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A b s t r a c t 

Detecting interactions and resolving conflicts is 
one of the key issues for generative planning 
systems Hierarchical Task Network (HTN) 
planning syetems use critics for this purpose 
Critics have provided extra efficiency and flex­
ibi l i ty to H T N planning systems, but their 
procedural -and sometimes domain-specific -
nature has not been amenable to analytical 
studies As a result, l i t t le work is available on 
the correctness or efficiency of critics This pa­
per describes a principled approach to handling 
conflicts, as implemented in UMCP 1 , an HTN 
planning system Critics in UMCP have desir­
able properties such as systematicity and the 
preservation of soundness and completeness 

1 Introduct ion 
Detecting interactions and resolving conflicts is one of 
the key issues for planning systems The importance 
of this issue was realized as long ago as the 1970s in 
early AI planning systems such as STRIPS [Fikes and 
Nilsson, 1971] and HACKER [Sussman, 1990] The in­
troduction of task networks and task decomposition in 
NOAH [Sacerdoti, 1977] provided an even richer set of 
interactions and resolution methods, and a component of 
NOAH called the critic mechanism was designed for han­
dling these interactions Critics helped prune the search 
space by detecting dead ends in advance and by resolving 
many types of conflicts as soon as they appeared Cri t­
ics could also draw upon domain-specific information to 
do their job more efficiently The power of the critic 
mechanism was quickly realized and adopted by hierar­
chical task network (HTN) planning systems [Tate, 1977, 
Vere, 1983, Wilkms, 1988] 
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1 Universal Method-Composition Planner 

Some of the critics identified by Saeerdoti [1977] 
(based in part on Su6sman e [1990] earlier work) include 

• Resolve Conflicts The conflicts handled by this 
critic, later referred to as 'deleted-condition" inter­
actions, have received the bulk of the attention in 
the literature 

• Eliminate redundant preconditions This critic both 
handled "phantom" conditions and found cases 
where two different procedural networks added the 
same primit ive prior to usage 

In addition to the interactions handled by these critics, 
several other situations that can arise in planning have 
been identified in the literature 

• For his DEVISER system Vere [1983] has discussed 
temporal interactions between the times at which 
actions must occur 2 He has used temporal window-
ing and performed an analysis thereof to eliminate 
possible reductions 

• Wilk ins' SIPE system [W llkins, 1988] has added sev­
eral different mechanisms for recognizing resource 
interactions and for allowing user preferences to be 
considered when making a choice among reductions 

• Yang, Nau, and Hendler [Yang et al , 1993] have 
discussed a general "action-precedence™ interaction 
that, while less general than deleted-condition in­
teractions, can be exploited in some planning situ­
ations They also have discussed a 'simultaneous 
action' interaction that arises in some domains 

• To handle iteration in plans, Drummond [1985] has 
proposed several extensions to the procedural net, 
and an extension to Saeerdoti's Resolve-conflicts 
critic 

• NONLIN [Tate, 1977] and 0-Plan2 [Tate et al , 
1994] provide various condition types which can be 
used to reduce the search space In 0-Plan2, Con­
straint Managers support decision making of the 
planner by providing complete information about 
the constraints they are managing 

• A number of special-purpose "domain dependent" 
planning systems have identified interactions occur-
ring only in the particular domain for which the sys-

2See also [Dean, 1983] 
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tem is being developed Typically special-purpose 
heuristics are introduced to exploit this knowledge 

As can be seen, the many interactions which need to 
be handled during planning go beyond the (relatively) 
well-understood deleted-condition interaction To han­
dle these interactions, implemented planning systems 
usually use critice or similar mechanisms Unfortunately 
it is difficult for a user to exploit these planning sys­
tems effectively (1 e reasonably efficiently and correctly) 
without an in-depth understanding of the implementa­
tion detail of the critic mechanisms To reason about 
analytical properties of such mechanisms (1 e system-
aticity, soundness, completeness), a general model of in­
teractions and critics is clearly needed 

The work described in [Erol et al , 1994a, 1994b] 
presents a formal model for HTN planning, which pro-
vides a constraint-based representation for interactions 
among fasks and enables principled approaches to con-
flict detection and handling m HTN planning This pa­
per presents conflict management and constraint han­
dling techniques based on that framework Among the 
properties of these techniques are soundness, complete-
ness and systematicity These techniques have been im­
plemented in UMCP, an HTN planning system 

