Admissible Pruning Strategies based on plan minimality
for Plan-Space Planning

Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287-5406

Email

Abstract

Although plan space planners have been shown to
be flexible and efficient in plan generation, they
do suffer from the problem of "looping' - that
is they may spend an inordinate amount of time.
doing locally seemingly useful but globally useless
refinements In this paper | review the anatomy
of looping and argue that looping is intimately
tied to the production of non minimal solutions
| then propose two classes of admissible pruning
techniques based on the notion of plan minimality

| show that the first one is admissible for planners
which do not protect their establishments but allow
a precondition to be reestablished any number of
times The second one is admissible for planners
which protect their establishments through causal
links 1 also discuss the complexity of the proposed
pruning strategies and then potential applications

1 Introduction

Domain independent classical planning techniques come in
two mam varieties - those that search in the space of world
states and those that search m the space of plans. The
conventional wisdom of the planning community supported
to a large extent by the recent analytical and empirical studies
[1, 14] holds that searching in the space of plans provides a
more flexible and efficient framework for planning

Despite its many perceived advantages plan-space plan-
ning techniques still lag behind state-space planning tech
niques in terms of search control and pruning heuristics In
particular an important property of state-space planners is
thatgivenanydomain"thathas only a finite members of distinct
states, the planner will terminate in finite time on any prob-
lem, whether or not the problem has a solution. In contrast
since the ground operator sequences form a power sequence
over the set of operators in theplanning domain the complete
search space of a plan-space planner can be infinite even
for domains with finite number of actions Consequently
a plan-space planner trying to solve an unsolvable problem

"This research is supported in part by NSF research initiation
iward (RIA) IRI 9210997 NSF young investigator award (NYI)
IRI-9457634 and ARP A/Rome Laboratory planning initiative grant
F30602-93-C-0039 | think Eric Cohen YongQu Suresh Katulcam
and Laurie Ding for helpful comments

rao@asu edu WW W ftp //rakaposhi eas asu edu/pub/rao/rao html

may never halt without looping checks even when the the
corresponding state-space planner will

Tne only way to avoid such looping is to intelligently prune
unpromising search paths Although there exist a vanety of
techniques for pruning search branches m state space planning
(including the state-loop goal loop and inconsistent-state
heuristics see Section 6) these loop control techniques turn
out to be either inapplicable, or inadmissible for plan space
planners [8] (following [5] we consider a pruning technique
admissible if it does not affect the planner's ability to find
all minimal solutions for any given problem) Of course
as long as the planning problem is solvable (ie, has at
least one soluuon plan) and the underlying planner uses an
admissible search strategy to navigate the space of partial
plans then theoretically at least lack of pruning strategies
may not directly affect the efficiency of the planner Instead
the increased branching factor and the commitment of the
state-space planners tend to dominate over the larger search
space size of the plan-space planners Tnis explains why
we typically find plan-space planners faring better than state
space planners m many domains [1 14]

Despite this pruning strategies for plan-space planners are
still very important for several reasons Even with best-first
search looping can cause serious problems when faced with
unsolvable problems Further many practical planners use
depth-firstrather than best-first search strategies for efficiency
purposes Looping can significantly affect the efficiency of
depth-first search regimes The final and often overlooked
need for pruning strategies has got to do with the importance of
failures inlearning [10 16] Most speedup learning strategies
to improve planning performance learn from the fadures
encountered in plan generatioo Existence of a vanety of
pruning techniques provides a rich opportunity for the learner
to learn from the pruned branches Although best-first search
strategies may be able to avoid the unpromising branches
and depth-limited depth first strategies may be able to avoid
infinite looping neither of them provide any guidance for
the learner In the presence of learning strategies the cost
of pruning techniques also tends to be less of a concern
In particular it is possible to use the pruning techniques
strategically by combining them with a depth-Limited search
and applying them only to the plans that cross the depth-limits
(see L[10, 16] for a demonstration of the effectiveness of this
approach)

Despite their importance, very little work has been done
towards formulation and evaluation of pruning techniques for

KAMBHAMPATI 1627

plan-space planning Most exusting plan-space planners prone
8 plan when the copstramnts on the parnal plan are mutually
mconsistent This gusrantees that the partial plan cannot
be refined wnto & complete soluton Unformnately prumng
wconsistent plans aleme 15 not effective 10 many sifuabons
To see thus consider the followwng sumple example.
The hf/he Example The problem 15 to achieve he given an
empty uutal staste The doman contains two Operalons O
md Oy O, has a precondiion he deletes he and gives A f
O3 has a precondition . f deletes £ f and adds ke

