
Admissible Pruning Strategies based on plan minimality
for Plan-Space Planning

Subbarao Kambhampati
Depar tment of Computer Science and Eng ineer ing
A r i z o n a State Un ivers i t y , Tempe, AZ 85287-5406

E m a i l rao@asu edu W W W f tp / / rakaposhi eas asu edu/pub/rao/rao h t m l

A b s t r a c t

Although plan space planners have been shown to
be flexible and efficient in plan generation, they
do suffer from the problem of " looping' - that
is they may spend an inordinate amount of time.
doing locally seemingly useful but globally useless
refinements In this paper I review the anatomy
of looping and argue that looping is intimately
tied to the production of non minimal solutions
I then propose two classes of admissible pruning
techniques based on the notion of plan minimality
I show that the first one is admissible for planners
which do not protect their establishments but allow
a precondition to be reestablished any number of
times The second one is admissible for planners
which protect their establishments through causal
links I also discuss the complexity of the proposed
pruning strategies and then potential applications

1 Introduction
Domain independent classical planning techniques come in
two mam varieties - those that search in the space of world
states and those that search m the space of plans. The
conventional wisdom of the planning community supported
to a large extent by the recent analytical and empirical studies
[1 , 14] holds that searching in the space of plans provides a
more flexible and efficient framework for planning

Despite its many perceived advantages plan-space plan­
ning techniques still lag behind state-space planning tech
niques in terms of search control and pruning heuristics In
particular an important property of state-space planners is
that g iven any domain" that has only a f inite members of distinct
states, the planner w i l l terminate in finite time on any prob-
lem, whether or not the problem has a solution. In contrast
since the ground operator sequences form a power sequence
over the set of operators in theplanning domain the complete
search space of a plan-space planner can be infinite even
for domains with finite number of actions Consequently
a plan-space planner trying to solve an unsolvable problem

"This research is supported in part by NSF research initiation
iward (RIA) IRI 9210997 NSF young investigator award (NYI)
IRI-9457634 and ARP A/Rome Laboratory planning initiative grant
F3O602-93-C-0039 I think Eric Cohen YongQu Suresh Katulcam
and Laurie Ding for helpful comments

may never halt without looping checks even when the the
corresponding state-space planner wi l l

Tne only way to avoid such looping is to intelligently prune
unpromising search paths Although there exist a vanety of
techniques for pruning search branches m state space planning
(including the state-loop goal loop and inconsistent-state
heuristics see Section 6) these loop control techniques turn
out to be either inapplicable, or inadmissible for plan space
planners [8] (following [5] we consider a pruning technique
admissible if it does not affect the planner's ability to find
all minimal solutions for any given problem) Of course
as long as the planning problem is solvable (ie, has at
least one soluuon plan) and the underlying planner uses an
admissible search strategy to navigate the space of partial
plans then theoretically at least lack of pruning strategies
may not directly affect the efficiency of the planner Instead
the increased branching factor and the commitment of the
state-space planners tend to dominate over the larger search
space size of the plan-space planners Tnis explains why
we typically find plan-space planners faring better than state
space planners m many domains [1 14]

Despite this pruning strategies for plan-space planners are
still very important for several reasons Even with best-first
search looping can cause serious problems when faced with
unsolvable problems Further many practical planners use
depth-first rather than best-first search strategies for efficiency
purposes Looping can significantly affect the efficiency of
depth-first search regimes The final and often overlooked
need for pruning strategies has got to do with the importance of
failures in learning [10 16] Most speedup learning strategies
to improve planning performance learn from the fadures
encountered in plan generatioo Existence of a vanety of
pruning techniques provides a rich opportunity for the learner
to learn from the pruned branches Although best-first search
strategies may be able to avoid the unpromising branches
and depth-limited depth first strategies may be able to avoid
infinite looping neither of them provide any guidance for
the learner In the presence of learning strategies the cost
of pruning techniques also tends to be less of a concern
In particular it is possible to use the pruning techniques
strategically by combining them with a depth-Limited search
and applying them only to the plans that cross the depth-limits
(see L[10, 16] for a demonstration of the effectiveness of this
approach)

