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A b s t r a c t 

Although plan space planners have been shown to 
be flexible and efficient in plan generation, they 
do suffer from the problem of " looping' - that 
is they may spend an inordinate amount of time. 
doing locally seemingly useful but globally useless 
refinements In this paper I review the anatomy 
of looping and argue that looping is intimately 
tied to the production of non minimal solutions 
I then propose two classes of admissible pruning 
techniques based on the notion of plan minimality 
I show that the first one is admissible for planners 
which do not protect their establishments but allow 
a precondition to be reestablished any number of 
times The second one is admissible for planners 
which protect their establishments through causal 
links I also discuss the complexity of the proposed 
pruning strategies and then potential applications 

1 Introduction 
Domain independent classical planning techniques come in 
two mam varieties - those that search in the space of world 
states and those that search m the space of plans. The 
conventional wisdom of the planning community supported 
to a large extent by the recent analytical and empirical studies 
[1 , 14] holds that searching in the space of plans provides a 
more flexible and efficient framework for planning 

Despite its many perceived advantages plan-space plan­
ning techniques still lag behind state-space planning tech 
niques in terms of search control and pruning heuristics In 
particular an important property of state-space planners is 
that g iven any domain" that has only a f inite members of distinct 
states, the planner w i l l terminate in finite time on any prob-
lem, whether or not the problem has a solution. In contrast 
since the ground operator sequences form a power sequence 
over the set of operators in theplanning domain the complete 
search space of a plan-space planner can be infinite even 
for domains with finite number of actions Consequently 
a plan-space planner trying to solve an unsolvable problem 
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may never halt without looping checks even when the the 
corresponding state-space planner wi l l 

Tne only way to avoid such looping is to intelligently prune 
unpromising search paths Although there exist a vanety of 
techniques for pruning search branches m state space planning 
(including the state-loop goal loop and inconsistent-state 
heuristics see Section 6) these loop control techniques turn 
out to be either inapplicable, or inadmissible for plan space 
planners [8] (following [5] we consider a pruning technique 
admissible if it does not affect the planner's ability to find 
all minimal solutions for any given problem) Of course 
as long as the planning problem is solvable ( ie, has at 
least one soluuon plan) and the underlying planner uses an 
admissible search strategy to navigate the space of partial 
plans then theoretically at least lack of pruning strategies 
may not directly affect the efficiency of the planner Instead 
the increased branching factor and the commitment of the 
state-space planners tend to dominate over the larger search 
space size of the plan-space planners Tnis explains why 
we typically find plan-space planners faring better than state 
space planners m many domains [1 14] 

Despite this pruning strategies for plan-space planners are 
still very important for several reasons Even with best-first 
search looping can cause serious problems when faced with 
unsolvable problems Further many practical planners use 
depth-first rather than best-first search strategies for efficiency 
purposes Looping can significantly affect the efficiency of 
depth-first search regimes The final and often overlooked 
need for pruning strategies has got to do with the importance of 
failures in learning [10 16] Most speedup learning strategies 
to improve planning performance learn from the fadures 
encountered in plan generatioo Existence of a vanety of 
pruning techniques provides a rich opportunity for the learner 
to learn from the pruned branches Although best-first search 
strategies may be able to avoid the unpromising branches 
and depth-limited depth first strategies may be able to avoid 
infinite looping neither of them provide any guidance for 
the learner In the presence of learning strategies the cost 
of pruning techniques also tends to be less of a concern 
In particular it is possible to use the pruning techniques 
strategically by combining them with a depth-Limited search 
and applying them only to the plans that cross the depth-limits 
(see L[10, 16] for a demonstration of the effectiveness of this 
approach) 

Despite their importance, very little work has been done 
towards formulation and evaluation of pruning techniques for 

KAMBHAMPATI 1627 



1628 PLANNING 



planning problem. A complete plan is also called a solution 
plan A partial plan that is not complete is said to be an 
incomplete plan 

Two partial plans P and P2 are said to be equivalent if 
there is a bijective mapping from the steps of P1 to the steps 
of P2 such that under that mapping the ardenngs bindings 
causal links and the symbol tables of the plans are equal 
A partial plan P1 is said to be a subplan of another partial 
plan P2 if P1 is equivalent to a plan P2 derived from P2 
by removing some steps and the ordering, binding, causal 
link relations involving those steps A plan P is said to be 
minimal if it is complete, and no subplan of P is complete. 

