
A Critical Look at Critics in HTN Planning*
K u t l u h a n E r o l J a m e s H e n d l e r D a n a S N a u R e i k o T s u n e t o

kutluhan@cs umd edu hendler@cs umd edu nau@cs umd edu reiko@cs u m d edu

Computer Science Department,
Inst i tute for Systems Research, and

Inst i tute for Advanced Computer Studies
Universi ty of Mary land, College Park, MD 20742

A b s t r a c t

Detecting interactions and resolving conflicts is
one of the key issues for generative planning
systems Hierarchical Task Network (HTN)
planning syetems use critics for this purpose
Critics have provided extra efficiency and flex­
ibi l i ty to H T N planning systems, but their
procedural -and sometimes domain-specific -
nature has not been amenable to analytical
studies As a result, l i t t le work is available on
the correctness or efficiency of critics This pa­
per describes a principled approach to handling
conflicts, as implemented in UMCP 1 , an HTN
planning system Critics in UMCP have desir­
able properties such as systematicity and the
preservation of soundness and completeness

1 Introduct ion
Detecting interactions and resolving conflicts is one of
the key issues for planning systems The importance
of this issue was realized as long ago as the 1970s in
early AI planning systems such as STRIPS [Fikes and
Nilsson, 1971] and HACKER [Sussman, 1990] The in­
troduction of task networks and task decomposition in
NOAH [Sacerdoti, 1977] provided an even richer set of
interactions and resolution methods, and a component of
NOAH called the critic mechanism was designed for han­
dling these interactions Critics helped prune the search
space by detecting dead ends in advance and by resolving
many types of conflicts as soon as they appeared Cri t­
ics could also draw upon domain-specific information to
do their job more efficiently The power of the critic
mechanism was quickly realized and adopted by hierar­
chical task network (HTN) planning systems [Tate, 1977,
Vere, 1983, Wilkms, 1988]

'This work was supported in part by NSF Grants DDM
9201779, IRI-9306580 and NSF EEC 94-02384, AFOSR
(F49620-93-1-0065), the ARPA/Rome Laboratory Planning
Initiative (F30602-93-C-0039), and ONR giant N00014 91-J-
1451 Any opinions, findings, and conclusions or recommen­
dations expressed in this materia] are those of the authors
and do not necessarily reflect the views of the National Sci­
ence Foundation or ONR

1 Universal Method-Composition Planner

Some of the critics identified by Saeerdoti [1977]
(based in part on Su6sman e [1990] earlier work) include

• Resolve Conflicts The conflicts handled by this
critic, later referred to as 'deleted-condition" inter­
actions, have received the bulk of the attention in
the literature

• Eliminate redundant preconditions This critic both
handled "phantom" conditions and found cases
where two different procedural networks added the
same primit ive prior to usage

In addition to the interactions handled by these critics,
several other situations that can arise in planning have
been identified in the literature

• For his DEVISER system Vere [1983] has discussed
temporal interactions between the times at which
actions must occur 2 He has used temporal window-
ing and performed an analysis thereof to eliminate
possible reductions

• Wilk ins' SIPE system [W llkins, 1988] has added sev­
eral different mechanisms for recognizing resource
interactions and for allowing user preferences to be
considered when making a choice among reductions

• Yang, Nau, and Hendler [Yang et al , 1993] have
discussed a general "action-precedence™ interaction
that, while less general than deleted-condition in­
teractions, can be exploited in some planning situ­
ations They also have discussed a 'simultaneous
action' interaction that arises in some domains

• To handle iteration in plans, Drummond [1985] has
proposed several extensions to the procedural net,
and an extension to Saeerdoti's Resolve-conflicts
critic

• NONLIN [Tate, 1977] and 0-Plan2 [Tate et al ,
1994] provide various condition types which can be
used to reduce the search space In 0-Plan2, Con­
straint Managers support decision making of the
planner by providing complete information about
the constraints they are managing

• A number of special-purpose "domain dependent"
planning systems have identified interactions occur-
ring only in the particular domain for which the sys-

2See also [Dean, 1983]

1592 PLANNING

tem is being developed Typically special-purpose
heuristics are introduced to exploit this knowledge