Despite their importance, very little work has been done
towards formulation and evaluation of pruning techniques for

KAMBHAMPATI 1627

1628 PLANNING

planning problem. A complete plan is also called a solution
plan A partial plan that is not complete is said to be an
incomplete plan

Two partial plans P and P2 are said to be equivalent if
there is a bijective mapping from the steps of P1 to the steps
of P2 such that under that mapping the ardenngs bindings
causal links and the symbol tables of the plans are equal
A partial plan P1 is said to be a subplan of another partial
plan P2 if P1 is equivalent to a plan P2 derived from P2
by removing some steps and the ordering, binding, causal
link relations involving those steps A plan P is said to be
minimal if it is complete, and no subplan of P is complete.

A precondition p of a step a m a partial plan is said to
be necessarily t rue [3] (or satisfied) if m every ground
linearization of the plan, diere is some step a' that precedes a
and gives p and no step between a' and a deletes p Similarly
if at least one ground linearization satisfies these conditions
then p is said to be possibly true If all preconditions of
all the steps are necessarily true then the plan is complete
For actions whose preconditions and effects are function-less
first order literals (called the TWEAK representation) Chap
man [3] provides the necessary and sufficient conditions for
checking the necessary truth of a precondition in polynomial
time

Plan space planning involves repeatedly selecting and ' 'es­
tablishing" a precondition of a step in the plan, such that it
becomes necessarily true. When all preconditions are nec­
essarily true planning is complete Since the establishment
refinements used by most planners ensure completeness by
considering all possible ways of achieving a chosen precondi
tion[9] the order in which different preconditions are selected
for establishment (referred to as ' goal selection order" or

goal order'1) does not matter However when an individual
partial plan is refined by establishing a specific precondition
the constraints added in that process may undo the establish
ment of a previously established precondition (thus making
it not necessarily true) There are two general approaches
for handling this - some planners popularly called goal
protection planners or causal l ink planners, post constraints
(called causal links) to protect their past establishments [13]
In particular if the planner uses the effects of step a1 to make

the condition p true at step a it posts a causal link a' —* a on
the partial plan. This constraint ensures that no step a" that
can delete p can possibly come between 5' and a Because
of this a causal l ink planner wi l l never undo an establish
ment that it has made, and thus never has to work on the
same precondition more than once In [9]\ we point out that
such protection strategies lead to reduction of redundancy in
the search space Examples of dus class of planners include
SNLP[l3]and UCPOP [5] A second class of planners such
as TWEAK [3] UA and TO [14] which may be called non-
causal l ink planners, do not protect their establishments but
allow re-establishment of a precondition that was previously
established and was subsequently undone We wi l l see that
these two classes of planners need differing types of pruning
strategies

3 R e v i e w o f e x i s t i n g p r u n i n g techn iques
Most existing techniques for pruning plans m plan-space
planning attempt to show that the constraints in the partial
plan are mutually inconsistent If the inconsistency proof
uses ONLY THE CONSTRAINTS OF THE PLAN then we call the pruning

technique 'domain independent" Such domain independent
techniques include showing that the ordering constraints have
a cycle, or showing that the binding constraints are unsahsfi-
able the former can done with the help of a topological sort.
algorithm in 0(n2) time for an n step plan The complexity of
binding consistency check depends on whether the variables
have finite or infinite domains In the former case the con­
sistency check is NP-Complete, while in the later case it can
be done in 0(n 3) time for an n variable plan Finally we can
also prune a plan if there exists no ground linearization that is
safe with respect to all the causal links of the plan. This check
is useful when the underlying planners use causal links but
postpone resolution of the conflicts with the causal links [9
17] Checking the link inconsistency of an arbitrary partial
plan is NP-complete [17]

Sometimes the constraints on the plan themselves may not
be inconsistent but may be inconsistent together with some
implicit domain knowledge Admissible pruning is possible
even m such situations as long as relevant knowledge about
die domain is available. The pruning techniques are men
called 'domain-dependent " Often such domain dependent
pruning techniques can prune a plan earlier than the domain
independent ones An an example consider the simplified
blocks-world problem of achieving On(A, B) A On(B , C)
starting from an initial state where A is on B and C is on the
table [10] A a causal link planner such as SNLP [13] may
generate the following partial plan in solving this problem.

