
Hierarchical Plan Merging with Application to Process Planning

J . B r i t a n i k * and M . Mare fa t *
Department of Electrical and Computer Engineering,

University of Arizona, Tucson, Arizona 85721

A b s t r a c t
We have developed a domain-independent sys­
tematic methodology for plan merging at the
various levels of plan abstraction. This method
manifests itself in the hierarchical plan graph
where each level contains a complete, partially
merged plan. The principle advantage of this
approach is that, once external interactions be­
tween nodes on a given level have been estab­
lished, the continued merging of the plan frag­
ments in one node can take place independently
of plan fragments in other nodes on that level.
This provides a decomposition or divide-and-
conquer approach to plan merging. Another ad­
vantage to this decomposition approach is that
replanning effort is minimized in the presence
of the selection of alternative actions at some
level of the hierarchical plan graph. Only those
plan fragments which are in the same branch
as the alternative selection need be considered
for replannmg. Also, an algorithm ts proposed
which takes a bilateral approach to breaking
cyclic dependencies between nodes in the hier­
archical plan graph. We demonstrate the util­
ity of this hierarchical approach to plan merg­
ing through examples in the process planning
domain.

1 I n t r o d u c t i o n
A common approach to p lann ing is to make the l i n ­
ear assumpt ion by decomposing the problem in to sub-
problems and p lann ing for each subproblem indepen­
dently. T h e resul t ing subplans are combined in to the
f inal p lan v ia p lan merg ing techniques [Hayes, 1989;
K a r i n t h i et a/.,1992]. Plan merg ing consists of un i ­
fy ing separately generated plans in to one global plan
whi le obey ing the constraints due to interact ions w i th in
and between the i nd i v idua l plans. Merg ing is t yp ­
ical ly done in a complex manner such tha t al l ac­
t ions of a l l the subplans are considered simultaneously

* email: britanik@ecc.arizona.edu
* email: marefat@ece.arizona.edu
*The support of this work by the NSF under grant DDM-

9210018 to Dr. Marefat is gratefully appreciated.

in their lowest-level representation [Foulser ei a/.,1992;
K a r i n t h i et ai, 1992].

Our approach involves a hierarchical p lan graph which
we use to develop a domain- independent systematic
methodology for p lan merg ing at different levels of plan
abstract ion. The hierarchical p lan graph is broken in to
levels, where each level contains a par t ia l l y merged plan
called a subplan sequencing graph. Th is approach de­
composes the plan merg ing prob lem in tha t , once ex­
ternal interact ions between nodes on a given level have
been established, the cont inued merg ing of the plan frag­
ments in one node can take place independent ly of plan
fragments in other nodes on tha t level. In the presence
of the selection of a l ternat ive actions at some level of
the hierarchical p lan graph, th is decomposi t ion approach
minimizes replanning effort. On ly those plan fragments
which are in the same branch as the al ternat ive selection
need be considered for replanning. We also develop a
method for breaking cyclic dependencies between nodes
in the subplan sequencing graph.

We demonstrate the u t i l i t y of th is hierarchical ap­
proach to p lan merg ing th rough examples in the pro­
cess p lanning domain . The p lann ing system consists of
two ma jo r components: 1) a case-based planner which
generates feature subplans [Br i tan ik and Marefat , 1995],
and 2) a p lan merg ing component which hierarchical ly
merges the feature subplans in to a global p lan. We w i l l
not discuss the case-based planner here. It is sufficient
to note tha t the case-based planner generates process
plans for each feature in the par t , along w i t h a l ist of i n ­
teractions between the i nd i v idua l feature plans and plan
fragments. The hierarchical p lan merg ing component is
the subject of the remainder of this paper.

1.1 D e f i n i t i o n s
Before discussing hierarchical p lan merg ing (H P M) , we
need to discuss what a p lan is and define our not ion of
p lan merg ing.