A precondition p of a step a m a partial plan is said to 
be necessarily t rue [3] (or satisfied) if m every ground 
linearization of the plan, diere is some step a' that precedes a 
and gives p and no step between a' and a deletes p Similarly 
if at least one ground linearization satisfies these conditions 
then p is said to be possibly true If all preconditions of 
all the steps are necessarily true then the plan is complete 
For actions whose preconditions and effects are function-less 
first order literals (called the TWEAK representation) Chap 
man [3] provides the necessary and sufficient conditions for 
checking the necessary truth of a precondition in polynomial 
time 

Plan space planning involves repeatedly selecting and ' 'es­
tablishing" a precondition of a step in the plan, such that it 
becomes necessarily true. When all preconditions are nec­
essarily true planning is complete Since the establishment 
refinements used by most planners ensure completeness by 
considering all possible ways of achieving a chosen precondi 
tion[9] the order in which different preconditions are selected 
for establishment (referred to as ' goal selection order" or 

goal order'1) does not matter However when an individual 
partial plan is refined by establishing a specific precondition 
the constraints added in that process may undo the establish 
ment of a previously established precondition (thus making 
it not necessarily true) There are two general approaches 
for handling this - some planners popularly called goal 
protection planners or causal l ink planners, post constraints 
(called causal links) to protect their past establishments [13] 
In particular if the planner uses the effects of step a1 to make 

the condition p true at step a it posts a causal link a' —* a on 
the partial plan. This constraint ensures that no step a" that 
can delete p can possibly come between 5' and a Because 
of this a causal l ink planner wi l l never undo an establish 
ment that it has made, and thus never has to work on the 
same precondition more than once In [9]\ we point out that 
such protection strategies lead to reduction of redundancy in 
the search space Examples of dus class of planners include 
SNLP[ l3]and UCPOP [5] A second class of planners such 
as TWEAK [3] UA and TO [14] which may be called non-
causal l ink planners, do not protect their establishments but 
allow re-establishment of a precondition that was previously 
established and was subsequently undone We wi l l see that 
these two classes of planners need differing types of pruning 
strategies 

3 R e v i e w o f e x i s t i n g p r u n i n g techn iques 
Most existing techniques for pruning plans m plan-space 
planning attempt to show that the constraints in the partial 
plan are mutually inconsistent If the inconsistency proof 
uses ONLY THE CONSTRAINTS OF THE PLAN then we call the pruning 

technique 'domain independent" Such domain independent 
techniques include showing that the ordering constraints have 
a cycle, or showing that the binding constraints are unsahsfi-
able the former can done with the help of a topological sort. 
algorithm in 0(n2) time for an n step plan The complexity of 
binding consistency check depends on whether the variables 
have finite or infinite domains In the former case the con­
sistency check is NP-Complete, while in the later case it can 
be done in 0(n 3 ) time for an n variable plan Finally we can 
also prune a plan if there exists no ground linearization that is 
safe with respect to all the causal links of the plan. This check 
is useful when the underlying planners use causal links but 
postpone resolution of the conflicts with the causal links [9 
17] Checking the link inconsistency of an arbitrary partial 
plan is NP-complete [17] 

Sometimes the constraints on the plan themselves may not 
be inconsistent but may be inconsistent together with some 
implicit domain knowledge Admissible pruning is possible 
even m such situations as long as relevant knowledge about 
die domain is available. The pruning techniques are men 
called 'domain-dependent " Often such domain dependent 
pruning techniques can prune a plan earlier than the domain 
independent ones An an example consider the simplified 
blocks-world problem of achieving On(A, B) A On(B , C) 
starting from an initial state where A is on B and C is on the 
table [10] A a causal link planner such as SNLP [13] may 
generate the following partial plan in solving this problem. 

In this plan the goal condition On(A, B) is being estab-
lished from the effects of the initial state and a new step 
Puton (B, C) is added to achieve the second goal On(B, C) 
Given the blocks world domain axiom that a block can 
not both be clear and support another block we can show 
that this partial plan cannot be refined into a solution (even 
though its constraints by themselves are not inconsistent) 
To see this consider the state of the world preceding 
Puton(B, C) in any eventual solution plan This state should 
contain both Clear(B) (which is a precondition of the ac-
tion) and On(A, B) (which is protected by the causal l ink 

S0 —»' ' S∞) The infeasibiliity of this can be detected 
with the help of the plan structure and the appropriate blocks 
world domain axiom. 