2 An Overview of H T N planning 
Here is a brief informal description of HTN planning 
For a precise formal description, see [Erol et al , 1994a, 
1994b] 

H T N planning representations for actions and states 
of the world are similar to those used in STRIPS-style 
planning 3 Each state of the world is represented by the 
set of atoms true in that state Actions, which in HTN 
planning are usually called primitive tasks, correspond to 
state transitions, l e each action is a partial mapping 
from the set of states to the set of states 

The primary difference between HTN planners and 
STRiFS-style planners is in what they plan for, and how 
they plan for it In STRlPS-style planning, the objec­
tive is to find a sequence of actions that wil l bring the 
world to a state that satisfies certain conditions or "at­
tainment goals " Planning proceeds by finding operators 
that have the desired effects and by making the precon­
ditions of those operators into subgoals In contrast, 
HTN planners search for plans that accomplish task net­
works, which can include things other than just attain­
ment goals, and they plan via task decomposition and 
conflict resolution, which shall be explained shortly 

A task network is a collection of tasks that need to 
be carried out, together wi th constraints on the order 
in which tasks can be performed, the way variables are 
instantiated, and what literals must be true before or 
after each task is performed Unlike STRIPS-style plan­
ning, the constraints may or may not contain condi­
tions on what must be true in the final state For-

3The term "STRIP s-style" pluming » used to refer to any 
planner (either total- or partial-order) in which the planning 
operators are "STRIP Soperators" (i e , operator consisting of 
three lists of atoms a precondition net, an add List, and a 
delete list) 
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Figure 2 The Standard HTN Planning Procedure 
executed directly, because they represent activities that 
may involve performing several other tasks For example 
the task of traveling to New York can be accomplished in 
several ways, such as flying, driving or taking the train 
Flying would involve tasks such as making reservations, 
going to the airport, buying ticket, boarding the plane, 
and flying would only work if certain conditions were 
satisfied availability of tickets, being at the airport on 
t ime, having enough money for the ticket etc 

Ways of accomplishing non-primitive tasks are repre-
sented using constructs called methods A method is a 
syntactic construct of the form (a,d) where a is a non-
primit ive task, and d is a task network It states that 
one way to accomplish the task α is to achieve all the 
tasks in the task network d without violating the con­
straints in d For example, the task network in Figure 1 
presents one possible way of accomplishing on v1 

thus (achieve[on(v1,v2 ) ] , d) is a method for Blocks world 
domain, where d is the task network in Figure 1 

An HTN problem is represented as a triple P = 
(d, 1,D), where d is the task network we need to plan 
for, / is the init ial state, and V is the set of operators 
and methods associated wi th the planning domain 

A number of different systems that use heuristic algo-
rithms have been devised for HTN planning [Tate, 1977, 
Vere 1983, Wilkins, 1988], and several recent papers 
have tried to provide formal descriptions of these algo­
rithms [Yang, 1990 Rambhampati and Hendler, 1992] 
Figure 2 presents the essence of these algorithms HTN 
planning works by expanding tasks and resolving con­
flicts iteratively, unt i l a conflict-free plan can be found 
that consists only of primit ive tasks 

Expanding or reducing each non-primitive task (steps 
3-5) is done by finding a method capable of accom­
plishing the non-primit ive task, and replacing the non-
pnmi t ive task with the task network produced by the 
method Details of how to do the task expansion is pre­
sented in [Erol et al , 1994a, 1994b] 

The task network produced in Step 5 may contain con­
flicts caused by the interactions among tasks The job 
of f inding and resolving such interactions is performed 
by critics This is reflected in Steps 6 and 7 of Figure 2 
after each reduction, a set of critics is checked so as to 
recognize and resolve interactions between this and any 

other reductions Thus, critics provide a general mecha­
nism for detecting interactions early, so as to reduce the 
amount of backtracking 

3 P l a n n i n g i n U M C P 
One way of finding solutions to HTN planning prob-
lems is to generate all possible expansions of the input 
task network to primit ive task networks, then generate 
all possible ground instances (assignment of constants 
to variables) and total ordermgs of those pr imit ive task 
networks and finally output those whose constraint for­
mulae evaluate to true However, considering the size of 
the search space it is more appropriate to try to take 
advantage of the structure of the problem, and prune 
large chunks of the search space by eliminating in ad­
vance some of the variable bindings, orderings or meth­
ods that would lead to dead-ends To accomplish this 
UMCP uses a branch-and-bound approach [Kanal and 
Kumar, 1988] 