A hierarchical p lan graph (H P G) is a directed graph
of plans such tha t each level represents a p lan at some
level of abstract ion. Figure 1 shows a generic hierarchi­
cal p lan graph. Each node at a given level of the HPG
represents a subplan of the plan at tha t level. The root
node represents the i n i t i a l set of i nd iv idua l plans. The
leaf nodes represent the fu l l y merged p lan. A directed
arc is d rawn f r o m node A' on level i to node Y on level

BRITANIK AND MAREFAT 1677

1.2 G u i d e t o t h e p a p e r

To emphasize t ha t our methodology is domain-
independent, we first present the general theory in sec­
t ion 2. Then we show how this theory can be applied
th rough a detai led process p lanning example in section
4. Section 3 brief ly discusses how our approach can yield
savings in replanning cost. Section 5 reviews direct ly re­
lated work, and section 6 concludes the paper.

2 High-Level Merg ing A lgo r i t hm
At each merging level of the hierarchical plan graph, the
same high-level merging algorithm is used to generate
the next level in the graph. The algorithm involves two
primary steps: 1) building a minimal subplan sequenc­
ing graph, and 2) removing any cycles from the subplan
sequencing graph.

2 .1 G e n e r a t i n g a m i n i m a l s u b p l a n
s e q u e n c i n g g r a p h

A subplan sequencing graph is a directed graph, G =
(N,E), where each node, n, € N is a subplan which
contains the result of merging two or more actions from
the preceding node on the previous level. A directed
edge e, € E is drawn from node nj to node nk if there
is an external ordering o, such that some component in
T\j must be completed before some component in n*.
An example of a subplan sequencing graph is shown in
levell of figure 1. J30, B1, and B2 are subplans which
are sequenced by the orderings Oi = (ag0 -< O B I) and
02 = (aB1 -< 32) where a^i is an action in node Bi.

The generation of the nodes in the subplan sequencing
graph is dependent on the domain in two ways. First,
domain-specific information is used to determine the ac­
tions to be merged at the graph level of interest. Second,
the criteria to determine whether two actions are merge-
able are also domain specific. Assuming we have such
information, we can use the following 3-step algorithm
for generating a near-minimal number of nodes in the
subplan sequencing graph: 1) generate a set of maximal
nodes that cover all possible mergings of actions from
the previous level in the HPG, 2) produce a near min­
imal covering of the actions from the previous level, 3)
generate edges which correspond to external orderings
between nodes.

To generate the set of maximal nodes, first a new node
is created for each action type or mergeability type to
be considered at this level. Next, components or plan
fragments from the previous level are placed in each
node, provided they are mergeable with that node's ac­
tion type.

We now have a set of nodes, each of which contains
plan fragments that can be merged together. A greedy
approach is used to find the near-minimal covering of
plan fragments in the maximal nodes1. First the largest
node (ie: the node which contains the largest number of
plan fragments) is chosen. Each plan fragment contained
in the largest node is removed from all other nodes. Then
the next largest node is chosen, and so on until there are
no non-empty nodes remaining unselected (unti l a cov­
ering is achieved by all of the selected nodes). Figure 2
shows the algorithm to generate a minimal covering from
the set of maximal nodes using this greedy approach.

We can improve the above greedy algorithm by check­
ing for the case where all of the plan fragments in a node
are mergeable wi th other nodes in the minimal covering.
We take advantage of the following lemma.

' In [Britanik,1994], we compare this approach with two
optimal approaches. This greedy approach was found to be
efficient and near-optimal.

1678 PLANNING

2.2 R e m o v i n g cyc les f r o m a s u b p l a n
s e q u e n c i n g g r a p h

Cycles prevent us f rom determin ing an order ing between
plan fragments; therefore, they must be removed. Bu t
before cycles can be removed, they must f irst be detected
and enumerated. The cycle enumerat ion a lgo r i thm is a
s t ra ight - forward depth-f i rst search a lgor i thm which ex­
plores each edge of the subplan sequencing graph and
reports cycles when it encounters a node more than once
along a pa th . Th i s a lgo r i t hm runs in O(E) t ime , where E
is the number of edges (external orderings) in the graph,
since every edge in the graph is explored exact ly once.
Once we have found al l of the cycles in the subplan se­
quencing graph, we need to remove them by deleting or
relocat ing specific edges in the graph. Th is is done by
mov ing plan fragments f rom one node to another node.
The choice of wh ich edge to break in a cycle depends on
three factors: 1) the number of cycles to which the edge
belongs, 2) the number of p lan f ragment moves required
to remove the edge, and 3) the number of references to
the p lan f ragment tha t wou ld be moved. A reference to
a p lan f ragment is s imp ly the appearance of tha t f rag­
ment in the label of another edge in the graph. Consider
the example subplan sequencing graph of figure 3. We