As can be seen, the many interactions which need to
be handled during planning go beyond the (relatively)
well-understood deleted-condition interaction To han­
dle these interactions, implemented planning systems
usually use critice or similar mechanisms Unfortunately
it is difficult for a user to exploit these planning sys­
tems effectively (1 e reasonably efficiently and correctly)
without an in-depth understanding of the implementa­
tion detail of the critic mechanisms To reason about
analytical properties of such mechanisms (1 e system-
aticity, soundness, completeness), a general model of in­
teractions and critics is clearly needed

The work described in [Erol et al , 1994a, 1994b]
presents a formal model for HTN planning, which pro-
vides a constraint-based representation for interactions
among fasks and enables principled approaches to con-
flict detection and handling m HTN planning This pa­
per presents conflict management and constraint han­
dling techniques based on that framework Among the
properties of these techniques are soundness, complete-
ness and systematicity These techniques have been im­
plemented in UMCP, an HTN planning system

2 An Overview of H T N planning
Here is a brief informal description of HTN planning
For a precise formal description, see [Erol et al , 1994a,
1994b]

H T N planning representations for actions and states
of the world are similar to those used in STRIPS-style
planning 3 Each state of the world is represented by the
set of atoms true in that state Actions, which in HTN
planning are usually called primitive tasks, correspond to
state transitions, l e each action is a partial mapping
from the set of states to the set of states

The primary difference between HTN planners and
STRiFS-style planners is in what they plan for, and how
they plan for it In STRlPS-style planning, the objec­
tive is to find a sequence of actions that wil l bring the
world to a state that satisfies certain conditions or "at­
tainment goals " Planning proceeds by finding operators
that have the desired effects and by making the precon­
ditions of those operators into subgoals In contrast,
HTN planners search for plans that accomplish task net­
works, which can include things other than just attain­
ment goals, and they plan via task decomposition and
conflict resolution, which shall be explained shortly

A task network is a collection of tasks that need to
be carried out, together wi th constraints on the order
in which tasks can be performed, the way variables are
instantiated, and what literals must be true before or
after each task is performed Unlike STRIPS-style plan­
ning, the constraints may or may not contain condi­
tions on what must be true in the final state For-

3The term "STRIP s-style" pluming » used to refer to any
planner (either total- or partial-order) in which the planning
operators are "STRIP Soperators" (i e , operator consisting of
three lists of atoms a precondition net, an add List, and a
delete list)

ER0L.ETAL 1693

Figure 2 The Standard HTN Planning Procedure
executed directly, because they represent activities that
may involve performing several other tasks For example
the task of traveling to New York can be accomplished in
several ways, such as flying, driving or taking the train
Flying would involve tasks such as making reservations,
going to the airport, buying ticket, boarding the plane,
and flying would only work if certain conditions were
satisfied availability of tickets, being at the airport on
t ime, having enough money for the ticket etc

Ways of accomplishing non-primitive tasks are repre-
sented using constructs called methods A method is a
syntactic construct of the form (a,d) where a is a non-
primit ive task, and d is a task network It states that
one way to accomplish the task α is to achieve all the
tasks in the task network d without violating the con­
straints in d For example, the task network in Figure 1
presents one possible way of accomplishing on v1

thus (achieve[on(v1,v2)] , d) is a method for Blocks world
domain, where d is the task network in Figure 1

An HTN problem is represented as a triple P =
(d, 1,D), where d is the task network we need to plan
for, / is the init ial state, and V is the set of operators
and methods associated wi th the planning domain

A number of different systems that use heuristic algo-
rithms have been devised for HTN planning [Tate, 1977,
Vere 1983, Wilkins, 1988], and several recent papers
have tried to provide formal descriptions of these algo­
rithms [Yang, 1990 Rambhampati and Hendler, 1992]
Figure 2 presents the essence of these algorithms HTN
planning works by expanding tasks and resolving con­
flicts iteratively, unt i l a conflict-free plan can be found
that consists only of primit ive tasks

Expanding or reducing each non-primitive task (steps
3-5) is done by finding a method capable of accom­
plishing the non-primit ive task, and replacing the non-
pnmi t ive task with the task network produced by the
method Details of how to do the task expansion is pre­
sented in [Erol et al , 1994a, 1994b]

The task network produced in Step 5 may contain con­
flicts caused by the interactions among tasks The job
of f inding and resolving such interactions is performed
by critics This is reflected in Steps 6 and 7 of Figure 2
after each reduction, a set of critics is checked so as to
recognize and resolve interactions between this and any

other reductions Thus, critics provide a general mecha­
nism for detecting interactions early, so as to reduce the
amount of backtracking

