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A b s t r a c t 
Resource allocation is a difficult constraint sat­
isfaction problem that has many practical ap­
plications. Fully automatic systems are often 
rejected by the ultimate users because, in many 
real-world environments, constraints cannot be 
formalized completely. On the other hand, hu­
mans are overwhelmed by the complexity of 
their task. We present a new way of solv­
ing the resource allocation, where a computer 
builds dynamic abstractions that simplify prob­
lem solving to the point that the user can in­
tervene in the solution of the problem. These 
abstractions are based on the concept of inter­
changeability introduced by Freuder. 
In this paper, we describe a heuristic for de­
composing a resource allocation problem into 
abstractions that reflect interchangeable sets of 
tasks or resources. We assess the "quality" 
of the discovered neighborhood interchangeable 
sets by comparing them to the ones obtained 
by the exact algorithm described by Freuder, 
both for data taken from a real-world applica­
tion and for randomly generated problems. 

1 I n t r o d u c t i o n and m o t i v a t i o n 
The resource allocation (RA) problem is to assign re-
sources to a set of tasks, scheduled at given time inter­
vals, such that no resource is assigned to two different 
tasks at the same time. It arises in many real-world 
applications. 

• In manufacturing, once the various jobs have been 
scheduled, it appears as the problem of distribut-
ing tools to the machining centers and of allocating 
routing vehicles to transfer the material. 

• In the operating units of a hospital, the availability 
of personnel and the program of surgical operations 
to be executed are decided at various administrative 
levels, days or weeks in advance. On a daily basis, 
one or two human operators distribute the qualified 
personnel (nurses and technicians) to the surgical 
operations as required. 

• In an airline company^ the problem arises for al­
locating, to the various scheduled flights, aircraft, 

cabin crew, gates; as well as personnel, vehicles, and 
equipment for catering, baggage handling, cleaning, 
and fuel refilling. 

Fig. 1 shows an example of a resource allocation prob­
lem. The problem can be represented as interval orders, 
as shown on the left of Fig. 1. In this paper, however, 

Figure 1: Left: Interval orders: a schedule of seven tasks 
whose start time and duration are fixed. For each task, a 
set of possible resources is shown. Right: the corresponding 
constraint graph. 

we model the resource allocation problem as a discrete 
Constraint Satisfaction Problem (CSP) [7] in which the 
constraints among variables are binary and denote mu­
tual exclusion wi th respect to the values, as shown in 
Fig. 1 right. The nodes of the constraint graph repre-
sent tasks to be executed, and their labels are sets of 
resources that can carry out, the tasks. Arcs link nodes 
that intersect in time and have at least one resource in 
common. Note that we consider only resources that are 
reusable and non-sharable, see [6]. 

C o m p l e x i t y . Arkin and Silverberg [ l ] showed that the 
resource allocation problem is NP-complete (i.e., the 
existence of a polynomial solution method is unlikely). 
In [3], we showed that an optimization version of the 
resource allocation problem in which certain tasks (com­
pulsory tasks) must absolutely be allocated a resource 
and the number of the remaining ones (optional tasks) 
must be maximized is at least as difficult as M A X S N P -
complete, for which the existence of a polynomial-time 
approximation scheme is unlikely. 

R e q u i r e m e n t : i n t e r a c t i v i t y vs . a u t o m a t i o n . Of­
ten, constraints cannot be exhaustively enumerated. For 
example, the constraint that two persons do not work 
well together is often not formalized. Moreover, con­
straints may vary over time. For example, a person may 
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be sick and unable to carry out certain tasks. Fully au­
tomatic methods are, therefore, often rejected by the 
ult imate users, who have to revise solutions with the full 
complexity of the original problem. Thus, it is impor­
tant to present them with compact representations that 
simplify the problem. 

A b s t r a c t i o n s as a new perspec t i ve . In this paper, 
we investigate the use of computers to dynamically build 
abstractions that structure the problem space and al­
low the users to solve the problem interactively. In [4), 
we introduced a heuristic called the Value-Assignment 
Delay heuristic (VAD) for decomposing a resource al­
location problem into sub-problems. The VAD tries 
to solve sub-problems independently and isolates con­
flicts between them. The tradeoffs of using this decom­
position scheme and a comparison to related work in 
the scheduling and CSP literature are reported in [3; 
4]. 