Clearly thus problem has no solutions Both forward and
backward state-space planners will recogmize this immexdi-
ately and terminate ! In contrest plan-space planners fad o
ternmnate on this problem. Speafically they will add O» to
@ve he add O, to mvethe precondition k f of Oy sdd another
01 to achzeve the precondition he of O; and so on At no
point 10 this process 1s the resulang partial plan inconsistent,
so 1t canniot be pruned by the coomstency checks

Although thas example might look contmved at first glance
meny realishc domsins doexhibit this type of behavior at least
oo some branches of the search space. For example, even if
hf ot he 15 present in the imtal state of the sbove example
the search space sull contains an infimtely looping branch
Simular lopping also occurs when the planner atempts to
generate a plan for openung the doar of a car when the keys
are inude the car and the door 1s closed [8] or plans for
clesnng a block by putting another block on top of 1t and then
removing 1t

We note. that 8 halimark of the looping behevior 1n the
examples above 15 that w all cases the planner contnues
(o add steps mio em parual plan which seems to already
contam too many steps Although we cannot be sure that the
refinement will not eventually lead to a salubon 1t 1s hikely
thet po mummal solution will result from those branches
Innupvely a plan 15 & mummal solubon to a problem, if no
stnct subplan of it {denved by removing some steps from the
ongnal plan) s also a soluban

The discussion above suggests pruming partial plans which
are unlikely to lead to minwmal solutions for the problem.
Since every solvable problem must have a mummal solution
a complete planner need oaly generate all munimal solutons
for any given planning problem. While we can recognize
and discard non-mmmal solution plans (¢ f [6]) discarding
complets ncn-mummel plans ajfer they are generated by the
planner 15 an ineffective pruning strategy Rather than wait
il nan-mummal solubons are generated we would like to
prune inoomplete plans that are hkely 1o lead to non-munimal
complete plans ? Domng this while retaiming soundness and
completeness of the underlying plagner amms out ta be &
tricky propositon.

“The forward state-space planners terminate because no operators
are apphcable from the inmal state The backward smee-space
planners tarminate afier finding & state loop

2One might wonder as to why there are non-mmimal plans m the
scarch space to begun with The answer 15 that non-mmnimaliy is &
funcoan of the goals of the planner For example although plans
that lead to state cycles (e g the sequence of achoas Open the door
Closc the door one afier other) are non-munmal for eny problem
contamnmg goals of achicvement they may be mmmal if the goal of
the planner tsclf 1s to exhibit that specafic behavior (state sequence)
[9) Thus a genera] domain mdependent planner 1 forced to have
such plans m s search space

1628 PLANNING

In thus paper, I describe two techniques for pruming partial
plans based on mummality considersions The first one
generalizes the notion of mumimality to mcomplete partial
plans and vses this notion to prune partial plans that are
ooo-mummal 1 will show that this techmque 1s admissible
for non-causal link planners such as UA and TO [14, 3]
which continue to refine e partial plan &s kg as there are
preconditions that are aot necessartly true (even if 1t means
working oo 2 precondition more than once) Unfortunately
however it 15 not applicable to planners whuch use causal
haks {131 and do not work on any precomdition more than
once To prune based on mummality for systematc causal
link planners such as SNLP [13] I develop enother strategy
that uses the cavsal Links to decide if any portion of the plan
1s “‘takung’ more condinons than 1t 15 “'g@iving '

The rest of thus paper 18 aorgamzed as follows The next
section mtroduces some ternunology for plan space planning,
Section 3 reviews some exisung pmmng techruques In
sect:on 4 Idescribe a techmique called Nsat-prune that gen-
eralizes the notson of plan muumahity 10 incomplete plans
and nses 1t as a basis to prune plans I wall show that 1t
1s admussible for nan-causaf ink planners but insdmissibie
for camsal lnk planners In Secthon 5 I discuss a prumung
strategy called Cutset-prune that 12 apphcable for causal link
plenners Secton 6 discusses related work and Sechon 7
summarizes the paper s contnmbutions Due to space Limta-
tons 1 provide sketches of all proofs The complete proofs
may be found mn [11]

2 Preliminaries and Termnology

In thus section 1 review some preliminanes and termunology
related to plan space planning algarnithms Readers pnfamiliar
with plan-space planming might want to consult [9, 14] for
mare comprehensive reviews A planmng problem 1s a 3-
tuple (I, &, A} whee I 15 the descnption of the 1mhe] state
G 18 the (parual) descniption of the goal state, and A4 i5 the
set of acuoas (also called ‘‘operators’™) An achon sequence
{also referred to as ground operator saquence) 5 1s sasd tobe a
solutian for a planming problem, if S can be executed from the
mut1al state of the planning problem, and the resulting state of
the world satsfies all the goals of the planning problem.