The edge break set which has the largest value of this
funct ion is the one most favorable to break. Breaking an
edge requires t ha t f ragments be moved f rom the nodes
involved to other nodes, but it may be the case that a
f ragment cannot be merged w i t h any other node. A n ­
other problem tha t wou ld prevent one f r om breaking an
edge is if mov ing a f ragment to another node induces a
new cycle in the graph.

In summary , the fo l lowing must be t rue for each frag­
ment to be moved to an al ternate node in the subplan
sequencing graph to break an edge: 1) the f ragment (and
any fragments which have an ident ical-merge-act ion in­
teract ion w i t h th is f ragment 2) must be mergeable in to
the new node; tha t is, i t is contained in tha t node's cor­
responding m a x i m a l node, 2) mov ing the f ragment (and
any fragments which have an ident ical-merge-act ion in ­
teract ion w i t h this f ragment) to the new node does not
induce a new cycle in the subplan sequencing graph, and
3) the fragment must not have been placed in the new
node in a previous a t temp t to break the edge (avoids
in f in i te loops). If it is the case that a cycle can not
be broken by mov ing fragments to al ternate nodes in
the subplan sequencing graph, then there are two other
approaches to removing the cycle: 1) use an alternate
m i n i m a l covering, and 2) add add i t iona l nodes to the
or ig ina l graph.

2 Two fragments have an identical-merge-action interac­
tion if they must be merged in the same node at some level
of the hierarchical plan graph.

BRITANIKAND MAREFAT 1679

A cycle in the subplan sequencing graph can be bro-
ken by adding one node to the graph if the following are
true: 1) there exists a break set, B, which contains all
S-fragments or all D-fragments, and 2) all fragments in
B can be moved to the new node. To break a cycle by
adding a single node to the subplan sequencing graph,
it is first necessary to find a break set that meets the
above enumerated criteria. This can be done by scan­
ning the break sets in order of cost (see section 2.2). Let
E represent the edge being removed and B represent the
break set being used. A new node, N', is created wi th
the same rnergeability type as the source node of E if
B contains all S-fragments, or the destination node of E
if B contains all D-fragments. A l l of the fragments in
B are then moved from their original node to N'. Fi­
nally, the edges are updated by removing all edges from
the graph and rebuilding them incorporating N'. Fig­
ure 4a shows a subplan sequencing graph which contains
a cycle. A list of the break sets is as follows, ranked
left to right: { F l } , {F3} , {FB, F6}, {F2 , F3}. And the
following are the orderings among the plan fragments:
(F l α F3), (F l α F4), (F l α F5), (F4 α F5), (F3 α FB),
(F2 α F3), (F2 α F6), and (F3 α F6). Each of the frag­
ments in the nodes of the graph can be contained only in
their current node. For example, fragment Fl can not
be moved to node B to break the cycle. Since none of
the fragments can be moved to another node currently
in the graph, a new node must be added. { F l } is an
eligible break set; hence a new node, C, is created which
has the same rnergeability type as node A. F\ is placed
in node C and the edges of the graph are regenerated to
yield figure 4b, and the cycle has been broken.

If breaking the cycle by adding one node to the graph
is not possible, then it may be possible to break the
cycle by adding two nodes. Note that if it is possible
to break a given cycle, then that cycle can be broken by
the addition of at most two nodes to the graph3. We can
simply duplicate the two nodes at the ends of an edge
in the cycle and move the fragments inducing the edge.
This is a similar process to that of adding one node to
the graph as discussed above.

If the cycle can not be broken by creating one or two
new nodes in the subplan sequencing graph or by moving
fragments to alternate existing nodes in the graph, then
an alternate minimal covering may need to be generated
and/or replanning may have to be done.

3Proof of this is presented in [Britanik,1994].