Although applying this strategy at every refinement could 
be cosdy m [10] we show that combining this strategy with 
an explanation based learning framework can significantly 
improve planning performance 

4 M i n i m a l i t y based p r u n i n g f o r non -causa l 
l i n k p l a n n e r s 

As I discussed earlier pruning techniques based on constraint 
inconsistency alone are not enough to stop looping in many 
situations In this section, I wi l l develop a technique for 
pruning partial plans that are likely to lead to non-minimal 
solutions To do this we need to extend the notion of 
minimality to cover incomplete plans 
Definition 1 (Nsatplan) Given an incomplete plan V we 
define NsatplanCP) as the plan derived from V by removing 
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Cost of Nsat-prune The cost of Nsat-prune depends on the 
cost of constructing the Nsatplan from a given incomplete 
plan and the cost of checking the minimality of a complete 
plan Constructing the Nsatplan involves checking the 
necessary truth of each precondition of the plan and can 
be done in polynomial time for plans containing actions 
in TWEAK representation [3] Checking whether a given 
complete plan is minimal is unfortunately NP-hard even for 
plans in TWEAK action representation (see [6] for a proof) 

However it is possible to formulate weaker conditions that 
provide necessary but insufficient conditions for minimality 
Yang and Fink [6] provide a series of polynomial tune 
necessary but insufficient conditions for plan minimality It 
should be easy to see that instantiations of Nsat-prune that 
use such weaker conditions wi l l be admissible in all the cases 
where the pruning strategies based on ful l minimality are 
admissible 

In [4] it is shown that the use of weaker checks of non-
nunimality is quite effective in reducing looping in many 
domains IN FACT the results demonstrate a meta-reasomng 
trade off inherent in using minimality based pruning -although 
the use of stronger minimality checks increases the pruning 
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The pp-cutset of a step may reduce in size (as additional 
ordenngs are introduced making steps currently unordered 
with respect to a to come before it) but the np-cutset will 
never reduce in size (since refinements can add but not delete 
step and ordering constraints) 

In the example plan in Figure 1 the links comprising pp-
cutset of the step a" (shown with the bold border) are shown 
in dashed lines The corresponding conditions are P Q and 
R. From the figure we can also see that the links comprising 
the np-cutset the steps'have me conditions Q andRon 
them. Thus the pp-cutset of a" is dominated by the np-cutset 
of s 

Now suppose that all the remaining open conditions of the 
plan in Figure 1 are with respect to steps that are necessarily 
before a" (equivalently the preconditions of all the steps a 
in P such that * can possibly follow a" have causal links 
supporting them) In such a case, the pp-cutset of a" can 
never increase in size during planning (it may reduce in 
size if the steps that are currently unordered with respect 
to s" get ordered to come before s" ) Since the pp-cutset 
of s" is currendy dominated by the np-cutset of s1, and the 
pp-cutset of a" wi l l not increase and the np-cutset of a step 
wi l l not decrease in size this dominance relation wi l l hold 
for all refinements of this plan including any refinements 
corresponding to complete plans It is easy to see that any 
such complete plans wi l l be non-minimal by Lemma 1 Thus 
the plan in Figure 1 can be pruned without losing any minimal 
solutions (complete plans) This pruning strategy is called the 
Cutset prune strategy Formally 

Pinning Strategy 2 (Cutset-prune) Prune any incomplete 
partial plan P if it has two steps a' and s" such that (1) a' 
necessarily precedes a" (11) Every open condition (e, a) of the 
plan is such that a necessarily precedes s" (111) np cutsets') 
dominates pp-cutset(a") 

It is easy to see that Cutset-prune w i l l stop looping in 
the hf/he example for a causal link planner such as SNLP 
In particular once a plan of type so α s3 02 α s2 O1 α 

s1 O2 α s ∞is made with the causal links {S3 he s2, s2 —* 
S1,S1 -1 S∞ } the Cutset-prune strategy can prune the plan 
since pp-cutset of S1 is dominated by the np-cutset of S3 
and there are no open conditions after a\ It is also provably 
admissible for causal link planners In particular we have 

Theorem 3 Cutset-prune is an admissible pruning strategy 
for planners that protect their establishments via causal links 