A partial plan for a planning problem (7, 3, .A) 15 8 5-tuple
{§,0,B,8T,L) whexe S 15 the s¢t of steps 1o the plan
&S contans two dishingished step naows ap and #,, S7 15
a symbol wble which maps step names to actions from .4
The speaal step »g 15 slwiys mapped to the dummy operator
start end sumlarly s, 1s always mapped to finish The
effects of start commespond to 7' and the preconditions of
finishoorespondto G O 1sapertial ardenng relation over
S B 1k aset of codesignation (inding) md non-codesignanon
(pralubited binding) constraints an the veriables appeanng 1o
the preconditions and post-conditans of the operatars £ 15
a set of ceusal links A causal link 2 > +* 15 8 commutment
that the precondibon p of the step »” will be supplied by an
effert of the step s and that p will be preserved in the intarval
between 5 and s’ (1 ¢. Do step that deletes p will be allowed
to intervene between s and s')

A ground Linesnzation of a partial plan 18 8 peromtaton
oa the fully instantated steps of the plan, thet 15 consastent
with all the orderngs and bindings of the plan A partial
plan 1s sud to be complete if all of i1ts ground Lineanzahans
corespond to action sequences which are solutions to the

planning problem. A complete plan is also called a solution
plan A partial plan that is not complete is said to be an
incomplete plan

Two partial plans P and P, are said to be equivalent if
there is a bijective mapping from the steps of P; to the steps
of P, such that under that mapping the ardenngs bindings
causal links and the symbol tables of the plans are equal
A partial plan P4 is said to be a subplan of another partial
plan P, if P4 is equivalent to a plan P, derived from P,
by removing some steps and the ordering, binding, causal
link relations involving those steps A plan P is said to be
minimal if it is complete, and no subplan of P is complete.

A precondition p of a step a m a partial plan is said to
be necessarily true [3] (or satisfied) if m every ground
linearization of the plan, diere is some step a’ that precedes a
and gives p and no step between a' and a deletes p Similarly
if at least one ground linearization satisfies these conditions
then p is said to be possibly true If all preconditions of
all the steps are necessarily true then the plan is complete
For actions whose preconditions and effects are function-less
first order literals (called the TWEAK representation) Chap
man [3] provides the necessary and sufficient conditions for
checking the necessary truth of a precondition in polynomial
time

Plan space planning involves repeatedly selecting and ''es-
tablishing" a precondition of a step in the plan, such that it
becomes necessarily true. When all preconditions are nec-
essarily true planning is complete Since the establishment
refinements used by most planners ensure completeness by
considering all possible ways of achieving a chosen precondi
tion[9] the order in which different preconditions are selected
for establishment (referred to as ' goal selection order" or

goal order”) does not matter However when an individual
partial plan is refined by establishing a specific precondition
the constraints added in that process may undo the establish
ment of a previously established precondition (thus making
it not necessarily true) There are two general approaches
for handling this - some planners popularly called goal
protection planners or causal link planners, post constraints
(called causal links) to protect their past establishments [13]
In particular if the planner uses the effects of step a’ to make

the condition p true at step a it posts a causal link a’'—* a on
the partial plan. This constraint ensures that no step a" that
can delete p can possibly come between 5' and a Because
of this a causal link planner will never undo an establish
ment that it has made, and thus never has to work on the
same precondition more than once In [9]\ we point out that
such protection strategies lead to reduction of redundancy in
the search space Examples of dus class of planners include
SNLP[I3]and UCPOP [5] A second class of planners such
as TWEAK [3] UA and TO [14] which may be called non-
causal link planners, do not protect their establishments but
allow re-establishment of a precondition that was previously
established and was subsequently undone We will see that
these two classes of planners need differing types of pruning
strategies

3 Review of existing pruning techniques

Most existing techniques for pruning plans m plan-space
planning attempt to show that the constraints in the partial
plan are mutually inconsistent If the inconsistency proof

technique 'domain independent" Such domain independent
techniques include showing that the ordering constraints have
a cycle, or showing that the binding constraints are unsahsfi-
able the former can done with the help of a topological sort.
algorithm in 0(n®) time for an n step plan The complexity of
binding consistency check depends on whether the variables
have finite or infinite domains In the former case the con-
sistency check is NP-Complete, while in the later case it can
be done in 0(n®) time for an n variable plan Finally we can
also prune a plan if there exists no ground linearization that is
safe with respect to all the causal links of the plan. This check
is useful when the underlying planners use causal links but
postpone resolution of the conflicts with the causal links [9

17] Checking the link inconsistency of an arbitrary partial
plan is NP-complete [17]