3 Replanning w i t h Al ternate Choices

From time to time it is necessary to replan some portion
of the overall plan to compensate for changing criteria
or to satisfy interactive user preferences. We consider
replanning in the hierarchical plan graph (HPG) on a
level-by-level basis. The following wi l l demonstrate how
the decomposition approach of hierarchical plan merging
reduces the amount of rework necessary due to replan­
ning of a specific plan component.

We approach replanning as follows. Replanning at
level i of the HPG implies that one or more of the nodes
at level i contain plan fragments that were reworked.
A l l of the nodes that are successors of those that were
replanned must also be replanned (or remerged). We
consider separately the following two cases: 1) only one
node on a branch of level i contains replanned fragments,
and 2) more than one node on a branch of level i contain
replanned fragments. A branch of a level is the group
of nodes which have a common parent at the previous
level of the HPG. Consider figure 1. At level 2, {C0TC1},
{C2,C3,C4}, and {C5,C6} are the three branches.

When one node on a branch of a level is replanned,
say R, then two actions wi l l result: 1) it may be nec­
essary to reorder the nodes within that branch, and 2)
it is necessary to replan or remerge all successors of R.
However, it is not necessary to replan other nodes in the
same branch or in other branches on the same level. It is
only necessary to replan the successors of the node that
was replanned. This is a direct result of our decompo­
sition approach in hierarchical plan merging. Consider
node CI in f igure 1. Replanning in node CI wi l l require
the consideration of only nodes C I , D 2 , D 3 , and D4 .
A planner which does not use this approach may have
to replan at least all of level 2 and all of level 3. If we
coarsely approximate the amount of replan work in each
node as one unit, then our approach would yield a 17/21
or 80% savings in replan work, since only four nodes out
of 21 would need to be reworked.

It is sometimes the case that replanning affects more
than one node of a branch in the HPG. This would occur
in situations where plan fragments were moved from one
node to another in the course of replanning. In this case,
it would be necessary to replan the entire branch of the
level that was affected. This is due to the fact that the
minimal covering set of nodes may have changed due to
the relocation of plan fragments. Consider the second
branch of level 2 in figure 1 which consists of nodes C2 ,
C3, and C4. A l l the nodes of this branch as well as their
successors would have to be replanned; however, the ef­
fect of replanning this branch is sti l l decoupled from the
other branches in level 2. Using the same cost assump­
tions as above, this decoupling yields a savings of 14/21
or 66% over a planner that would reconsider all of the
nodes on level 2 and level 3.

If nodes in more than one branch of a level are affected
by replanning, then each branch of that level can be
considered as one of the two cases enumerated above, and
replanning can propagate on a branch-by-branch basis.

1680 PLANNING

Figure 5: Hierarchical process plan graph incorporating
the tooling subplan sequencing graphs into the tooling
level (level 2).

4 Hierarchical Process Plan Merging
In this section we demonstrate an application of hier­
archical plan merging in the domain of process plan­
ning. As previously discussed, we assume the availabil­
i ty of a process planner which wil l generate subplans for
the individual features of a part. The output of such
a planner is a set of feature subplans and a set of or-
derings between the subplans. Examples of this type
of planner can be found in [Marefat and Kashyap,1992;
Britanik and Marefat,1995],

4 . 1 A p p r o a c h
Our approach to hierarchical process plan merging is a
three level approach as shown in figure 5. Level 0 is the
output of the planner, a sequenced list of feature sub-
plans. Level 1 is the grouping of feature subplans into
common fixtures. Each mergeability type (node) at this
level is a unique fixture specification. Each feature sub-
plan which is a member of a given node in level 1 can
be executed in the fixturing setup specified by that par­
ticular node. Directed edges between nodes implies that
the fixtures represented by the source nodes of the edges
must be sequenced before the fixtures represented by the
destination nodes of the edges. Level 1 establishes a min­
imal set of fixturings and their appropriate sequence for
executing the global plan. Each fixturing naturally de­
composes into a set of toolings for that fixture. Level 2
is the grouping of feature subplan fragments into com­
mon tooling groups. Each mergeability type at level 2
is a unique tooling for the branch (fixturing parent from
level 1) the node is in. Each subplan action that is a
member of a node in level 2 can be executed using the
tooling specified by that particular node. Directed edges
between nodes in level 2 (toolings) implies that certain
toolings must be executed before other toolings in the
current fixturing setup. Level 2 establishes a minimal
set of toolings necessary to execute the plan fragments
in the particular parent fixturing.