In this plan the goal condition On(A, B) is being estab-
lished from the effects of the initial state and a new step
Puton (B, C) is added to achieve the second goal On(B, C)
Given the blocks world domain axiom that a block can
not both be clear and support another block we can show
that this partial plan cannot be refined into a solution (even
though its constraints by themselves are not inconsistent)
To see this consider the state of the world preceding
Puton(B, C) in any eventual solution plan This state should
contain both Clear(B) (which is a precondition of the ac-
tion) and On(A, B) (which is protected by the causal l ink

S0 —»' ' S∞) The infeasibiliity of this can be detected
with the help of the plan structure and the appropriate blocks
world domain axiom.

Although applying this strategy at every refinement could
be cosdy m [10] we show that combining this strategy with
an explanation based learning framework can significantly
improve planning performance

4 M i n i m a l i t y based p r u n i n g f o r non -causa l
l i n k p l a n n e r s

As I discussed earlier pruning techniques based on constraint
inconsistency alone are not enough to stop looping in many
situations In this section, I wi l l develop a technique for
pruning partial plans that are likely to lead to non-minimal
solutions To do this we need to extend the notion of
minimality to cover incomplete plans
Definition 1 (Nsatplan) Given an incomplete plan V we
define NsatplanCP) as the plan derived from V by removing

KAMBHAMPATI 1029

1630 PLANNING

Cost of Nsat-prune The cost of Nsat-prune depends on the
cost of constructing the Nsatplan from a given incomplete
plan and the cost of checking the minimality of a complete
plan Constructing the Nsatplan involves checking the
necessary truth of each precondition of the plan and can
be done in polynomial time for plans containing actions
in TWEAK representation [3] Checking whether a given
complete plan is minimal is unfortunately NP-hard even for
plans in TWEAK action representation (see [6] for a proof)

However it is possible to formulate weaker conditions that
provide necessary but insufficient conditions for minimality
Yang and Fink [6] provide a series of polynomial tune
necessary but insufficient conditions for plan minimality It
should be easy to see that instantiations of Nsat-prune that
use such weaker conditions wi l l be admissible in all the cases
where the pruning strategies based on ful l minimality are
admissible

In [4] it is shown that the use of weaker checks of non-
nunimality is quite effective in reducing looping in many
domains IN FACT the results demonstrate a meta-reasomng
trade off inherent in using minimality based pruning -although
the use of stronger minimality checks increases the pruning

KAMBHAMPATI 1631

The pp-cutset of a step may reduce in size (as additional
ordenngs are introduced making steps currently unordered
with respect to a to come before it) but the np-cutset will
never reduce in size (since refinements can add but not delete
step and ordering constraints)

In the example plan in Figure 1 the links comprising pp-
cutset of the step a" (shown with the bold border) are shown
in dashed lines The corresponding conditions are P Q and
R. From the figure we can also see that the links comprising
the np-cutset the steps'have me conditions Q andRon
them. Thus the pp-cutset of a" is dominated by the np-cutset
of s

Now suppose that all the remaining open conditions of the
plan in Figure 1 are with respect to steps that are necessarily
before a" (equivalently the preconditions of all the steps a
in P such that * can possibly follow a" have causal links
supporting them) In such a case, the pp-cutset of a" can
never increase in size during planning (it may reduce in
size if the steps that are currently unordered with respect
to s" get ordered to come before s") Since the pp-cutset
of s" is currendy dominated by the np-cutset of s1, and the
pp-cutset of a" wi l l not increase and the np-cutset of a step
wi l l not decrease in size this dominance relation wi l l hold
for all refinements of this plan including any refinements
corresponding to complete plans It is easy to see that any
such complete plans wi l l be non-minimal by Lemma 1 Thus
the plan in Figure 1 can be pruned without losing any minimal
solutions (complete plans) This pruning strategy is called the
Cutset prune strategy Formally