By decomposing a problem, the VAD implicit ly gener­
ates equivalence classes of resources and tasks. We argue 
that these new objects structure the solution space of a 
resource allocation problem in a compact manner and 
identify equivalent choices. Thus, they serve as a basis 
for abstraction. In this paper, we identify these vari­
ous abstraction classes and characterize them in terms 
of interchangeability sets [5]. 

The paper is organized as follows. In Section 2, we 
recall the main definitions of interchangeability that are 
of interest to us. In Section 3, we describe and formalize 
the interchangeable sets discovered by the VAD; then we 
show how they can be used as abstractions to simplify 
problem solving. In Section 4, we evaluate the discovered 
neighborhood interchangeable sets with respect to the 
ones found by the exact algorithm. Section 5 presents 
our conclusions. 

2 Interchangeability: definitions 
In [5], Freuder introduces the concept of interchangeabil­
i ty and defines various kinds of value interchangeability. 
In this section, we quickly recall the definitions of inter­
est to us. The phrase " ( i , j ) satisfies C" means that 
values i and j for two variables linked by a constraint C 
are consistent wi th respect to this constraint. 

D e f i n i t i o n 1 full interchangeability: A value 6 for a 
CSP variable V is fully interchangeable wi th a value c for 
V if and only if every solution to the CSP that assigns b 
to V remains a solution when c is substituted for 6 in V 
and vice versa. 

This means that values 6 and c can be switched for vari­
able V in a given solution without affecting at all the 
rest of the problem and regardless of the constraints that 
apply to the variables. Freuder notices that computing 
fully interchangeable sets may require, in general, com­
puting all solutions, which can be a quite costly opera­
tion. 

D e f i n i t i o n 2 Neighborhood interchangeability: A value 
b for a CSP variable V is neighborhood interchangeable 
with a value c for V if and only if for every constraint C 

on V: 

Neighborhood interchangeability is a stronger condi­
t ion than full interchangeability (i.e., not all fully inter­
changeable sets are neighborhood interchangeable), but 
is easier to compute. Freuder describes a polynomial-
time procedure for computing all neighborhood inter­
changeable sets1. 

D e f i n i t i o n 3 Substitutability: Given two values 6 and 
c for a CSP variable V, 6 is substitutable for c if and 
only if substituting 6 in any solution involving c yields 
another solution. 

Substitutability is 'one-way' ful l interchangeability. 

D e f i n i t i o n 4 Neighborhood substitutability: For two 
values 6 and c, for a CSP variable V, b is neighborhood 
substitutable For c if and only if for every constraint C 
on V: 

Neighborhood substitutabil ity is 'one-way' neighbor­
hood interchangeability. 

D e f i n i t i o n 5 Partial Interchangeability: Two values 
are partially interchangeable wi th respect to a subset 
S of variables if and only if any solution involving one 
implies a solution involving the other, with possibly dif­
ferent values for variables in S. 

Note that ful l interchangeability is partial interchange-
ability with S — 0. Indeed, Freuder outlines that: "Par­
tial interchangeability captures the idea that values for 
variables may differ among themselves, but be fully in­
terchangeable with respect to the world". 

Using partial interchangeability, we may isolate a sub-
problem in which the partial solution can be affected 
by a change of the value of a variable in the isolated 
sub-problem, without having to update the rest of the 
solution. This idea of localizing the effect of a modifica-
tion is very important in scheduling applications, where 
one tries to keep the stability of a global solution while 
adjusting a partial solution locally to accommodate un­
foreseen events. Thus, partial interchangeability sets can 
serve as a basis for reactive scheduling strategies. In [5], 
Freuder argues that interchangeable values are redun­
dant and their removal simplifies the problem space. 

3 Interchangeability in RA 
The algorithm described in [5] is applicable to all types 
of constraints, however, it only finds neighborhood inter-
changeabilities (NI)2 . Below, we introduce a decomposi­
tion heuristic, called the VAD heuristic, which is only 
applicable to constraints of mutual exclusion; but, in 
addition to the NI sets, it also determines other types of 
interchangeability for which no other algorithm is known 
so far. 

1The worst-case complexity of this procedure is 0(n2a2) 
where n is the number of nodes and a is the domain size. 