Figure 6b shows an interaction graph for the object in
figure 6a.

Figure 6: (a) An example object with several interact­
ing features and (b) its associated interaction graph. In
the graph, solid edges represent strong constraints, while
dashed edges represent weak constraints. An edge label
of C represents a containment interaction and an edge
label of P represents a perpendicularity interaction. An
edge label of F represents a fixturing identical-merge-
action interaction.

For our planner, we wil l focus on generating fixture po­
sitions for a parallel vise-clamp type fixture. However,
the hierarchical plan merging mechanism is not limited
to the simplified fixture model we wi l l present. We use
this simple model to facilitate clear exposition of the
process planning domain application. Along with the
clamp-type fixture, we wi l l assume a vertical-type ma­
chine; that is, the tool chuck approaches the part from
above the fixture. Given this physical description, we
can model a fixture setting as a two-tuple < CA,0 >,
where CA is the clamping axis and O is the orientation
of the part about the clamping axis. The CA is specified
as the direction parallel to the principle normal (in the
part's local coordinates) of the faces to which the clamp
is applied. O is the direction of the principle normal of
the part surface that is facing up towards the tool chuck.

4 .2 P r o c e s s P l a n M e r g i n g
We wil l now discuss our application of hierarchical plan
merging to process planning. First we describe the sub-
plan sequencing graph at the fixturing level, then at the
tooling level.

F i x t u r i n g Leve l
Once we know from which fixtures a feature can be ma­
chined, we can construct the fixture subplan sequencing

BRITANIK AND MAREFAT 1681

graph. First we build a list of features applicable to each
fixture. We call these lists common fixture sets (CFS).
The common fixture sets for the part in figure 6a are
shown in figure 7. Notice that a feature may appear in
more than one CFS, demonstrating alternative fixtures
from which the feature may be machined. Also note
that common fixture sets correspond directly to the set
of maximal nodes as discussed in section 2.1.

The next step in building the fixture subplan sequenc­
ing graph is to generate a minimal covering of nodes;
that is, a minimum set of fixturings. This corresponds
directly to our desire to minimize the number of fixture
changes while machining the part. The minimal covering
for the example part consists of the two nodes: F<+X,+Z>
= {F1,F4,F5,F6} and F<+Y,+Z> = {F2.F3}.

Since our minimal covering algorithm really only gen-
erates a near-minimal covering, we next check to see if
we can can remove any unnecessary nodes as described
in section 2.1. By observing the minimal covering and
figure 7, we see that there are no redundant nodes which
can be subsumed by nodes of lesser cardinality.

Wi th this minimal set of fixtures, we now determine
the sequence by which the fixtures are used in machin­
ing the part. This sequence is constrained by the strong
interactions between features in different fixtures. Using
the interaction graph in figure 6b, we have an explicit
list of orderings (strong interactions), and can generate
the edges for the fixture subplan sequencing graph as
discussed in section 2.1. We simply examine each strong
interaction (represented by solid arrows in figure 6b),
and include it in the fixture subplan sequencing graph
as an edge if its source and destination features are in
different fixture nodes (ie: it represents an external or­
dering). The fixture subplan sequencing graph after edge
generation is shown in figure 4a. Note that this graph
has a cycle; hence, cycle removal is necessary. The list of
break sets is as follows, ranked left to right. { F l } , {F3 } ,
{F5, F6}, and {F2, F3} The first approach of moving
one or more plan fragments (feature subplans) to other
nodes in the graph would be unsuccessful since only F6
can be moved to another node in the graph (this can be
seen by observing the common fixture sets in figure 7),
but there is no break set which contains only F6. Hence,
the second approach of node addition to the graph wil l
be attempted. By observing the ranked list of break sets,
we see that all of the break sets contain nodes that are
either all S-fragments or all D-fragments. If it is pos­
sible to break the cycle, it can be done by adding only
one node to the fixture subplan sequencing graph. Break
set { F i } has the highest ranking and is an eligible break
set; hence node A of figure 4a is duplicated with the
fragment Fl as its contents. Using the interaction graph
of figure 6b, the edges of the fixture subplan sequencing
graph are regenerated incorporating the new node. The

resulting cycle-free fixture subplan sequencing graph is
shown in figure 4b.

