precisely, let $\lambda = \{x_1, \dots, x_n\}$ be a set of letters, we denote as T(X) a formula built over X. Given a new alphabet $Y = \{y_1, \dots, y_n\}$ one-to-one with X, with T(Y) we denote the formula with the same structure of T(X) but every occurrence of x, is replaced by $y_t$ for all $t \ge 1$ and $t \le n$ . For example, let $$T(X) = (x_1 \wedge (\neg x_3 \vee x_2))$$ then the formula T(Y) is $(y_1 \wedge (\neg y_3 \vee y_2))$ In order to make the formulae more compact and readable, we overload the boolean connectives to apply to sets of letters. For example, given three disjoint sets of letters W S and R with the same number of elements k, we use the notation $\neg S$ as a shorthand for the formula $\bigwedge \{\neg s_i | s_i \in S\}$ , S = R to denote $\bigwedge \{s_i = r_i | 1 \le i \le k\}$ $S \neq R$ to denote $\bigwedge \{s_i \neq r_i | 1 \le i \le k\}$ and $W = (S \neq R)$ for $\bigwedge \{w_i = (s_i \neq r_i) | 1 \le i \le k\}$ #### 3 General Cases In this section we establish relations between circumscription and the various belief revision operators. Due to the lack of space we cannot present complete proofs for all the results, but we provide a sketch of some of the proofs #### 3.1 Dalal's revision The links between the cardinality-based circumscription and Dalal s revision [Dalal, 1988] are very simple. This is due to the similarity of these operations. NCIRC takes the models with a minimum number of positive atoms of the set P, whereas Dalal's revision selects the models of A with a minimum number of differences with models of A To translate NCIRC(T, P, Z) into a Dalal's revision it is enough to revise the knowledge base with all literals in P negated. More precisely, we have $$NCIRC(T | P_{\perp}Z) = (\neg P) *_{D} T$$ In fact the cardinality-minimal models of T are exactly the models of T closer to the knowledge base $\neg P$ . The above relation is simple because revision seems somewhat more powerful than VCIRC. In fact, it has NCIRC as a sub-case, where K is a set of literals. However, it can be shown that Dalal's revision can be translated into cardinality-based circumscription. Given three disjoint sets of letters X, Y and W, each one containing n letters, we denote with $\Gamma(X,Y,W)$ the formula $K(Y) \wedge A(X) \wedge (W = (X \neq Y))$ . $\Gamma$ admits a model M iff $M_X = (M \cap X)$ is a model of A and $M_Y = (M \cap Y)$ is a model of T. Which letters of W will belong to $M_W = (M \cap W)$ is uniquely determined by $M_X$ and $M_Y$ . In fact, $w_1 \in M_W$ if and only if $x_1 \in M_X$ and $y_1 \notin M_Y$ or $x_1 \notin M_X$ and $y_2 \in M_Y$ . If we force $M_{W}$ to contain a minimal number of letters only the models of $\Gamma$ where the differences between the assignments to $\lambda$ and Y are as few as possible will be retained. Thus we obtain $$K(X) *_{\mathcal{D}} A(X) = NCIRC(\Gamma(X, Y, W), W, X \cup Y)$$ where we minimize the letters in W, but not those in $X \cup Y$ . More precisely we have **Theorem 1** For any model M of $K(X) *_D A(X)$ there exists a model N of $NCIRC(\Gamma(X,Y,W),W,X \cup Y)$ such that $M=N\cap X$ Furthermore for any model N of $NCIRC(\Gamma(X,Y|W),W,X\cup Y)$ $N\cap X$ is a model of $K(X) *_D A(X)$ Proof (sketch) We first prove that for any model $M_X \subseteq X$ of $h(X) *_D A(X)$ there exists two sets $M_Y \subseteq Y$ and $M_W \subseteq W$ such that $M = M_X \cup M_Y \cup M_W$ is a model of $NCIRC(K(Y) \land A(X) \land (W = (X \neq Y)), W, X \cup Y)$ Since $M_X$ is a model of $K(X) *_D A(X)$ , it follows that $M_X \models A$ and that there exist a model $N_X \in \mathcal{M}(K(X))$ such that $card(M_X \triangle N_X) = k$ , where k is the minimal distance between models of $K(X) \in M_X$ and becomes $K(X) \in M_X$ and $K(X) \in M_X$ and $K(X) \in M_X$ becomes $K(X) \in M_X$ and $K(X) \in M_X$ becomes $K(X) \in M_X$ and $K(X) \in M_X$ and $K(X) \in M_X$ becomes $K(X) \in M_X$ and $K(X) \in M_X$ becomes $K(X) \in M_X$ and $K(X) \in M_X$ becomes $K(X) \in M_X$ becomes $K(X) \in M_X$ and $K(X) \in M_X$ becomes be We now show that for any model of $NCIRC(K(Y) \land A(X) \land (W = (X \neq Y)), W, X \cup Y)$ , the set $M_X = M \cap X$ is a model of $h(X) \cdot_D A(X)$ . It immediately follows that $M_X \models A(X)$ , if $M_X$ is one of the models of A closer to models of A the thesis follows, so assume to the contrary that there exists a $N_X \subseteq X$ , different from $M_{\lambda}$ such that $N_{\lambda} \models A(\lambda)$ , the distance of $M_X$ from the closest model of K(X) is $k_M$ , the distance of $N_X$ from the closest model of $K(\lambda)$ is $k_N$ and $k_N < k_M$ Let $V_X \subseteq X$ be one of the models of h(X) closer to N $N_Y = \{y_i | x_i \in V_X\}, N_W = \{w_i | ((x_i \in V_X), N_W) \in V_X\}$ $N_X$ ) and $(y_i \in N_Y)$ ) or $((x_i \notin N_X)$ and $(y_i \notin N_Y))$ and $N = N_X \cup N_Y \cup N_W$ Obviously N is a model of $h(Y) \wedge A(X) \wedge (W = (X \neq Y))$ moreover, the cardinality of $N \cap W$ is $k_N$ the cardinality $M \cap W$ is $k_M$ Since $k_n < k_M$ it follows that M is not a cardinality minimal model of $h(Y) \wedge A(X) \wedge (W = (X \neq Y))$ , hence contradiction arises #### 3 2 Satoh's revision The same reductions between Dalal's revision and cardinality based circumscription hold between Satoh's revision [Satoh 1988] and usual (set-containment-based) circumscription $$CIRC(T, P, Z) = (\neg P) *_S T$$ To reduce Satoh's revision into circumscription, we use the same relation adopted to reduce Dalal's revision into NCIRC $$T(\lambda, Y, Z) = h(Y) \wedge A(\lambda) \wedge (W = (\lambda \neq Y))$$ $$h(\lambda) *_{S} A(\lambda) = CIRC(T(X, Y, Z)), W, \lambda \cup Y)$$ The models of T can be decomposed in a model of A, a model of A and the difference between them. Circumscription minimizes W, hence makes them as close as possible, where closeness is wireless to set containment. # 3 3 Winslett's update Winslett's update method modifies models of h one-byone, replacing each one with the closest one within the models of A. Local proximity methods are better related to circumscription where all letters are minimized Circumscription without varying letters is immediately expressed as $$CIRC(T(X)|X,\emptyset) = \neg X *_{\mathcal{U}} T(X)$$ In order to correlate Winslett's update with circumscription, we must be sure that to each distinct model of h correspond incomparable models in the circumscriptive theory. This is obtained by the following reduction $$T(X,Y,Z) = K(Y) \wedge (Y \neq Z) \wedge A(X) \wedge (W = (X \neq Y))$$ $$K(X) *_{W} A(X) = CIRC(T(X, Y, Z)), Y \cup Z \cup W(X)$$ The sub-formula $Y \neq Z$ guarantees that every two models M and N of K, with different assignments to Y, are incomparable because it cannot be the case that $(M \cap Y) \subseteq (N \cap Y)$ and $(M \cap Z) \subseteq (N \cap Z)$ at the same time. The above reduction can be rephrased so as to eliminate varying letters (X). In fact, we obtain $$T(X | Y, W, Z) = h(Y) \wedge (Y \neq Z) \wedge A(Y \neq W)$$ $$h(X) *_{W} A(X) = CIRC(T(X | Y | W, Z)), Y \cup Z \cup W, \emptyset)$$ $$\wedge [X = (W \neq Y)]$$ where $A(Y \neq W)$ denotes 4 where all occurrences of $x_i$ are replaced by $y_i \neq w_i$ for all $i \geq 1$ and $i \leq n$ #### 3 4 Borgida's revision Borgida's revision operator [Borgida, 1985] is very similar to Winslett's one the only difference being that the result of the first one has to be $K \wedge A$ when not contradictory. Since $*_B$ and $*_W$ coincide when K is a set of literals, the reduction $$CIRC(T(X), X, \emptyset) = \neg X *_B T(X)$$ holds for \*B In the other direction one can find a direct transformation from Borgida's revision into circumscription very much like Winslett's one The fact that the result must be $K \wedge A$ can be taken into account by selecting the models of this formula as minimal $$K(X) \bullet_B A(X) = CIRC(T(X, Y|R, Z, W)|R \cup Z \cup W, X \cup Y)$$ where T is defined as follows $$T(X,Y|R,Z,W) = [K(X) \lor ((Y=R) \land (R \neq Z))] \land \\ \land K(Y) \land A(X) \land [W=(X \neq Y)]$$ This reduction coincides with Winslett's one, exception made for the sub-formula $K(X) \vee ((Y = R) \wedge (R \neq Z))$ . Given a model X of P, if there is a model of R with the same value, the formula T has a model $(X, Y = X, R = \emptyset, Z = \emptyset)$ that is surely minimal If such a model does not exist, the only models of T(X,Y,R,Z) are those having an Y such that K(Y) is true, R equal to Y and Z the complement of Y. Hence, we have only the models of Winslett's