Sometimes the constraints on the plan themselves may not
be inconsistent but may be inconsistent together with some
implicit domain knowledge Admissible pruning is possible
even m such situations as long as relevant knowledge about
die domain is available. The pruning techniques are men
called 'domain-dependent " Often such domain dependent
pruning techniques can prune a plan earlier than the domain
independent ones An an example consider the simplified
blocks-world problem of achieving On(A, B) A On(B, C)
starting from an initial state where A is on B and C is on the
table [10] A a causal link planner such as SNLP [13] may
generate the following partial plan in solving this problem.
{ K R

h{eon

{CLEAR E)

ol B OCY

In this plan the goal condition On(A, B) is being estab-
lished from the effects of the initial state and a new step
Puton (B, C) is added to achieve the second goal On(B, C)
Given the blocks world domain axiom that a block can
not both be clear and support another block we can show
that this partial plan cannot be refined into a solution (even
though its constraints by themselves are not inconsistent)
To see this consider the state of the world preceding
Puton(B, C)in any eventual solution plan This state should
contain both Clear(B) (which is a precondition of the ac-
tion) and On(A, B) (which is protected by the causal link

S0 — S.) The infeasibiliity of this can be detected
with the help of the plan structure and the appropriate blocks
world domain axiom.

Although applying this strategy at every refinement could
be cosdy m [10] we show that combining this strategy with
an explanation based learning framework can significantly
improve planning performance

4 Minimality based pruning for non-causal
link planners

As | discussed earlier pruning techniques based on constraint
inconsistency alone are not enough to stop looping in many
situations In this section, | will develop a technique for
pruning partial plans that are likely to lead to non-minimal
solutions To do this we need to extend the notion of
minimality to cover incomplete plans

Definition 1 (Nsatplan) Given an incomplete plan V we

uses ONLY THE CONSTRAINTS OF THE PLAN then we call the prunifffine NsatplanCP) as the plan derived from V' by removing

KAMBHAMPATI 1029

all the preconditions of all the steps of P {including o,) that
are not necessarily true tin'P

By definihon Nsatplan 1s s complete plan (since sll its
preconditions are necessanly true)

As an example, consider the blocks world problem where
the robot arm 1s holding block A i the imbal situation and
blocks B and C are on the table The goal state is to have B
on C and hold the block A. Consider the tncomplete plan

T 8y~ s prockup{d) < 0,

where the preconditions of the plan are On(B, CX@sy
holding(AX@s handempty@s, clear(A)@s, Of these
only the precondiion holding{AX@s., 15 Decessanly troe
[3] The Nsatplan for thus plan 15 thus gomng to have the same
steps and orderngs but will have the single precondition
holding()@,

Using the notion of Nsamplan We now genershize the
notion of plan minimality to incomplete pians as follows

Definstion 2 (Mimmal incomplete plans) An incompiete
plan P 15 smdio be minimal if the complete plan Nsatplan(P)
s mumimai

The blocks world plan (n the above example 12 non-minumal
by thus definibon sunce the only precondiion of 1ts Nsatplan
holding(A¥@s,, 15 sansfied even if we remove the siep
pickup(a)

Note that this defininon subsumes the defimtion of mun-
imahty of complete plans swince if P 15 a complete plan
then Nsaiplan(P) = P Armed with this defimbon we now
have a plausible techmque for search reduction via pruning
of non nummal incomplete plans

Pruning Strategy 1 (Nsat-prune) Prune any partial planP
Sfrom the search space if Neatplan(P} is not a munimal pian

Thus techmique clearly does ensure termunation 1n the case
of the hf/he example discussed m the wmroduchon In
particuler as soan as the partial plan

8g <1 (O <82 O <8 O3« 8,

1s produced, Nsat-prune prunes it, (since the Nsaipian does
not contaun the precondiion h f@s3 and consequently a3 Op
itself 15 enough 0 give he to s, making the other two steps
redundant) theseby evoiding the looping behavior

There are however two 1mportant considerations reman-
mg: We need to make sure that Nsat-prune i1s admissible
1e 1t does not affect the completeness of the nnderlying
plenner 'We elso need to look: at the costs associated with the
pruming strategy itself [wall look at these 10 tum

Inthutrvely the reason we believe Nsat-prune mey be ad-
mssible 1s because of the following (fairly obvious) theorem.