Now that the fixturing subplan sequencing graph, that
is, the fixturing level of the hierarchical process plan
graph, is complete, it is necessary to build the tooling
level by generating tooling subplan sequencing graphs
for each fixture node in the fixturing level.

Too l i ng Level
To proceed with plan merging at the tooling level, we
need to refine our definition of a plan fragment for this
level. For the purposes of our example, we consider each
feature subplan to consist of an ordered set of tool ap­
plications, one for each process used to machine the fea-
ture. We represent the application of tool Tl in feature
subplan Fl as Fl . T l . I f Fl consists of applying tool Tl
followed by applying tool T2, then Fl contains two plan
fragments, namely F1.T1 α F1.T2. It is these plan frag­
ments that wil l be merged into common tooling sets in
the tooling subplan sequencing graph. Since the pris-
matic features in figure 6a (features Fl through FB) are
relatively similar, we assume that they all use the same
rough cut tool, T l , and finishing cut tool, T2. The round
hole (feature F6) uses tool T3 as its rough cut tool and
T4 as its finishing cut tool. Note that there is a strong
constraint which sequences tool Tl before tool T2 in each
of the first five feature subplans, and T3 is sequenced be-
fore T4 in F6. This ordering is due to the common sense
fact that the rough cut must precede the finishing cut.
W i th this information, we are now ready to generate the
tooling subplan sequencing graph for node A in figure 5.
The generation of the tooling subplan sequencing graphs
for the other nodes of level 1 in the hierarchical process
plan graph is a similar process and wil l not be shown
explicitly.

First we need to generate the set of maximal nodes.
One node is generated for each specific tool used
in the feature subplans. The following is the set
of maximal nodes for the tooling subplan sequenc­
ing graph: (T l : F 4 . T 1 , F 5 . T 1) , (T2:F4.T2,F5.T2) ,
(T3:F6.T3) , and (T4:F6.T4) . Since all fragments in
all nodes are unique, the set of maximal nodes is also
the minimal covering in this case. Also, there are no re-
dundant nodes which can be removed from the minimal
covering. To generate the edges in the tooling subplan
sequencing graph, we utilize the orderings in the interac­
tion graph in figure 6b as well the orderings implied by
the specification that rough cuts precede finishing cuts.
The result of adding the appropriate edges is the cycle-
free tooling subplan sequencing graph shown in level2
of figure 5, which is the final hierarchical process plan
graph.

Now that the hierarchical process plan graph is com­
plete, we can generate an outline of the final plan (it is
an outline in the sense that we do not include specific
motions and dimensional data etc.). The plan is shown
below with the execution sequence from top to bottom
and then left to right:

setup f i x t u r e <+X,+Z> setup f i x t u r e <+X,+Z>
setup t o o l T l setup t o o l T l

{ do ac t i ons } { d o ac t i ons }

1682 PLANNING

setup t o o l T2 setup t o o l T3
{ do ac t i ons } { do ac t ions }

setup f i x t u r e <+Y,+Z> setup t o o l T2
setup t o o l T1 { do ac t ions }

{ do ac t i ons } setup t o o l T4
setup t o o l T2 { do ac t ions }

{ do ac t i ons }

5 Related Work
Our work is somewhat complementary to that of
Karinthi et al. [Karinthi et a/., 1992]. Their interest­
ing work focuses on generating an optimal global plan
from all possible alternatives of feature subplans in pro­
cess planning via state-space search. Our focus has been
on merging one specific set of feature subplans such that
replanning effort is minimized when alternatives are se­
lected. However, in a sense we also consider many alter­
native plans during the merging process at the fixturing
level.

The work of Foulser et al. [Foulser et ai, 1992]
presents a formal treatment of the complexity of domain-
independent plan merging using STRIPS-style opera­
tors. An optimal algorithm for plan merging util izing dy­
namic programming methods has been developed. Since
practical implementation of the optimal algorithm is in-
feasible for larger inputs, several greedy-based approxi­
mate (near optimal) algorithms are also developed along
with their worst-case and average-case complexities for
large inputs. It is also empirically shown that the ap­
proximate algorithms performed well for larger inputs.
Yang et al. [Yang et al,1992] generalizes some of these
algorithms to handle a wider range of interaction types.