2 In [5], Freuder proposes also a generalized version for 
finding A:-interchangeability. 
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3.1 T h e V a l u e - A s s i g n m e n t D e l a y h e u r i s t i c 
The idea of the VAD heuristic, as stated in [4], is as fol­
lows: "Delay the assignment of the most solicited values 
in a list coloring problem and try to solve the simplified 
problem without them. Distribute the delayed values to 
those variables that really cannot do without them." 

Figure 2: Left: Applying the VAD heuristic to a simple 
resource allocation problem. Right: Clustering tree. 

The application of this heuristic to a simple example 
is shown in Fig. 2. In the first step, the assignment of 
values o and 6 is delayed. The set {a , 6} is called the 
set of delayed values. This has the effect of breaking 
up the ini t ial graph into two components, because N2 
now has no value in common wi th , and thus no link to, 
the rest of the graph. This process is repeated itera-
tively, and yields a clustering tree in which the leaves 
represent simplified sub-problems, the nodes are sets of 
delayed values and the branches show how these com­
ponents relate (Fig. 2 r ight). Some of the sub-problems 
can be easily solved in isolation without any effect on 
the rest of the problem. For example, nodes in Cluster\ 
and Cluster3 can be assigned any element in {e, /} and 
{c, d) respectively. Such commitments are safe and never 
need to be undone. A l l the other parts need to claim de-

layed resources for their solution. A conflict is defined 
around each value set claimed by several nodes in the 
leaves, see Fig 3. Conflicts may be resolved according 
to some heuristic and domain dependent preferences or 
by interactive users' intervention. Users may decide to 
relax constraints and "borrow" any of the values that 
remain unassigned. 

By isolating easy sub-problems, identifying conflicts, 
and localizing interactions among the various compo­
nents of a resource allocation problem, the heuristic 
defines a tree structure useful for interactive decision 
making. The algorithm and termination criteria are de­
scribed in detail in [4; 3], where we show that the worst-
case complexity of the method is 0(n3 + (n+a)an log a), 
n being the number of tasks and a the number of re­
sources. 

sThis is the example "test 1-a" of Table 1 in Section 4, 
slightly modified to illustrate all the types of interchange-
ability addressed in this section. 
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Proo f : Since no value in Ui was delayed, this means 
that Ui is needed only for Vi during Vi and assigning 
any element of Ui to Vi does not rule out any choice for 
the rest of the problem. Therefore, the set of values for 
nodes adjacent to V*, for the case where Vi is assigned 
an element of Ci, wi l l be a superset of that for the case 
where it is assigned any other value in its label. □ 

E x a m p l e f r o m F i g . 5: In C-2, each of {Rolf, Martine} 
are neighborhood substitutable for each of {Henri, Erika, 
Mobwete, Fernando, Giorgio, Alberto} for Opio-

L e m m a 4 Al l values in a given set of delayed values D 
are partially interchangeable wi th respect to the set S of 
variables located downstream that claim D. 

Proo f : The set of delayed values is chosen at each step 
as the set of values simultaneously claimed by a set of 
variables, see [4]. Thus, if a variable claims any element 
of the set of delayed values, it also claims all the others, 
by construction. D 

Examp le f r o m F igures 4 a n d 5: {Henri, Erika} 
are partially interchangeable for all the nodes in the 
leaf clusters C 1 , . . . , Cs since they are admissible for all 
these nodes (although this information is not explicitly 
shown). 

In [5], Freuder suggests that interchangeability can 
also be computed dynamically during problem resolu­
t ion, (i.e., dynamic interchangeability). An example of 
this is shown in Fig. 6. Suppose that a conflict resolution 
procedure (or the user), decides to assign b to Task K. 
The delayed value set {a} is now fully interchangeable 
wi th {e, f} for variable Task L. 

P roo f : Since the values in the delayed set are claimed 
only by non-adjacent nodes, whether they are assigned to 
two or more nodes simultaneously cannot affect the prob­
lem in any way. In particular, each of them is neighbor­
hood substitutable for all {vi in each Vi. Since all {v^ 
can be proven neighborhood substitutable for each of 
these values using Lemma 3, they are fully interchange-
able. D 

As these lemmas show, in addition to the NI sets, the 
VAD also determines other types of interchangeability 
for which no other algorithm is known so far. In the case 
of partial interchangeability, the VAD also determines 
the sets of nodes wi th respect to which the values are 
i nterchangeabl e. 