Theorem 1 Given any solvable planning problem P for
every mummal soluton P there exists a sequence of parna!
plans P\, Py Py, such that Py s the null plan Py, 15 equavalent
to P and P, can be denved from ‘P, by establishing some
precondition {p, s} tn P, and for everv plan P, in the
sequence WNsatplar(P,) 1s a mmmal plan

Although this theorem says that a sequence of refinerments
compnung exclusively of mmmal :ncomplete plans exists
1t doas oot that such e refinement sequence exists
for every possible goal selection order Io particular using
this therwem we can show that sny planner thst backtracks

1630 PLANNING

over all possible goal ardenings (1 e the arder m which the
goals are established) will be complete However since the
refinements used 1n plan-spece planning are complete for any
goal ordenng mwost plan-space planners do nof backtrack oo
goal ordermg T wall look at the adm ssibility of Neat-prune
for two broad classes of plan-space planners discussed in
Section 2 - capsal Link planners wiuch protect their establish
ments and noo-causal hok planners which reestablish each
precoaudition B8 Many NMes &5 NECERSATY
Causal-Lank Planners Nsat-prune leads to loss of com-
pleteness for causal-link planners such as SNLP and UCPOP
To see this consider the blocke world example discussed
above Suppose the causal Lok planner say SNLP works
on this problem by first working on the precondition
holding(A)@a, Inthis case 1t generates two refinements
ooe 10 which halding(A) 1s established from the mutial state
and the second 1n which holdwing(A) 15 established wath the
help of a pnew step pirckup (A) It 15 easy to see that al-
though the former 1s a munimal incomplete plan 1t cannot be
refined into a complete plan since 1n the final plan 1utal state
cannot give holding(A} to the goal state The secomd plan
oontmming pickup (A) 18 a non-mummal incomplete plan
by our defimuon and 13 thus pruned Ths leads io loss of
completeness
Non-Causal Link Planners. The reason for inadmus-
sibihty of Nsat-prune for causal-bink planners 15 that
there 13 a refinement of the noon-mummal mcomplete plan
g0 < 2 prckup(A) < 500 VIZ ag < 84 putdown(d) <«
33 pickup(B) < s Stack(B,C) < s pickup(h) <
5, Which 15 8 mummal solution Since causal hink plen-
ners work on each precondition at most once. and profect
the establishments 1n each search branch pruming the non
mummsal plan effechively prunes all the mummal solutions
under that pon-munumal plan from the search space

The foregomg discusyion raises the passibility that Nsat
prune may be admissible for non-cansal link planners that
do not protect establishments and work on precondibions as
many bmes es requured until the plan becomes complete
Let us comsider the case of a non-causal ok plemoer such
as TWEAK [3] UA ar TO [14] solving the above blocks
world problem. When the planner works an the precondition
holding(A) * ance agamn it generates ihe two refinements one
1 which the iutial state establishes the condibon and the
other in whuch the step pickup (A} establishes the condition
The latter plan will still be non mummal ncomplete plan and
will be pruned Unlke the causal-link planners however
the non-causal link planners can refine the former plan o
a solubon In parbcular when working on On(B,C) the
planner adds the step stack (B,C) and then the steps
pickup (B} to mve holding(B) to stack(B,C) and
putdown (A) (0 give armemptly to holdang (B) It can
be seen that every one of these refinements produces mumimnal
incomplete plens At thus pount. the planner notices that the
condihion holdtng(A) 15 no longer true at the goal state, and
adds the step p1ckup (A) sfter stack (B.C) to establish
it. thus giving the mimimal commpleie solution to the problem.

Notice that thus was possible because there are two re-
finement paths from the mull plan to the muamal solu

Although noa-causal link planners such as TWEAK [3] and
UA [14] are tradmhonally formulaied es planners that work only on
precondmions that are not necessanly rrue this 18 & design chowce
orthagonal to therr pon-causal bnk rature see [9]

ton, one through the non-oumimal inecomplete plan s <
5 pickup(d) < 24, mnd the other through the munimal
icomplete plan sy < s, Although Nsat-prune prunes the
formex refinement path it leaves undistorbed a path through
the latter thus retmming completeness In particular we have
the following theorem.

Theorem 2 Nsat-pnme s an admussible prumng straiegy
for UA and TO [14]

The proof of the theorem follows from an extension of
the proofs of completeness of UA and TO plenners [14] In
particuler we can show that given en incomplete plan P
such that Nsatplan(?) 1s miumal and a mummal complete
plan P*' there exists a ane-step TO/UA refinement of P
P’ such that Nsatplan(?’) 1s mnimal and P’ 1s a subplan
of P' Given thus and the fact that the null plan P, 1s 8
munimgl incomplete plan the theorem follows by induction
on the oumber of steps m the plan Perbaps surpnangly
the theorem above does not hold for TWEAX [3] Here s a
counter example
Example Cous der a domain that has two operators O, and
Oz O, has an effect p O, has en effect ¢ but 1t deletes
P Neather operator has any precondition Qur problem 15 o
achueve p A g starting from an empty wmual state Suppose
TWEAK decides (o work on the goal p first It produces the
single plan ag < 2, O < 2x Next, it works on the goal g
and produces the single plan 2o < (§! 0) < s Attuspomt
the Nsat-prune strategy wall prune thus pian (smoe p@s, 15
no lenger necessanly true 1n the plan and removing it makes
the step O redundant and thus the Neatpian oen munimal)
leading to the loss of completeness