Hayes [llayes,1989] has developed the M a c h i n i s t sys­
tem which considers operator overlap in process plan­
ning. The approach uses "cues" in the problem specifi­
cation to search for mergeable operators. Like our near-
minimal covering algorithm, M a c h i n i s t uses a greedy-
type algorithm to group operators into a near-minimal
number of set-ups (fixturings).

HUTCAPP [Mantyla and Opas,1988] is a generative
process planner for prismatic parts. A lattice algebra
is used to find a minimal covering of work directions
to machine all features in the part. This work inspired
our lattice algebra approach to generating an optimal
minimum covering from the set of maximal nodes. This
algorithm and another optimal algorithm are analyzed
in [Britanik,1994].

6 Conclusions
We have developed a systematic methodology for uni­
form plan merging at the various levels of plan abstrac­
tion. This method manifests itself in the hierarchical
plan graph where each level contains a complete, par­
t ial ly merged plan. The principle advantage of this ap­
proach is that, once external interactions between nodes
on a given level have been established, the continued
merging of the plan fragments in one node can take
place independently of plan fragments in other nodes on
that level. This provides a decomposition or divide-and-
conquer approach to plan merging. Another advantage

to this decomposition approach is that replanning effort
is minimized in the presence of the selection of alterna­
tive actions at some level of the hierarchical plan graph.
Only those plan fragments which are in the same branch
as the alternative selection need be considered for re­
planning.

Rather than considering mergings which result in
cyclic dependencies to be infeasible, an algorithm is pro-
posed which takes a bilateral approach to breaking cyclic
dependencies between nodes in the subplan sequencing
graph. The first approach is to maintain the same num­
ber of nodes and remove the edge of the cycle by relo-
cating plan fragments to other nodes. If this approach
fails or is inappropriate according to the priorities of the
planner, then a second approach which considers adding
at most two nodes to the subplan sequencing graph may
be used. If these two approaches have failed, then the
merging which resulted in the cyclic dependency wil l be
considered infeasible and replanning wil l be necessary.

We have demonstrated the ut i l i ty of this hierarchical
approach to plan merging through examples in the pro­
cess planning domain. It was shown that the merging of
fixtures (fixture level) and the merging of tools (tooling
level) can be done in a systematic and uniform fashion.

References
[Britanik and Marefat, 1995] J. Britanik and M. Mare-

fat. Case-based manufacturing process planning with
knowledge sharing support. Submitted for journal pub­
lication, 1995.

[Britanik, 1994] John Britanik. Hierarchical plan merg­
ing. Technical report, Intelligent Systems Laboratory,
Department of Electrical and Computer Engineering,
University of Arizona, 1994.

[Foulser et al, 1992] David E. Foulser, Ming L i , and
Qiang Yang. Theory and algorithms for plan merg­
ing. Artificial Intelligence, 57:143-181, 1992.

[Hayes, 1989] Caroline Clarke Hayes. A model of plan­
ning for plan efficiency: Taking advantage of operator
overlap. In International Joint Conference on Artifi­
cial Intelligence, pages 949-953, 1989.

[Karinthi et ai, 1992] Raghu Karinthi , Dana Nau, and
Qiang Yang. Handling feature interactions in process-
planning. Applied Artificial Intelligence, 6:389-415,
1992.

[Mantyla and Opas, 1988] Mar t t i Mantyla and Jussi
Opas. HUTCAPP - a machining operations plan­
ner. In Robotics and Manufacturing, pages 901-910.
ASME, November 1988.

[Marefat and Kashyap, 1992] M. Marefat and R.L.
Kashyap. Automatic construction of process plans
from solid model representations. IEEE Transactions
on Systems, Man, and Cybernetics, 22(5):1097-1115,
September/October 1992.

[Yang et ai, 1992] Qiang Yang, Dana S. Nau, and
James Hendler. Merging seperately generated plans
with restricted interactions. Computational Intelli­
gence, 8(4):648~676, 1992.

BRITANIK AND MAREFAT 1683