3.3 I n t e r c h a n g e a b l e sets as a b s t r a c t i o n s 
We claim that the VAD decomposition scheme structures 
the solution space into compact families of partial solu­
tions: qualitatively equivalent solutions can be generated 
by locally modifying the partial solutions in the isolated 
interchangeable sets. In Fig. 4, it is easy to see that many 
solutions can be generated simply by switching partially 
interchangeable values for tasks in the same leaf clus-
ter. This switching operation affects only the nodes in 
the leaf, while keeping the rest of the 'world' unchanged. 
Thus, by only viewing the clustering tree generated by 
the VAD, the user can easily assess the variety of pos­
sible solutions. Classical enumerative methods fail to 
organize the solution space in such a compact manner: 
they present solutions to the users in a jumble without 
showing similarities and differences between alternative 
solutions. In particular, they fail to identify the bound­
aries within which the effect of a change remains local. 

In interactive problem solving, interchangeable sets 
help the human decision maker to view alternative 
choices in a concise way. Full or neighborhood inter­
changeable values can be replaced by one 'meta-value'. 
Partial interchangeability identifies the boundaries in 
which changes are permitted. When a value a is neigh­
borhood substitutable for a value 6 for a given variable 
the user is guaranteed to be able to replace 6 by a any­
time a solution involving 6 for the variable is found, if b 
is not acceptable for some unquantifiable or subjective 
reason. 

In search, the main advantages of discovering inter­
changeability sets are: (1) compacting the solution space 
representation by grouping families of solutions that are 
equivalent, thus allowing the search process to remain 
as local as possible, and (2) enhancing the performance 
of backtracking and consistency checking by removing 
redundant values. 

In dynamic concept formation, see [3], interchange-
abil ity identifies groups of objects (sets of variables and 
sets of values) to become the basic components for a 
generalization process aimed at providing explanation. 

4 Evaluation of NI sets 
The VAD heuristic is not guaranteed to discover all inter­
changeable sets. Its performance depends on the struc-

they claim the same delayed set, they may be assigned values 
from this set simultaneously, see [4]. 
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ture of the problem at hand- The interchangeable sets 
approximated by the VAD may differ from the exact ones 
in two ways: (1) the sets discovered by the VAD may be 
only subsets of the largest possible ones and (2) some 
possible sets may be missed. 

The conditions under which the VAD discovers all ex­
act sets of interchangeable values are so far unknown. 
We have evaluated the performance both on data from 
a case study in a hospital and on a variety of randomly 
generated resource allocation problems. The character­
istics of the hospital case-study in terms of CSP mea-
sures are reported in Table 1. The random problems are 
generated following on the evolutionary model for gen­
erating random interval orders by Scheinerman [8] and 
a resource model where the number and selection of re­
sources follow a uniform distribution. 

We report the results only for problem sizes n — 20 
and n — 50, while varying the adjacency probability5 

of the interval graph in {0 .1 , 0.2, . . . , 0.9, 0.99}, and 
the maximum domain size a = {n/10, 2n/10,..., 9n/10,n} For 
each case, ten random problems were generated and each 
point in the experiments reported below is obtained by 
taking the average over the ten cases. 

Each time, we have compared the NI sets obtained 
by the VAD decomposition wi th those obtained by the 
exact algorithm by Freuder according to the two criteria 
introduced above (i.e., maximality and existence). 

Let G — (V, E) be a constraint graph of V vertices (or 
variables) and E edges (or constraints), and 

We now consider the results of the evaluation regard­
ing three different criteria: occurrence p1 (1), coverage 
p2 (2), and accuracy p3 (3)6 as discussed below. 

Occur rence : existence of NI sets. p\ measures 
the "occurrence" of neighborhood interchangeability in 
a problem and is computed using the exact algorithm. 
A small value for pi indicates that few NI sets exist in 
G. 

(1) 

In the real-world examples reported in Table 1, we no­
tice that the occurrence of NI is rather rare (p\ is small). 

In fact, the other types of interchangeability character­
ized in Section 3.2 seem to occur more often (for exam­
ple, see Fig. 5). The evaluation of the latter has not yet 
been carried out. 