A task network can be thought of as an impl ic i t rep­
resentation for the set of solutions for that task network 
UMCP works by refining a task network into a set of 
task networks whose sets of solutions together make up 
the set of solutions for the original task network Those 
task networks whose set of solutions are determined to be 
empty are filtered out In this aspect, UMCP nicely fits 
into the general refinement search framework described 
in [kambhampati et al 1995] 

Figure 3 contains a sketch of the high-level search al­
gorithm in UMCP Search is implemented by keeping 
an OPEN-LIST of task networks in the search space 
that are to be explored, by altering how task networks 
are picked from the OPEN-LIST and how they are in­
serted depth-first, breadth-first, beat-first and various 
other search techniques can be employed Step 5 checks 
whether in is a solution node, if all tasks in in are prim­
it ive, the constraint formula is the atom T R U E , and the 
list of constraints that have been committed to be made 
true but not yet made true is empty, then all task order­
mgs and variable assignments consistent w i th the aux­
il iary data structures associated wi th in are plans for 
the original problem B Those plans can be easily enu-

4Constraints and the data structure* will be discussed in 
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merated If tn is not a solution node, then it is refined 
by some refinement strategy ft, and the resulting task 
networks are inserted back into the OPEN-LIST 

Three types of refinement strategies used in UMCP are 
task reduction, constraint refinement, and user-specific 
critics Task reduction involves retrieving the set of 
methods associated with a non-primitive task in tn , ex­
panding in by applying each method to the chosen task 
and returning the resulting set of task networks User-
specific critics is one of the places where UMCP can be 
tailored for specific domains If a domain-specific refine­
ment strategy is available it can be used to improve the 
performance of the planner This paper wil l focus on 
constraint refinement 

4 Cons t ra in t Hand l i ng in U M C P 
4 1 O v e r v i e w 
This section contains an overview of the constraint han­
dling mechanisms in UMCP, which serve as domain in­
dependent c r i t i c They are designed to preserve sound­
ness, completeness, and systematic!tv Details for each 
type of constraint are summarized in the next section 
For a ful l description, see [Erol, 1995] 

The three types of decisions in HTN planning are the 
choice of method for each non-primitive task, the choice 
of constant to assign to each variable, and the ordermgs 
of tasks Of those three the choice of method is directl} 
reflected in the task network (1 e in the list of tasks 
and the constraint formula) Auxiliary data structures 
are required for the other two Thus, along with each 
task network, UMCP keeps a list of possible values for 
each variable values until the size of the list exceeds a 
threshold, and a partial order graph of task nodes Both 
of those structures wil l be referred to as commitments 
Dealing wi th some constraints might not be possible at 
the current level of detail in a task network, dealing with 
those constraints has to be postponed until the task net­
work is refined further Unt i l then those constraints 
are stored in a list called the Promissorj List (the list 
of constraints the planner has committed, to make true 
but has not done so yet) 

The four phases of constraint refinement in UMC P are 
constraint selection, constraint update constraint prop­
agation and constraint simplification which are carried 
out sequentially 

Constrain/ selection involves deciding which con­
straints in the constraint formula or in the commit­
ments to work on Constraint selection returns a list 
of constraint formulae, where each formula is a conjunct 
of atomic constraints The list of constraint formulae 
is selected in such a way that (a) the formulae in the 
list are mutual ly inconsistent in the presence of com 
muments ( in order to preserve systematicity), and (b) 
the list covers all possibilities (in order to preserve com 
pleteness) Some examples of constraints that may be 
selected include (1) an atomic constraint6 and its nega­
tion, (n) a conjunct of unit clauses from the constraint 

detail in the next section 
°An atomic constraint refers to any instance of the types 

of constraints discussed in Section 2 

formula, or (in) a set of possible constraints for a vari­
able - l e if the set of possible values for a variable v 
are {trucki,truck2,trucks}, UMCP may branch out on 
the constraints (v = zrucifci), (v = Jrucjfe2) (v = trucks) 