transformation, so the result coincides with the result of applying Winslett's revision. This is exactly the definition of revision given by Borgida. ## 3 5 Ginsberg's revision Ginsberg's revision is quite similar to Satoh's principle of minimization. The main difference between them is that the latter minimizes distance given as set of literals, while the first one maximizes the number of true formulae of K Two simple relations correlating Ginsberg's revision and circumscription are the following ones $$CIRC(T, P, Z) = \neg P *_{G} T$$ $$\{f_{1}, , f_{m}\} *_{G} A(X) = CIRC(T(X, Y), Y, X)$$ where T(X,Y) is defined as $$T(X,Y) = A(X) \land (y_1 \neq f_1) \land \land (y_m \neq f_m)$$ The first formula follows from the known fact that if A is a set of literals, then $A *_G A = K *_S A$ (see [Eiter and Gottlob, 1992]) Regarding the second reduction, remind that Ginsberg's revision finds the maximal subsets K' of K at K' and K' are not contradictory, whereas the circumscription of a formula takes only the models with a maximal set of false variables. Hence, to revise a set of formulae, we have to include a formula $f_{\bullet}$ if and only if a variable $g_{\bullet}$ (not contained in the original formulae) is false. The transformation follows ## 36 Forbus' update While all the above reductions are quite simple and straightforward, what we found for Forbus' update operator $*_F$ [Forbus, 1989] is much more complex. Since the resulting formula is somehow cumbersome and difficult to read, we prefer to give a sketch of the steps needed in the reduction. Similarly to the other local-proximity model-based formalisms, we establish relations between Forbus update and circumscription (or NCIRC) where all letters are minimized We first observe how circumscription and NCIRC can be expressed using Forbus update Reduction of NCIRC to Forbus operator is trivial $$NCIRC(T(\lambda), \lambda, \emptyset) = \neg \lambda *_F T(\lambda)$$ It is also possible to reduce circumscription to Forbus update. Very briefly this can be obtained by adding a suitable number of new variables $(O(n^3))$ and imposing that to each (set-containment) minimal model of T(X) corresponds a cardinality-minimal model over the extended alphabet The reduction of Forbus update to circumscription is very similar to Borgida's one. We have only to take in account that Forbus' update is based upon a minimizzation of the cardinality of the distances between models. Consider the formula $$K(X) *_F A(X) = CIRC(T(X, Y, W, V), V, X \cup Y \cup W)$$ where T(X|Y,W,V) expresses the fact that that X is a model of A that Y is a model of T, and V is a valutation of the cardinality of the distance between them Now let $$T(X,Y,W,V) = K(Y) \wedge A(X) \wedge (Y \neq Z) \wedge (W = (X \neq Y))$$ $$\wedge EQ(W,V) \wedge BEGIN(V)$$ Given a model of T and a model of A, this formula has exactly one model, namely the model in which X represents the model of A and Y the model of T. The variables W represents the simmetrical difference between X and Y. The formula EQ(W,V) is the polynomial-size formula that is true if and only if W and V have exactly the same number of positive literals. Finally, BEGIN(V) states that the positive literals of V are its first ones $$BEGIN(V) = (v_n \to v_{n-1}) \land \land (v_2 \to v_1)$$ Such a formula imposes that V and W have the same number of true literals, and that the set V has all the true atoms "at the beginning", so if W have three positive literals then $V = \{v_1, v_2, v_3\}$ # 3.7 AGM operators In previous sections we showed how we can reduce specific belief revision operators to circumscription and vice versa. Here we present a general methodology to transform any belief revision operator. The most general form of belief revision is given by the well-known postulates for revision (AGM postulates [Alchourron et al., 1985]). AGM postulates give eight basic properties that any belief revision operator should satisfy. Operators (\*AGM) satisfying the AGM postulates can be expressed as $$\mathcal{M}(h *_{AGM} A) = min(\mathcal{M}(A) \leq_h)$$ where $\leq_{K}$ is a transitive, reflexive and total relation based on K Note that not all the presented operators satisfy all AGM postulates. Updates and revisions defined by Borgida, Forbus, Satoh