3 P l a n n i n g i n U M C P
One way of finding solutions to HTN planning prob-
lems is to generate all possible expansions of the input
task network to primit ive task networks, then generate
all possible ground instances (assignment of constants
to variables) and total ordermgs of those pr imit ive task
networks and finally output those whose constraint for­
mulae evaluate to true However, considering the size of
the search space it is more appropriate to try to take
advantage of the structure of the problem, and prune
large chunks of the search space by eliminating in ad­
vance some of the variable bindings, orderings or meth­
ods that would lead to dead-ends To accomplish this
UMCP uses a branch-and-bound approach [Kanal and
Kumar, 1988]

A task network can be thought of as an impl ic i t rep­
resentation for the set of solutions for that task network
UMCP works by refining a task network into a set of
task networks whose sets of solutions together make up
the set of solutions for the original task network Those
task networks whose set of solutions are determined to be
empty are filtered out In this aspect, UMCP nicely fits
into the general refinement search framework described
in [kambhampati et al 1995]

Figure 3 contains a sketch of the high-level search al­
gorithm in UMCP Search is implemented by keeping
an OPEN-LIST of task networks in the search space
that are to be explored, by altering how task networks
are picked from the OPEN-LIST and how they are in­
serted depth-first, breadth-first, beat-first and various
other search techniques can be employed Step 5 checks
whether in is a solution node, if all tasks in in are prim­
it ive, the constraint formula is the atom T R U E , and the
list of constraints that have been committed to be made
true but not yet made true is empty, then all task order­
mgs and variable assignments consistent w i th the aux­
il iary data structures associated wi th in are plans for
the original problem B Those plans can be easily enu-

4Constraints and the data structure* will be discussed in

1594 PLANNING

merated If tn is not a solution node, then it is refined
by some refinement strategy ft, and the resulting task
networks are inserted back into the OPEN-LIST

Three types of refinement strategies used in UMCP are
task reduction, constraint refinement, and user-specific
critics Task reduction involves retrieving the set of
methods associated with a non-primitive task in tn , ex­
panding in by applying each method to the chosen task
and returning the resulting set of task networks User-
specific critics is one of the places where UMCP can be
tailored for specific domains If a domain-specific refine­
ment strategy is available it can be used to improve the
performance of the planner This paper wil l focus on
constraint refinement

4 Cons t ra in t Hand l i ng in U M C P
4 1 O v e r v i e w
This section contains an overview of the constraint han­
dling mechanisms in UMCP, which serve as domain in­
dependent c r i t i c They are designed to preserve sound­
ness, completeness, and systematic!tv Details for each
type of constraint are summarized in the next section
For a ful l description, see [Erol, 1995]

The three types of decisions in HTN planning are the
choice of method for each non-primitive task, the choice
of constant to assign to each variable, and the ordermgs
of tasks Of those three the choice of method is directl}
reflected in the task network (1 e in the list of tasks
and the constraint formula) Auxiliary data structures
are required for the other two Thus, along with each
task network, UMCP keeps a list of possible values for
each variable values until the size of the list exceeds a
threshold, and a partial order graph of task nodes Both
of those structures wil l be referred to as commitments
Dealing wi th some constraints might not be possible at
the current level of detail in a task network, dealing with
those constraints has to be postponed until the task net­
work is refined further Unt i l then those constraints
are stored in a list called the Promissorj List (the list
of constraints the planner has committed, to make true
but has not done so yet)

The four phases of constraint refinement in UMC P are
constraint selection, constraint update constraint prop­
agation and constraint simplification which are carried
out sequentially

Constrain/ selection involves deciding which con­
straints in the constraint formula or in the commit­
ments to work on Constraint selection returns a list
of constraint formulae, where each formula is a conjunct
of atomic constraints The list of constraint formulae
is selected in such a way that (a) the formulae in the
list are mutual ly inconsistent in the presence of com
muments (in order to preserve systematicity), and (b)
the list covers all possibilities (in order to preserve com
pleteness) Some examples of constraints that may be
selected include (1) an atomic constraint6 and its nega­
tion, (n) a conjunct of unit clauses from the constraint

detail in the next section
°An atomic constraint refers to any instance of the types

of constraints discussed in Section 2

formula, or (in) a set of possible constraints for a vari­
able - l e if the set of possible values for a variable v
are {trucki,truck2,trucks}, UMCP may branch out on
the constraints (v = zrucifci), (v = Jrucjfe2) (v = trucks)