For each constraint formula in the list computed in the 
constraint selection phase, the constraint update phase 
computes a task network for every possible way of mak­
ing the selected formula true by further restricting the 
commitments of the task network For each atomic con­
straint in the selected constraint formula, the following 
steps are executed first it is evaluated, if it evaluates to 
true, it can be ignored, if it evaluates to false, the task 
network fails, otherwise further restrictions are placed 
on the commitments (variable bindings, orderings etc ) 
to make the constraint necessarily true in all further re-
finements of the task network There might be multiple 
possible ways of accomplishing that, thus even atomic 
constraint update computes a list of task networks rather 
than a single task network However, UMCP does con­
straint update in such a way that there is no overlap 
among the set of solutions to the task networks in this 
list For some constraints, at the current level of detail 
in the task network, it might not be possible via restric­
tions on commitments to ensure that the constraint wi l l 
be true in all further refinements Those constraints are 
simply recorded in the Promissory List 

In the constraint propagation phase, UMCP evaluates 
and simplifies the constraints in the Promissory List of 
each task network produced during the constraint up­
date phase If anv of those constraints evaluate to false, 
the task network fails, those that evaluate to true are 
removed from the Promissory List Constraint update 
is performed on the remaining simplified constraints if 
possible at the current level of detail in the task net­
work This phase is repeated unt i l no more propagation 
is possible 

UMCP contains evaluation and simplification routines 
for every type of constraint, as described in the next sec­
tion These routines are used in the constraint simplifi­
cation phase to evaluate and simplify the constraint for­
mulae of the task networks produced, during the propa­
gation phase For instance if part of a conjunct evaluates 
to true that part is dropped, if it evaluates to false the 
whole conjunct evaluates to false Disjuncts are treated 
analogously Thosp task networks whose constraint for­
mulae evaluate to false are pruned 

4 2 Details 
This section describes how constraint evaluation and up­
date is done for each tvpe of constraint Update always 
involves evaluating the constraint and it fails whenever 
the constraint evaluates to false This is omitted from 
the explanations bflow for brevity 

Var iab le B i n d i n g Cons t ra in t s 

T y p e (v = a) 
Eva lua t i on Return true if constant a is the only pos-
sible value for variable v1, return false if a is not a possible 
value for v, return ( v = a) otherwise 
U p d a t e To make it true, set the possible value list for 
v to a, replace v wi th a throughout the task network To 
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• Completeness Any solution for tn is also a solution 
for some task network in R(tn) Thus constraint 
refinement does not eliminate any valid solutions 
UMCP satisfies this property because any time a 
constraint IS selected m constraint selection phase, 
its negation is also selected (unless it contradicts 
wi th the commitments or the constraint formula), 
and all possible ways of making a constraint true 
are tried in the constraint update phase 

• Systematicity The set of candidate solutions for 
each task network in R(tn) are mutually disjoint 
Thus UMCP does not examine the same candidates 
mult iple times The way systematicity is accom­
plished in UMCP is by making sure (a) the branches 
in constraint selection are mutually exclusive (i e 
any two conjuncts have a common literal, positive 
in one, negated in the other), (b) there is no over-
lap among the solution sets to the task networks 
produced in update phase 

5 Related Work 
Causal links are used by POCL planners such as 
SNLP [McAllester and Rosenbhtt, 1991] to establish pre­
conditions and to detect threats Causal links are also 
employed by UMCP in the form of special state con­
straints stored in the Promissory List SNLP B threat 
removal process is similar to how UMCP handles those 
special constraints in its constraint propagation phase 

[Chapman, 1987] introduced the MTC (modal t ruth 
criterion) to tell whether a literal is true at a given point 
in a part ial l j -ordered plan In order to evaluate state 
constraints, UMCP uses an extended version of the MTC 
that also accounts for compound tasks UMCPs ex­
tended M T C algorithm runs m quadratic time—and it 
is directly applicable for computing Chapman & M TC 
for which the other known algorithms run in cubic l ime 

NOAH [Sacerdoti, 1977] employs its resolve conflicts 
critic to deal w i th deleted-condition interactions which 
are explicit ly represented by state constraints in UMCP 
The constraint refinement techniques of UMCP guaran­
tees these interactions wi l l be handled without sacrificing 
soundness or completeness 