and Dalal are better generalized as reflexive and transitive orderings over pairs of models. The result of K\*A is $K \wedge A$ if consistent and $M(K*A) = \{J|\exists I \in M(K) \mid \langle I,J \rangle \in min(M(K) \times M(A) \leq)\}$ otherwise In both cases, we must choose the minimal models of a formula with a given ordering $\leq$ (or $\leq_K$ ). Any ordering over interpretations can be represented via a propositional formula $LEQ(\cdot,\cdot)$ (resp. $LEQ_K(\cdot,\cdot)$ ), such that $LEQ(\cdot,\cdot,\cdot)$ (resp. $LEQ_K(\cdot,\cdot,\cdot)$ ) is true iff $X \leq Y$ (resp. $Y \leq_K Y$ ). Using this formula, AGM revision operators can be reduced to circumscription via $$\begin{split} & K(X) *_{AGM} A(X) = w \wedge CIRC(T(X|Y|Z|\{w\})|X \cup Z \cup w, Y) \\ & \text{where } T(X|Y|Z,w) \text{ is defined as follows} \end{split}$$ $$T(\lambda, Y Z w) = (\lambda \neq Z) \wedge A(\lambda) \wedge A(Y)$$ $$\wedge (\neg w = LESS_{h}(Y, \lambda))$$ and $LESS_{R}(Y,X)$ represents the fact that $Y <_{R} X$ More precisely, $LESS_{R}(Y,X) \equiv LEQ_{R}(Y,X) \land \neg LEQ(X,Y)$ Note that K is missing in the circumscription, since it is implicit in $LEQ_{R}$ . The formula $X \neq Z$ makes two models with different valuations over X incomparable. Models of $[(X \neq Z) \land A(X) \land A(Y) \land (\neg w = LEQ_{R}(Y|X))]$ assign false to w iff X is not a minimal model of A writh X is not a minimal model of X in the initial model of X in the models of the circumscription make X false. Conjoining the result with X we get rid of the non-minimal models. The other generalization is even more complex. In fact we must enforce that we choose the models M of A such that there exists a model N of K and for all models M' of K and models K' of K it does not hold that $M' \neq M$ , $N' \neq N$ and LEQ(M'N', MN) We want to point out that these transformations are not necessarily polynomial. In fact, we do not know what is the size of the formula LEQ(X,Y) writh the size of X and Y. It might very well be exponential # 4 Relations among belief revision operators In Section 3 we found relations between circumscription and belief revision operators. Here we focus on relations among the various revision operators. In particular, we show that Satoh's and Ginsberg's operators can be reduced one to the other and that Winslett's one can be reduced to both. Note that these operators belong to three different classes of operators, namely formula-based (Ginsberg), model-based with global proximity (Satoh) and model-based with local proximity (Winslett). Therefore, our results make evident the similarities between all these operators, pointing out, at the same time, their differences Ginsberg's operator can be reduced to Satoh's opera- $$A'(X|Y) = A \wedge (y_1 \to f_1) \wedge A \wedge (y_m \to f_m)$$ $$\{f_1, \dots, f_m\} *_G A = \{y_1, \dots, y_m\} *_S A'(X|Y)$$ The reverse reduction is $$A''(X Y) = K(Y) \wedge A(X) \wedge (W \rightarrow (X = Y))$$ $$K(Y) *_{S} A(X) = \{w_{1}, u_{n}\} *_{G} A''(Y, Y)$$ More complex, but still polynomial, is the reduction of Winslett's operator into Ginsberg's one $$\begin{array}{l} K(X) *_W A(X) = (W \cup Y \cup Z) *_G F(X \mid Y \mid Z, W) \\ \text{where } F(X,Y,Z,W) \text{ is} \\ F(X\mid Y,Z,W) = K(Y) \wedge A(X) \wedge (\neg Y \vee \neg Z) \wedge (W \rightarrow (X=Y)) \\ \text{Through the above reductions it is also possible to reduce } *_W \text{ to } *_S \end{array}$$ # 5 Syntactically-restricted Knowledge Bases In this section we focus on knowledge bases of a restricted syntactic form. Among the restricted cases, Horn knowledge bases are of particular interest for several reasons. First of all, since Horn clauses can represent causality relations, they are expressive enough to represent many real situations. Moreover, reasoning with Horn knowledge bases is significantly simpler than reasoning with general ones (see [Dowling and Gallier, 1984]) and also revising them is, in general, simpler than revising general ones (see [Eiter and Gottlob, 1992]) "While reductions from circumscription to belief revision preserve the syntactic form of the original theory, reductions from belief revision to circumscription do not preserve the syntactic form of the formulae $\$ an example, notice that