For each constraint formula in the list computed in the
constraint selection phase, the constraint update phase
computes a task network for every possible way of mak­
ing the selected formula true by further restricting the
commitments of the task network For each atomic con­
straint in the selected constraint formula, the following
steps are executed first it is evaluated, if it evaluates to
true, it can be ignored, if it evaluates to false, the task
network fails, otherwise further restrictions are placed
on the commitments (variable bindings, orderings etc)
to make the constraint necessarily true in all further re-
finements of the task network There might be multiple
possible ways of accomplishing that, thus even atomic
constraint update computes a list of task networks rather
than a single task network However, UMCP does con­
straint update in such a way that there is no overlap
among the set of solutions to the task networks in this
list For some constraints, at the current level of detail
in the task network, it might not be possible via restric­
tions on commitments to ensure that the constraint wi l l
be true in all further refinements Those constraints are
simply recorded in the Promissory List

In the constraint propagation phase, UMCP evaluates
and simplifies the constraints in the Promissory List of
each task network produced during the constraint up­
date phase If anv of those constraints evaluate to false,
the task network fails, those that evaluate to true are
removed from the Promissory List Constraint update
is performed on the remaining simplified constraints if
possible at the current level of detail in the task net­
work This phase is repeated unt i l no more propagation
is possible

UMCP contains evaluation and simplification routines
for every type of constraint, as described in the next sec­
tion These routines are used in the constraint simplifi­
cation phase to evaluate and simplify the constraint for­
mulae of the task networks produced, during the propa­
gation phase For instance if part of a conjunct evaluates
to true that part is dropped, if it evaluates to false the
whole conjunct evaluates to false Disjuncts are treated
analogously Thosp task networks whose constraint for­
mulae evaluate to false are pruned

4 2 Details
This section describes how constraint evaluation and up­
date is done for each tvpe of constraint Update always
involves evaluating the constraint and it fails whenever
the constraint evaluates to false This is omitted from
the explanations bflow for brevity

Var iab le B i n d i n g Cons t ra in t s

T y p e (v = a)
Eva lua t i on Return true if constant a is the only pos-
sible value for variable v1, return false if a is not a possible
value for v, return (v = a) otherwise
U p d a t e To make it true, set the possible value list for
v to a, replace v wi th a throughout the task network To

EROL, ETAL 1695

1596 PLANNING

• Completeness Any solution for tn is also a solution
for some task network in R(tn) Thus constraint
refinement does not eliminate any valid solutions
UMCP satisfies this property because any time a
constraint IS selected m constraint selection phase,
its negation is also selected (unless it contradicts
wi th the commitments or the constraint formula),
and all possible ways of making a constraint true
are tried in the constraint update phase

• Systematicity The set of candidate solutions for
each task network in R(tn) are mutually disjoint
Thus UMCP does not examine the same candidates
mult iple times The way systematicity is accom­
plished in UMCP is by making sure (a) the branches
in constraint selection are mutually exclusive (i e
any two conjuncts have a common literal, positive
in one, negated in the other), (b) there is no over-
lap among the solution sets to the task networks
produced in update phase

5 Related Work
Causal links are used by POCL planners such as
SNLP [McAllester and Rosenbhtt, 1991] to establish pre­
conditions and to detect threats Causal links are also
employed by UMCP in the form of special state con­
straints stored in the Promissory List SNLP B threat
removal process is similar to how UMCP handles those
special constraints in its constraint propagation phase

[Chapman, 1987] introduced the MTC (modal t ruth
criterion) to tell whether a literal is true at a given point
in a part ial l j -ordered plan In order to evaluate state
constraints, UMCP uses an extended version of the MTC
that also accounts for compound tasks UMCPs ex­
tended M T C algorithm runs m quadratic time—and it
is directly applicable for computing Chapman & M TC
for which the other known algorithms run in cubic l ime

NOAH [Sacerdoti, 1977] employs its resolve conflicts
critic to deal w i th deleted-condition interactions which
are explicit ly represented by state constraints in UMCP
The constraint refinement techniques of UMCP guaran­
tees these interactions wi l l be handled without sacrificing
soundness or completeness