The example does not pose a problem for UA since UA
orders O with respect to G2 as soon as Oz 1s introduced
(resulung n two partial plans one of which s pruned by
Nsat-prune whle the other leads to the solunon The
reasgn tams out to be that in TWEAK, a condibon that 1s
Dot necessarily true may be possibly true whule in UA and
TO a condition 1s esther necessanly true or necessarily false
{Mintco et. al term thus property ‘unambiguounsness [14])

Cost of Nsat-prune The cost of Nsat-prune depends on the
cost of constructing the Nsatplan from a given incomplete
plan and the cost of checking the minimality of a complete
plan Constructing the Nsatplan involves checking the
necessary truth of each precondition of the plan and can
be done in polynomial time for plans containing actions
in TWEAK representation [3] Checking whether a given
complete plan is minimal is unfortunately NP-hard even for
plans in TWEAK actionrepresentation (see [6] for a proof)

However it is possible to formulate weaker conditions that
provide necessary but insufficient conditions for minimality
Yang and Fink [6] provide a series of polynomial tune
necessary but insufficient conditions for plan minimality It
should be easy to see that instantiations of Nsat-prune that
use such weaker conditions will be admissible in all the cases
where the pruning strategies based on full minimality are
admissible

In [4] it is shown that the use of weaker checks of non-
nunimality is quite effective in reducing looping in many
domains IN FACT the results demonstrate a meta-reasomng
trade offinherent in using minimality based pruning -although
the use of stronger minimality checks increases the pruning

power of Nsat prune 1t does not necessanly result 1 in
creased performance unprovements

5 Minmmality-based prumng for causal ink
planners

In the previous sectian I showed that Nsat-prune 15 madnus-
sible for cansal link planners such es SNLP As noted there
the lack of redundancy mn the search space of causal hnk
planners means that a partial plan cannot be pruned as long
as 1t can eveniually be refined mto 8 mummal solution

To find a pruning strategy for such planners we take a
different route that involves using the ceusal dependencaes
encapsulated by the causal links The causal links can be
used to understand the role played by any part of the plan 1
ensunng the completeness of the overall plan, and prune a
plan when some part of 1t takes * more causal Links than it
“‘gives ' Recall that a ceusal link s, < &, can be seen as
& commutment that the step s, gives condition ¢ to the step
2, Aset £ ol causal links 1s saxd to dominate another set £’

if for evexy caunsal hnk & ia; in £* there exsts a causal

lank s, - s, n £ such that c and ¢’ necessanily codesignate
We start by noung the following relaovely straughtforward
lemnma

Lemma 1 Any complete plan P s non mipimal if there exists
a subset S’ C & of the sieps of P such that the set of causal
links grven by the steps of §' to steps in § — 8 15 dominated
by the vet of causal Iinks talen by the steps of §' from the
stepsin§ - §°

Intwitively thus lemma follows because we cen remove the
steps 1n S’ from the plan P without affecting the comectness
of P In particular eny condinom p@s, (where s, € 5§ — §')
that was being supported by & stepin 5 can still be supported
from a step 1in § — 5° Conceptually we can understand thus
in terms of an ediung operation an the causal hoks such
that every paur of causal lmks o' 5 5, and s, L, s (whexe
o, 2" ¢ S and 5., € S — 5') are replacad by the angle
lnk 2% B 5, thus bypassing the steps i S

The question 1s how are we to generalize this observabhon
so that 1t can apply to incomplete plans? The straightforward
application of this observabon to incomplete plans will not
work. For example we cannot prune an mcomplete plan just
because the set of lunks given by a step » 1s donunated by the
set of links taken by 1t since the former set might grow es the
plannmg contimues and more effects of thus step are used to
establish preconditions elsewhere

Instead we need to consider a set of hinks with respect
to a step such that the set will never grow as the plen 1s
refined further To thus end we define the np-cutset of a
step s 10 & plan P as the set of causal links out-links(s)u
pecessary-aross Links(s) (where a causel hnk s, = s, € £
belangs to the out hinks of a step if s, = » and belongs o
the necessary-cross-hoks of a step s 1f # 15 ordered to come
necessanly between &, and 5,) Sumlarly the pp-culset of a
step » 1 a plen P s defined as the set of cansal hinks out-
Links(ayJ possible-cross-inks(s) (where a link s, = s, € £
belongs to the possible-cross-hoks of step » 1f s can possibly
come between », and 5, (1Le it comes between 2, and s, in
at least one lineanzaton)

KAMBHAMPATI 1631

np-cutset(s")