the relation $X \neq Y$ cannot be expressed as an Horn formula As a consequence, it is easy to apply results on restricted cases of belief revision to circumscription, but the other way around is less likely to produce interesting results There are several reasons why the revision of Horn theories cannot be expressed as the circumscription of a Horn formula First of all, results of Eiter and Gottlob show that reasoning with the revision of a Horn knowledge base is coNP hard for all operators considered, while reasoning with Horn theories under circumscription is a polynomial task. As a consequence, reductions from belief revision to circumscription preserving the syntactic form cannot be done in polynomial time (assuming P $\neq$ NP) Secondly, the result of revising a Horn knowledge base with a Horn formula might be a non-Horn formula For example, the result of $\{a, b\}$ \* $(\sim>a \lor ->b)$ is $a \ne b$ for all operators, and $a \ne b$ cannot be expressed as an Horn formula On the other hand, the circumscription of a Horn theory is an Horn theory # 6 Analysis and Discussion In the previous sections we showed new relations relating belief revision operators and circumscription. These relations point out the close connections between the two fields Many side benefits can be obtained from the established relations. In this section we want to point out the most important benefits obtained # 6 1 Compact Representation of NCIRC In two recent papers [Cadoli et al., 1995a, 1995b] Cadoli, Donini and the present authors analyze the size of the explicit representation of circumscription and belief revision operators. More precisely, taking as an example belief revision, it is determined the size of the smallest propositional formula $A_1$ that is equivalent to A \* A, where \* is one of the belief revision operators analyzed As it turns out, the size of the explicit representation of the result of revising a knowledge base is, in general, exponential with |A| + |A|. Differences arise between the various operators. The result of revising a knowledge base using Dalah's revision operator admits a polynomial-sized explicit representation, if we allow new variables in the representation. More precisely, there exists a formula $A_1$ using the letters of A and A and possibly new ones, whose size is polynomial in |K| + |A|, at , for any q using only variables of A and A we have that $A_1 \models q$ if and only if $A *_D A \models q$ We show that NCIRC(T,P,Z) always admits an explicit representation whose size is polynomial wit |T|, via the proof given for Dalal's belief revision operator NCIRC(T,P,Z) is the set of models of T with a least number of elements. Given T and P, we can compute the least number k of true letters, hence the explicit representation can be obtained conjoining T with a formula stating that at least k letters of the set P must be true. That is $NCIRC(T,P,Z) \approx T \wedge ATLEAST(k,P)$ where ATLEAST(k,P) is a formula of size $O(n^3)$ that we do not show for the sake of brevity # 6 2 Computational Complexity Analysis A valuable byproduct of the reductions presented in this work is the ability of importing complexity results obtained in one field into the other one For example, in the general case, inference using the belief revision operators introduced by Satoh, Borgida and Winslett has the same complexity of inference under circumscription While this result is not novel, it has been proven in [Eiter and Gottlob, 1993,1992], several other interesting results can be obtained As an example, it is known that deciding whether a clause follows from the circumscription (with all letters minimized) of a theory composed of b1 nary clauses (I e clauses with at most two literals) is a coNP-hard problem [Cadoli and Lenzemni, 1994] We can use this result to prove that inference in the revision of a knowledge base composed of binary clauses is a coNP-hard problem for all operators except Dalai's one # 7 Conclusions We have presented a complete analysis of the relations between belief revision operators on one hand and circumscription and its cardinality-based variant on the other hand Furthermore, we have pointed out the many benefits that the established correlations can deliver to the analysis of