Pinning Strategy 2 (Cutset-prune) Prune any incomplete
partial plan P if it has two steps a' and s" such that (1) a'
necessarily precedes a" (11) Every open condition (e, a) of the
plan is such that a necessarily precedes s" (111) np cutsets')
dominates pp-cutset(a")

It is easy to see that Cutset-prune w i l l stop looping in
the hf/he example for a causal link planner such as SNLP
In particular once a plan of type so α s3 02 α s2 O1 α

s1 O2 α s ∞is made with the causal links {S3 he s2, s2 —*
S1,S1 -1 S∞ } the Cutset-prune strategy can prune the plan
since pp-cutset of S1 is dominated by the np-cutset of S3
and there are no open conditions after a\ It is also provably
admissible for causal link planners In particular we have

Theorem 3 Cutset-prune is an admissible pruning strategy
for planners that protect their establishments via causal links

As noted above, the admissibility property follows from
the fact that the plans pruned by Cutset-prune wi l l not have
any refinements culminating m minimal solutions We can
illustrate it with the example plan shown in Figure 1 Suppose
this plan, call it P is refined into a complete solution plan
P' It is possible to remove the steps 03 a4 and 5" (plus a
few others) from P' without affecting its correctness To see
this we start by noting that since there are no open conditions
possibly after a" in P in Figure 1 the only links given by
these steps to steps that are possibly after s" in the complete
plan P' are those that they currendy give in P The conditions
supported by these links can still be supplied by a' or steps

that are necessarily before a' For example, the link J4 —» a-j
can be redirected as *o —» *7 At the end of this process
the steps S3 and S4 wi l l not have any useful causal links
emaniting from them to steps possibly after a" Thus all
these steps (and any steps preceding a" that take any links
from them) can be removed without affecting the correctness
of P' showing that the plan P' is non-minimal

Cost of Cutset-prune Since Cutset-prune is quite costly
(it needs to potentially look at n2 pairs of steps and the
check on the cutset dominance could be costly when the plan
contains variables) it may cot be an effective strategy to use
at every iteration, it needs to be applied more strategically
Once again I believe that the primary uti l i ty of this strategy
wi l l be in terms of its guidance to an underlying learning
system (c f [10]) In particular it can be applied to plans
crossing depth limits to see if they are provably non-minimal
If so the explanation of non-mimniality can be used to guide

1632 PLANNING

an EBL based system to learn effective control rules to avoid
the looping brandies in the future [10- 161

6 Related W o r k
As mentioned earlier most state space planners including
STRIPS [7] and PRODIGY [2] use state loop and goal loop
based pruning strategies State-loop heuristics prune any path
that visits the same world state more than once. Goal-loop
heuristics are used in state-space planners that use means-ends
analysis or planners that do backward search in the space
of states These techniques prune any search path where
in an attempt to achieve some goal g the planner spawns
a set of subgoals that include g The state-loop techmques
are inapplicable for plan-space planners which do not keep
track of world state during planning. The goal loop strategies
turn out to be inadmissible in general (c i [8]) la [12]
we present a generalized planner called UCP that combines
both state-space and plan-space approaches within a single
framework UCP does have the ability to use the state loop
and goal loop pruning as well as the minimality pruning
strategies described in this paper

Moms et al [8] discuss a way of using filter conditions
to avoid certain types of looping in partial order planners
Their method depends on an a priori analysis of the domain
operators to identify the preconditions which should not be
expanded Even this analysis allows loop control in only
a very restricted class of situations Both the Nsat-prune
and the Cutset-prune strategies wil l stop looping on all
the examples described in their paper without requiring any
special analysis of filter conditions

Drummond and Curne [5] describe a pruning strategy
called temporal coherence heuristic which is analogous to
the inconsistent state heuristics used by backward state-space
planners This method essentially constrains the planner to
work on the goals in the reverse order of their achievement
and thus is complete only when the planner backtracks on
all goal ordenngs Murray and Yang [18] describe empirical
studies that show that the increased branching factor caused
by backtracking over goal ordenngs is typically not offset
by the temporal coherence based pruning In contrast the
minimality based pruning strategies described in our work are
complete for a much larger class of planners