For the randomly generated data, Fig. 7 shows the 
following behavior: (1) As Benson and Freuder experi­
enced [2j, only problems of small adjacency probability 
present interchangeability features: the number of NI 
sets becomes nearly zero for p > 0.4. (2) For problems 
with a "small" value for p, the number of interchange­
able sets increases wi th the number of resources. (3) The 
number of interchangeable sets decreases with the size of 
the problem7 even when the ratio of the number of val­
ues to the number of variables (a/n) is held constant. This 
is foreseeable because the resources are not structured 
(chaos increases). 

Coverage: how m a n y N I sets are a p p r o x i m a t e d . 
p2 measures the number of sets that are affected by the 
behavior of the VAD. A small value for p2 indicates that-
few of the NI sets discovered by the VAD are different 
from the exact ones. A large value for p2 means that 
many sets are truncated. 

(2) 

For the set of real-world data described in Table 1, no set 
of neighborhood interchangeable values was missed (p2 — 
0 in all cases). For the randomly generated problems, 
the measured values of p3 are reported in Fig. 8 and 
Table 2. We can draw the following observations from 
Fig. 8. For problems wi th small values for p, very few NI 
sets are truncated. The VAD nearly finds all exact sets. 
This is the most important region since it contains most 
NI sets (p1 is large). When p increases, the number of NI 
sets that are not complete also increases. However, one 
should bear in mind that, for these problems, p\ is small, 
which means that few NI sets exist. This explains why 
P2 deteriorates significantly even though the proportion 
of NI sets found is sti l l fairly high. 

Accu racy : t h e ex ten t o f N I sets a p p r o x i m a t i o n . 
The parameter p3 measures the accuracy to which the 
VAD computes the NI sets8 

A small value for p3 indicates those sets affected by 
the approximation are heavily distorted (truncated). A 
value p3 = 0 means that all NI sets were completely 
missed by the VAD. Large values for p3 are desirable 
since they indicate that the NI sets discovered by the 
VAD are hardly altered. 

For the set of real-world data described in Table 1, all 
the discovered NI sets were exact (p3 is undefined in all 
cases). 

7The number of NI was so small (too small for any eval­
uation) for the cases n — 50 and a < 50 that we decided to 
generate also, for this problem size, the cases a = 60, 70, and 
80. 



5 Conclusion 
Because a changing and complex world cannot be com­
pletely formalized, resource allocation problems should 
not be addressed using fully automatic methods. In this 
paper, we propose the paradigm of dynamic abstractions 
as a new way of applying computers for such tasks. Here, 
a computer is used essentially to structure a problem 
space into relevant abstractions. This allows a user to 
participate in solving the actual problem while taking 
into account the unformalized constraints which hold at 
that moment. 

We claim that interchangeability is a useful notion to 
characterize adequate abstractions, then we present and 
analyze a heuristic for dynamically generating abstrac-
tions for resource allocation. Although one stil l has to 
study the theoretical conditions under which the discov­
ered NI sets are maximally defined, the approximation 
of NI sets by the VAD is acceptable given that: 

• NI sets are more frequent in problems with small p 
and the effect of the "distortion" due to the VAD 
decreases with p. 

• The VAD can be computationally less expensive 

than the exact algorithm9. 
• The computation of NI sets is not the purpose of 

the VAD, whose goal is to localize interactions and 
conflicts among sub-problems; these results are only 
a fortunate "side effect". 

As a general comment, we recall again that neigh­
borhood interchangeability is not the only type of in­
terchangeability discovered by the VAD and that there 
exists, so far, no other algorithm for computing other 
types of interchangeability except for the obvious pro-
cess of computing all possible solutions. Note that the 
possibility of discovering interchangeable sets increases 
in structured domains wi th some semantics. Thus, var­
ious real-world problems, such as scheduling, configura­
t ion, and design, may benefit greatly from finding in­
terchangeability sets. Note also that the three proposed 
parameters, p\, p2 and p3, can be exploited to measure 
quality of interchangeable sets in general. 

In future work, we hope to extend our approach 
in two directions: exploiting interchangeability sets in 
rescheduling and building a generalized theory of ab­
straction in CSPs using interchangeability concepts. 
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