UMCP evaluates each constraint before trying to make
it true, and skips those constraints that are already true,
and hence it emulates NOAH s eliminate redundant pre­
conditions crit ic

HTN planners often allow several type6 of conditions
in methods How to deal wi th those conditions has been
a topic of debate

NONLIN [Tate, 1977] evaluates filter conditions as
soon as they are encountered, using the QA (Question
Answering) mechanism QA returns false unless it can
verify those conditions to be necessarily true, even if
the conditions are possibly true Thus, NONLIN often
backtracks over filter conditions which would have been
achieved by actions in later task expansions or by more
ordering and variable binding commitments As a result,
NONLIN may fai l to find a solution when a solution ex
ists, or may miss a short and simple solution and do
much more work to find a longer and more complicated
solution

At first glance, the problems such as these might seem
to argue against the use of filter conditions at one ex­
treme, using filter conditions immediately to prune the
search space sacrifices completeness, and at the other
extreme, postponing their use unti l the plan is complete
(so as to preserve completeness) is inefficient 9

Although the above argument IB partially correct, it
ignores a third possibility that lies between the two ex­
tremes In general, to preserve completeness, a plan­
ner cannot use a filter condition to prune the Bearch
space unless the filter condition evaluates to "necessar­
ily false"—but this does not necessarily require that the
task network has been expanded into a primit ive and
tot ally-ordered plan Instead, UMCP simply records the
filter conditions in the Promissory List and prunes the
task network only when one of them becomes necessarily
false

More specifically, UMCP handles filter conditions and
other constraints as follows

• Some instances of variable binding, ordering, and
state constraints can be dealt with immediately For
example, conditions (e g , an object s type) that are
not affected by the actions are represented by con­
straints of the form (i n i t i a l l y /) Such constraints
can be evaluated at anv time b\ querying the ini t ia l
state, and they can be committed to by appropri­
ately restricting the possible values for the variables
i n / 1 0

• Those constraints that cannot be dealt with imme­
diately are stored in the Promissory List, and are
processed in the constraint propagation phases

Constraints in UMCP go through three stages thev
first appear in constraint formula then possibly in the
Promissory List if they cannot be dealt wi th at the time
they are selected in constraint selection phase, and fi­
nally they are reflected in restrictions on possible values
for variables and task ordenngs This three-stage ap­
proach facilitates dealing with the disjunctions in the
constraint formula, and by postponing its processing of
some types of constraints UMCP preserves complete­
ness without sacrificing efficiency

6 Conclusion
Dealing with numerous types of interactions 16 an im­
portant aspect of planning systems The work described
in [Erol et al 1994a, 1994b] has provided a formal frame­
work for representing interactions and conflicts via con­
straints, and in this paper we have introduced techniques
for constraint handling as a mean6 for detecting interac­
tions and resolving conflicts Those techniques preserve
soundness completeness, systematicity, and they have
been implemented in UMCP, an HTN planning system

BIn fact, Collins and Prvor [1992] have made a similar
argument against filler conditions in the context of planning
with STRIPS-Btyle operators

10srPE [WilkinB, 196B] uses a "soil hierarchy" for thiB pur
pose the only difference in UMCP is that UMCP allows al
bitraiy boolean formulae constructed from all types of con­
straints, instead of a conjunct of constraints as in SD?E

EROUETAL 1697

By instantiating the constraint selection strategy in
different ways, various commitment strategies discussed
in the literature can be used by UMCP For example,
variable instantiation can be done before anything else
(as in NONLIN) , all pr imit ive tasks can be totally or­
dered as soon as they appear in task networks, or task
expansions can be deferred unt i l all conflicts have been
resolved (least commitment) Currently we are design­
ing experiments to empirically evaluate these techniques

UMCP'e constraint-handling mechanism provides the
capabilities of many domain-independent critics dis­
cussed in the literature, and UMCP'fl user-specific critics
module can be used to incorporate domain-specific crit­
ics aa well The modular and formal nature of UMCP
makes it readily extensible We are currently exploring
ways of extending UMCP's constraint-handling mecha­
nism to handle numerical and complex temporal con­
straints BO that it can do deadline and resource man­
agement, and provide the capabilities of other domain-
independent critics