As noted above, the admissibility property follows from 
the fact that the plans pruned by Cutset-prune wi l l not have 
any refinements culminating m minimal solutions We can 
illustrate it with the example plan shown in Figure 1 Suppose 
this plan, call it P is refined into a complete solution plan 
P' It is possible to remove the steps 03 a4 and 5" (plus a 
few others) from P' without affecting its correctness To see 
this we start by noting that since there are no open conditions 
possibly after a" in P in Figure 1 the only links given by 
these steps to steps that are possibly after s" in the complete 
plan P' are those that they currendy give in P The conditions 
supported by these links can still be supplied by a' or steps 

that are necessarily before a' For example, the link J4 —» a-j 
can be redirected as *o —» *7 At the end of this process 
the steps S3 and S4 wi l l not have any useful causal links 
emaniting from them to steps possibly after a" Thus all 
these steps (and any steps preceding a" that take any links 
from them) can be removed without affecting the correctness 
of P' showing that the plan P' is non-minimal 

Cost of Cutset-prune Since Cutset-prune is quite costly 
(it needs to potentially look at n2 pairs of steps and the 
check on the cutset dominance could be costly when the plan 
contains variables) it may cot be an effective strategy to use 
at every iteration, it needs to be applied more strategically 
Once again I believe that the primary uti l i ty of this strategy 
wi l l be in terms of its guidance to an underlying learning 
system ( c f [10]) In particular it can be applied to plans 
crossing depth limits to see if they are provably non-minimal 
If so the explanation of non-mimniality can be used to guide 
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an EBL based system to learn effective control rules to avoid 
the looping brandies in the future [10- 161 

6 Related W o r k 
As mentioned earlier most state space planners including 
STRIPS [7] and PRODIGY [2] use state loop and goal loop 
based pruning strategies State-loop heuristics prune any path 
that visits the same world state more than once. Goal-loop 
heuristics are used in state-space planners that use means-ends 
analysis or planners that do backward search in the space 
of states These techniques prune any search path where 
in an attempt to achieve some goal g the planner spawns 
a set of subgoals that include g The state-loop techmques 
are inapplicable for plan-space planners which do not keep 
track of world state during planning. The goal loop strategies 
turn out to be inadmissible in general ( c i [8]) la [12] 
we present a generalized planner called UCP that combines 
both state-space and plan-space approaches within a single 
framework UCP does have the ability to use the state loop 
and goal loop pruning as well as the minimality pruning 
strategies described in this paper 

Moms et al [8] discuss a way of using filter conditions 
to avoid certain types of looping in partial order planners 
Their method depends on an a priori analysis of the domain 
operators to identify the preconditions which should not be 
expanded Even this analysis allows loop control in only 
a very restricted class of situations Both the Nsat-prune 
and the Cutset-prune strategies wil l stop looping on all 
the examples described in their paper without requiring any 
special analysis of filter conditions 

Drummond and Curne [5] describe a pruning strategy 
called temporal coherence heuristic which is analogous to 
the inconsistent state heuristics used by backward state-space 
planners This method essentially constrains the planner to 
work on the goals in the reverse order of their achievement 
and thus is complete only when the planner backtracks on 
all goal ordenngs Murray and Yang [18] describe empirical 
studies that show that the increased branching factor caused 
by backtracking over goal ordenngs is typically not offset 
by the temporal coherence based pruning In contrast the 
minimality based pruning strategies described in our work are 
complete for a much larger class of planners 

As I mentioned earlier Fink and Yang [6] formulate a set 
of tractable necessary but insufficient conditions for checking 
non -m ima l i t y of partial plans They however do not use their 
nation of minimality improving planning performances As 
I discussed in Section 4 before the notices of minimality of 
complete plans can be used to develop pruning techmques 
they must first be generalized to incomplete plans 

7 Conclusion 
In this paper I addressed the problem of "looping " mo-
tivated the need for pruning techmques to avoid looping 
and showed that looping is intimately Ued to the production 
of non-minimal solutions I then proposed two classes of 
admissible pruning techmques based on the notion of plan 
minimality The first one, based on the nation of nco-minimal 
uncomplete plans is admissible for non-causal l ink planners 
such as UA and TO which don't protect goals but allow 
reestablishment of goals The second one is based on the 
notion of cutset of the causal dependency graph of a plan. 

and is admissible for causal link planners such as SN IP 
which protect establishments through causal links I also 
discussed the complexity and utility of the pruning strate-
gies The development here also brings out the interplay 
between the redundancy in the search space of a planner and 
the admissibility of different pruning strategies for it 
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