Figure 1 Example illustrating the operation of Cutset-prune strategy Ordenngs

5 o0

s8 u

pp-cutset(s")

are shown by straaght Lines wath amrows while

the cansal hnks are represented by curved lines with the condinon of the causal hink shown explicatly near the lnk We assume
that there sre no open condinon carrespanding to steps steps &5, s¢, o7, #5 a0d s

The pp-cutset of a step may reduce in size (as additional
ordenngs are introduced making steps currently unordered
with respect to a to come before it) but the np-cutset will
never reduce in size (since refinements can add but notdelete
step and ordering constraints)

In the example plan in Figure 1 the links comprising pp-
cutset of the step a" (shown with the bold border) are shown
in dashed lines The corresponding conditions are P Q and
R. From the figure we can also see that the links comprising
the np-cutset the steps'have me conditions Q andRon
them. Thus the pp-cutset of a” is dominated by the np-cutset
of s

Now suppose that all the remaining open conditions of the
plan in Figure 1 are with respect to steps that are necessarily
before a" (equivalently the preconditions of all the steps a
in P such that * can possibly follow a” have causal links
supporting them) In such a case, the pp-cutset of a” can
never increase in size during planning (it may reduce in
size if the steps that are currently unordered with respect
to s” get ordered to come before s") Since the pp-cutset
of s" is currendy dominated by the np-cutset of s’, and the
pp-cutset of a” will not increase and the np-cutset of a step
will not decrease in size this dominance relation will hold
for all refinements of this plan including any refinements
corresponding to complete plans It is easy to see that any
such complete plans will be non-minimal by Lemma 1 Thus
the plan in Figure 1 can be pruned withoutlosing any minimal
solutions (complete plans) This pruning strategy is called the
Cutset prune strategy Formally

Pinning Strategy 2 (Cutset-prune) Prune any incomplete
partial plan P if it has two steps a' and s" such that (1) a'
necessarily precedes a" (11) Every open condition (e, a) of the
plan is such that a necessarily precedes s" (111) np cutsets')
dominates pp-cutset(a”)

It is easy to see that Cutset-prune will stop looping in
the hf/he example for a causal link planner such as SNLP
In particular once a plan of type so a s3; 0, a s2 O1 a

1632 PLANNING

s1 O, a s ~»is made with the causal links {S; he s, s, —*

S1,S7-1S=} the Cutset-prune strategy can prune the plan
since pp-cutset of Sy is dominated by the np-cutset of S;
and there are no open conditions after a\ It is also provably
admissible for causal link planners In particular we have

Theorem 3 Cutset-prune is an admissible pruning strategy
for planners that protect their establishments via causal links

As noted above, the admissibility property follows from
the fact that the plans pruned by Cutset-prune will not have
any refinements culminating m minimal solutions We can
illustrate it with the example plan shown in Figure 1 Suppose
this plan, call it P is refined into a complete solution plan
P' It is possible to remove the steps 03 a4 and 5" (plus a
few others) from P’ without affecting its correctness To see
this we start by noting that since there are no open conditions
possibly after a" in P in Figure 1 the only links given by
these steps to steps that are possibly after s” in the complete
plan P’ are those that they currendy give in P The conditions
supported by these links can still be supplied by a' or steps

that are necessarily before a’ For example, the link J4, —» a-j

can be redirected as o —» *7 At the end of this process
the steps S; and S, will not have any useful causal links
emaniting from them to steps possibly after a” Thus all
these steps (and any steps preceding a” that take any links
from them) can be removed without affecting the correctness
of P' showing that the plan P’ is non-minimal

Cost of Cutset-prune Since Cutset-prune is quite costly
(it needs to potentially look at n? pairs of steps and the
check on the cutset dominance could be costly when the plan
contains variables) it may cot be an effective strategy to use
at every iteration, it needs to be applied more strategically
Once again | believe that the primary utility of this strategy
will be in terms of its guidance to an underlying learning
system (cf [10]) In particular it can be applied to plans
crossing depth limits to see if they are provably non-minimal
Ifso the explanation of non-mimniality can be used to guide

an EBL based system to learn effective control rules to avoid
the looping brandies in the future [10- 161

6 Related Work

As mentioned earlier most state space planners including
STRIPS [7] and PRODIGY [2] use state loop and goal loop
based pruning strategies State-loop heuristics prune any path
that visits the same world state more than once. Goal-loop
heuristics are used in state-space planners that use means-ends
analysis or planners that do backward search in the space
of states These techniques prune any search path where
in an attempt to achieve some goal g the planner spawns
a set of subgoals that include g The state-loop techmques
are inapplicable for plan-space planners which do not keep
track of world state during planning. The goal loop strategies
turn out to be inadmissible in general (ci [8]) la [12]
we present a generalized planner called UCP that combines
both state-space and plan-space approaches within a single
framework UCP does have the ability to use the state loop
and goal loop pruning as well as the minimality pruning
strategies described in this paper