As I mentioned earlier Fink and Yang [6] formulate a set
of tractable necessary but insufficient conditions for checking
non -m ima l i t y of partial plans They however do not use their
nation of minimality improving planning performances As
I discussed in Section 4 before the notices of minimality of
complete plans can be used to develop pruning techmques
they must first be generalized to incomplete plans

7 Conclusion
In this paper I addressed the problem of "looping " mo-
tivated the need for pruning techmques to avoid looping
and showed that looping is intimately Ued to the production
of non-minimal solutions I then proposed two classes of
admissible pruning techmques based on the notion of plan
minimality The first one, based on the nation of nco-minimal
uncomplete plans is admissible for non-causal l ink planners
such as UA and TO which don't protect goals but allow
reestablishment of goals The second one is based on the
notion of cutset of the causal dependency graph of a plan.

and is admissible for causal link planners such as SN IP
which protect establishments through causal links I also
discussed the complexity and utility of the pruning strate-
gies The development here also brings out the interplay
between the redundancy in the search space of a planner and
the admissibility of different pruning strategies for it

References
[1] A. Barrett and D Weld Partial Order Planning Evaluating

Possible Efficiency Gains Artificial Intelligence Vo l 67 No
1 1994

[2] J Bly the and M Veloso An analysis of Search Techniques
for a totally-ordered nonlinear planner In Proc Ist Inst Conf
on Al Planning Systems 1992

[3] D Chapman Planning for conjunctive goals Artificial Intel
ligence 32 333 377 1987

[4] E Cohen Understanding the Utility of Pruning by Minimality
in partial order planning MCS Project Report ASUCSE dept
May 1993

[5] M Drummond and K Cumc Exploiting Temporal Coherence
in Nonlinear Plan Construction In Compuational intelligence
Vol 4 1988

[6] E Fink and Q Yang A Spectrum of Plan Justifications In
Proc Canadian Al Conference 1992

[7] R Pikes P Hart and N Nilsson Learning and executing
generalized robot plans Artificial Intelligence 3(4)251-288
1972

[8] R Feldman and P Moms Admissible criteria for loop control
in planning In Proc AAA! 1990

[9] S Kambhampati, C Knoblocle and Q Yang Planning as
Refinement Search A Uni ted frame work far evaluating design
tradeoffs in partial order planning ASU-CSE TR 94-002 To
appear in Artificial Intelligence special issue on Planning and
Scheduling 1995

[10] S Katukatkums Kambhampati Learning explanation based
search control rules for partial order planning In Proc AAAI
94 1994

[11] S Kambhampati Admissible pruning Strategies based on Plan
minimality for plan space planning The details ASU CSE
Tech Report 1995 (in preparation)

[12] S Kambhampati and B Snvastava'4 Universal Classical
Planner An Algorithm for unifying state spaceand plan space
planning ASU CSE TR 94-002

[13] D McAllester and D Rosenblitt Systematic Nonlinear Plan­
ning In Proc 9th AAA! 1991

[14] S Minton J Bresina and M. Drummond Total Order and
Partial Order Planning a comparative analysis Journal of
Artificial Intelligence Research 2 (1994) 227 262

[15] J S Penberthy and D Weld UCPOP A Sound, Complete
Partial Order Planner for ADL In Proc K R 92 November
1992

[16] Y QuendS Kambhampati Learning Control rules of expres­
sive plan space planners Factors affecting the performance
ASU-CSE TR 94-006

[17] DE Smith and MA Peot Postponing threats in partial-order
planning In Proc Eleventh AAAI 1993

[18] Q Yang and C Murray An evaluation of the temporal
coherence heuristic in partial-order planning Computational
Intelligence Journal 10C3) 1994

'Technical reports available via URL f t p
/ / r akapoah i ase asu edu /pub / rao /papers h tm l

KAMBHAMPATI 1633