both fields Our results greatly extends Winslett's results on transforming her revision operator into circumscription presented in [Winslett, 1989] Even though Winslett's analysis could be further extended to deal with other operators, our results provide us with more direct and simple translations #### Acknowledgments We want to thank Marco Cadoli and Francesco M Donim for helpful discussions on the content of this paper #### References - [Alchourron et al , 1985] C E Alchourron, P Garden fore, and D Makinson On the logic of theory change Partial meet contraction and revision functions *Journal of Symbolic Logic* 50 510-530, 1985 - [Borgida, 1985] A Borgida Language features for flexible handling of exceptions in information systems ACM Transactions on Database Systems, 10 563-601 1985 - [Cadoli and Lenzenni, 1994] M Cadoli and M Len7 erim The complexity of propositional closed world reasoning and circumscription *Journal of Computer and System Sciences*, 48 255-310 1994 - [Cadoli et al , 1995a] M Cadoli F M Donmi and M Schaerf On compact representations of circumscription In Twelfth Symposium on Theoretical As pects of Computer Science (STACS 95) pages 205 216,1995 - [Cadoli et al , 1995b] Marco Cadoli Francesco Donim Paolo Liberatore, and Marro Schaerf The size of a revised knowleddge base In Proceedings of the Four teenth ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODb 95), 1995 To appear - [Dalai, 1988] M Dalai Investigations into a theory of knowledge base revision Preliminary report In Proceedings of the Seventh National Conference on Art ficial Intelligence (AA A1-88J pages 475-479 1988 - [de Kleer and Konohge, 1989] J de Kleer and K Konohge Eliminating the fixed predicates from a circumscription *Artificial Intelligence Journal*, 39 391-398, 1989 - [Dowling and Gallier 1984] W P Dowling and J H Gallier Linear-time algorithms for testing the sat isfiability of propositional Horn formulae *Journal of Logic Programming*, 1 267-284, 1984 - [Eiter and Gottlob, 1992] T Eiter and G Gottlob On the complexity of propositional knowledge base revision, updates and conterfactuals *Artificial Intelligence Journal*, 57 227-270, 1992 - [Eiter and Gottlob, 1993] T Eiter and G Gottlob Propositional circumscription and extended closed - world reasoning are n<sub>2</sub>-complete Theoretical Computer Science, pages 231-245, 1993 - [Forbus, 1989] K D Forbus Introducing actions into qualitative simulation In *Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89)*, pages 1273-1278, 1989 - [Gardenfors, 1988] P Gardenfors Knowledge in Flux Modeling the Dynamics of Eptstemtc States Bradford Books, MIT Press, Cambridge, MA, 1988 - [Ginsberg, 1986] M L Ginsberg Conterfactuals *Artificial Intelligence Journal*, 30 35-79, 1986 - [Katsuno and Mendelzon, 1989] H Katsuno and A O Mendelzon A unified view of propositional knowledge base updates In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89) pages 1413-1419, 1989 - [Katsuno and Mendelzon, 199I] H Katsuno and A O Mendelzrn On the difference between updating a knowledge base and revising it In Proceedings of the Second International Conference on the Princtples of Knowledge Representation and Reasoning (KR 91), pages 387-394 1991 - [Kharta and Lifschitz, 1994] G N Kharta and V Lifschitz Actions with indirect effects In *Proceedings of the Fourth International Conference on the Principles of Knowledge Representation and Reasoning (KR-94)-*, pages 341-350, 1994 - [Lifschitz, 1985] V Lifschitz Computing circumscription In *Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCA1 85)* pages 121-127, 1985 - [McCarthy, 1980] J McCarthy Circumscription A form of non-monotonic reasoning *Artificial Intelly gence Journal*, 13 27-39, 1980 - [Reiter, 1980] R Reiter A logic for default reasoning Artificial Intelligence Journal, 13 81-132, 1980 - [Satoh 1988] K Satoh Nonmonotonic reasoning by minimal belief revision In Proceedings of the International Conference on Fifth Generation Computer Sys tems (FGCS-88), pages 455-462 1988 - [Winslett 1989] M Winelett Sometimes updates are circumscription In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89) pages 859-863, 1989 - [Winslett, 1990] M Winslett Updating Logical Databases Cambridge University Press, 1990