UMCP evaluates each constraint before trying to make 
it true, and skips those constraints that are already true, 
and hence it emulates NOAH s eliminate redundant pre­
conditions crit ic 

HTN planners often allow several type6 of conditions 
in methods How to deal wi th those conditions has been 
a topic of debate 

NONLIN [Tate, 1977] evaluates filter conditions as 
soon as they are encountered, using the QA (Question 
Answering) mechanism QA returns false unless it can 
verify those conditions to be necessarily true, even if 
the conditions are possibly true Thus, NONLIN often 
backtracks over filter conditions which would have been 
achieved by actions in later task expansions or by more 
ordering and variable binding commitments As a result, 
NONLIN may fai l to find a solution when a solution ex 
ists, or may miss a short and simple solution and do 
much more work to find a longer and more complicated 
solution 

At first glance, the problems such as these might seem 
to argue against the use of filter conditions at one ex­
treme, using filter conditions immediately to prune the 
search space sacrifices completeness, and at the other 
extreme, postponing their use unti l the plan is complete 
(so as to preserve completeness) is inefficient 9 

Although the above argument IB partially correct, it 
ignores a third possibility that lies between the two ex­
tremes In general, to preserve completeness, a plan­
ner cannot use a filter condition to prune the Bearch 
space unless the filter condition evaluates to "necessar­
ily false"—but this does not necessarily require that the 
task network has been expanded into a primit ive and 
tot ally-ordered plan Instead, UMCP simply records the 
filter conditions in the Promissory List and prunes the 
task network only when one of them becomes necessarily 
false 

More specifically, UMCP handles filter conditions and 
other constraints as follows 

• Some instances of variable binding, ordering, and 
state constraints can be dealt with immediately For 
example, conditions (e g , an object s type) that are 
not affected by the actions are represented by con­
straints of the form ( i n i t i a l l y /) Such constraints 
can be evaluated at anv time b\ querying the ini t ia l 
state, and they can be committed to by appropri­
ately restricting the possible values for the variables 
i n / 1 0 

• Those constraints that cannot be dealt with imme­
diately are stored in the Promissory List, and are 
processed in the constraint propagation phases 

Constraints in UMCP go through three stages thev 
first appear in constraint formula then possibly in the 
Promissory List if they cannot be dealt wi th at the time 
they are selected in constraint selection phase, and fi­
nally they are reflected in restrictions on possible values 
for variables and task ordenngs This three-stage ap­
proach facilitates dealing with the disjunctions in the 
constraint formula, and by postponing its processing of 
some types of constraints UMCP preserves complete­
ness without sacrificing efficiency 

6 Conclusion 
Dealing with numerous types of interactions 16 an im­
portant aspect of planning systems The work described 
in [Erol et al 1994a, 1994b] has provided a formal frame­
work for representing interactions and conflicts via con­
straints, and in this paper we have introduced techniques 
for constraint handling as a mean6 for detecting interac­
tions and resolving conflicts Those techniques preserve 
soundness completeness, systematicity, and they have 
been implemented in UMCP, an HTN planning system 

BIn fact, Collins and Prvor [1992] have made a similar 
argument against filler conditions in the context of planning 
with STRIPS-Btyle operators 

10srPE [WilkinB, 196B] uses a "soil hierarchy" for thiB pur 
pose the only difference in UMCP is that UMCP allows al 
bitraiy boolean formulae constructed from all types of con­
straints, instead of a conjunct of constraints as in SD?E 
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By instantiating the constraint selection strategy in 
different ways, various commitment strategies discussed 
in the literature can be used by UMCP For example, 
variable instantiation can be done before anything else 
(as in NONLIN) , all pr imit ive tasks can be totally or­
dered as soon as they appear in task networks, or task 
expansions can be deferred unt i l all conflicts have been 
resolved (least commitment) Currently we are design­
ing experiments to empirically evaluate these techniques 

UMCP'e constraint-handling mechanism provides the 
capabilities of many domain-independent critics dis­
cussed in the literature, and UMCP'fl user-specific critics 
module can be used to incorporate domain-specific crit­
ics aa well The modular and formal nature of UMCP 
makes it readily extensible We are currently exploring 
ways of extending UMCP's constraint-handling mecha­
nism to handle numerical and complex temporal con­
straints BO that it can do deadline and resource man­
agement, and provide the capabilities of other domain-
independent critics 
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