References
[Allen et al , 1990] Allen, J , Hendler, J and Tate A

editors Readings tn Planning Morgan Kaufmann,
San Mateo, CA, 1990

[Chapman, 1987] Chapman, D Planning for conjunc­
tive goals Artificial Intelligence, 32 333-378, 1987

[Collins and Pryor, 1992] CollinB, G and Pryor, L
Achieving the functionality of filter conditions in a
partial order planner In Prvc AAAI-92, 1992, pp
375—380

[Dean, 1983] Dean, T Time map maintenance Techni­
cal Report 289, "Yale University, October 1983

[Drummond, 1985] Drummond, M Refining and Ex­
tending the Procedural Net In Proc IJCAI85,
1985

[Erol et al , 1994a] Erol , K , Hendler, J and Nau, D
Semantics for Hierarchical Task Network Plan­
ning CS-TR-3239, UMIACS-TR-94-31, ISR-TR
95-9, University of Maryland, March 1994

[Erol et al , 1994b] Erol, K , Hendler, J and Nau, D
Complexity results for hierarchical task-network
planning To appear in Annals of Mathematics and
Artificial Intelligence Also available as Technical re­
port CS-TR-3240, UMIACS-TR-94-32, ISR-TR-95-
10 Computer Science Dept , University of Mary­
land, March 1994

[Erol, 1995] Erol, K HTN Planning Formalization,
Analysis, and Implementation Ph D Dissertation,
Computer Science Dept , University of Maryland,
1995 In preparation

[Fikes and Nilsson, 1971] Fikes, R E and Nilsson, N J
STRIPS a new approach to the application of the­
orem proving to problem solving Artificial Intelli­
gence, 2(3/4) 189-208,1971

[Kambhampati and Hendler, 1992] Kambhampati,
S and Hendler, J UA Validation Structure Based

Theory of Plan Modification and Reuse" Artificial
Intelligence, May, 1992

[Kambhampati, 1992] Kambhampat i , S "On the ut i l i ty
of Bystematicity understanding trade-offs between
redundancy and commitment in partial-ordering
planning," unpublished manuscript, Dec , 1992

[Kambhampati et al , 1995] Kambhampat i , S ,
Knoblock C and Yang, Q Planning as refinement
search A unified framework for evaluating design
tradeoffs in part ial order planning To appear in Ar­
tificial Intelligence, Special Issue on Planning

[Kanal and Kumar, 1988] Kanal L and Kumar, V
Search in Art i f ic ial Intelligence, Springer-Verlag,
1988

[McAllester and Rosenblitt, 199l] McAllester, D and
Rosenblitt, D Systematic nonlinear planning In
Prvc AAAI 91, 1991

[Minton et al , 199l] Minton, S , Bresina, J and Drum­
mond, M Commitment strategies in planning In
Proc IJCAI-91, 1991

[Sacerdoti, 1977] Sacerdoti, E D A Structure for Plans
and Behavior, Elsevier-North Holland 1977

[Sussman, 1990] Sussman, G J , H A C K E R a compu­
tational model of skil l acquisition, M I T Al Lab
Memo 1973, also in Alien 1990, Readings in Plan­
ning Morgan Kaufmann

[Tate et al , 1990] Tate, A , Hendler J and Drummond,
D Al planning Sjstems and techniques Al
Magazine, (UMIACS-TR-90 21, CS-TR-2408) 6 1 -
77, Summer 1990

[Tate, 1977] Tate, A Generating Project Networks In
Proc IJCAI-77, 1977 pp 888-893

[Tate et al , 1994] Tate A Drabble B and Dalton J
The Use of Condition Types to Restrict Se"arch in
an Al Planner Proc AAAI-94 pp 1129-1134

[Vere, 1983] Vere S A Planning in Time Windows
and Durations for Activities and Goals IEEE
Transactions on Pattern Analysis and Machine In­
telligence, P A M I 5(3) 246-247, 1983

[Wilkins, 1988] Wilkins, D Practical Planning Extend
ing the classical Al planning paradigm, Morgan-
Kaufmann, CA 1988

[Yang, 1990] Yang, Q Formalizing planning knowledge
for hierarchical planning Computational Intelli­
gence Vol 6 ,12-24, 1990

[Vang et al , 1993] Yang, Q , Nau, D S , and Hendler
J Merging separately generated plans w i th re-
stricted interactions Computational Intelligence
9(1), February 1993

1598 PUNNING