Moms et al [8] discuss a way of using filter conditions
to avoid certain types of looping in partial order planners
Their method depends on an a priori analysis of the domain
operators to identify the preconditions which should not be
expanded Even this analysis allows loop control in only
a very restricted class of situations Both the Nsat-prune
and the Cutset-prune strategies will stop looping on all
the examples described in their paper without requiring any
special analysis of filter conditions

Drummond and Curne [5] describe a pruning strategy
called temporal coherence heuristic which is analogous to
the inconsistent state heuristics used by backward state-space
planners This method essentially constrains the planner to
work on the goals in the reverse order of their achievement
and thus is complete only when the planner backtracks on
all goal ordenngs Murray and Yang [18] describe empirical
studies that show that the increased branching factor caused
by backtracking over goal ordenngs is typically not offset
by the temporal coherence based pruning In contrast the
minimality based pruning strategies described in our work are
complete for a much larger class of planners

As | mentioned earlier Fink and Yang [6] formulate a set
of tractable necessary but insufficient conditions for checking
non-mimality of partial plans They however do not use their
nation of minimality improving planning performances As
| discussed in Section 4 before the notices of minimality of
complete plans can be used to develop pruning techmques
they must first be generalized to incomplete plans

7 Conclusion

In this paper | addressed the problem of "looping " mo-
tivated the need for pruning techmques to avoid looping
and showed that looping is intimately Ued to the production
of non-minimal solutions | then proposed two classes of
admissible pruning techmques based on the notion of plan
minimality The first one, based on the nation of nco-minimal
uncomplete plans is admissible for non-causal link planners
such as UA and TO which don't protect goals but allow
reestablishment of goals The second one is based on the
notion of cutset of the causal dependency graph of a plan.

and is admissible for causal link planners such as SNIP
which protect establishments through causal links | also
discussed the complexity and utility of the pruning strate-
gies The development here also brings out the interplay
between the redundancy in the search space of a planner and
the admissibility of different pruning strategies for it

References

[11 A. Barrett and D Weld Partial Order Planning Evaluating
Possible Efficiency Gains Atrtificial Intelligence Vol 67 No
1 1994

[2] J Bly the and M Veloso An analysis of Search Techniques
for a totally-ordered nonlinear planner In Proc Ist Inst Conf
on Al Planning Systems 1992

[31 D Chapman Planning for conjunctive goals Artificial Intel
ligence 32 333 377 1987

[4] E Cohen Understanding the Utility of Pruning by Minimality
in partial order planning MCS Project Report ASUCSE dept
May 1993

[5] M Drummond and K Cumc Exploiting Temporal Coherence
in Nonlinear Plan Construction In Compuational intelligence
Vol 4 1988

[6] E Fink and Q Yang A Spectrum of Plan Justifications In
Proc Canadian Al Conference 1992

[71 R Pikes P Hart and N Nilsson Learning and executing
generalized robot plans Artificial Intelligence 3(4)251-288
1972

[8] R Feldman andP Moms Admissible criteria for loop control
in planning In Proc AAA! 1990

[91 S Kambhampati, C Knoblocle and Q Yang Planning as
Refinement Search A United frame work far evaluating design
tradeoffs in partial order planning ASU-CSE TR 94-002 To
appear in Artificial Intelligence special issue on Planning and
Scheduling 1995

[10] S Katukatkums Kambhampati Learning explanation based
search control rules for partial order planning In Proc AAAl
94 1994

[11] S Kambhampati Admissible pruning Strategies based on Plan
minimality for plan space planning The details ASU CSE
Tech Report 1995 (in preparation)

[12] S Kambhampati and B Snvastava” Universal Classical
Planner An Algorithm for unifying state spaceand plan space
planning ASU CSE TR 94-002

[13] D McAllester and D Rosenblitt Systematic Nonlinear Plan-
ning In Proc 9th AAA! 1991

[14] S Minton J Bresina and M. Drummond Total Order and
Partial Order Planning a comparative analysis Journal of
Artificial Intelligence Research 2 (1994) 227 262

[15] J S Penberthy and D Weld UCPOP A Sound, Complete
Partial Order Planner for ADL In Proc K R 92 November
1992

[16] Y QuendS Kambhampati Learning Control rules of expres-
sive plan space planners Factors affecting the performance
ASU-CSE TR 94-006

[17] DE Smith and MA Peot Postponing threats in partial-order
planning In Proc Eleventh AAAlI 1993

[18] Q Yang and C Murray An evaluation of the temporal
coherence heuristic in partial-order planning Computational
Intelligence Journal 10C3) 1994

"Technical reports available via URL ftp
/Irakapoahi ase asu edu/pub/rao/papers html

KAMBHAMPATI 1633

