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Abstract

This paper proposes a new algorithm which
when provided the relative costs of computa-
tion vs. probing minimizes the total cost of
diagnosis. During the diagnosis process the de-
cision of whether to probe or to compute is
dependent on the expected costs and benefits
of each alternative. It is unlikely that we will
be able to find general analytic and simple-
to-compute models for the costs and benefits.
Therefore, we base our algorithm on simple em-
pirically derived models of costs and benefits.
With these models, our algorithm operates by
continuously choosing the optimum action to
make next. This algorithm will not blow up
on the rare pathological cases and will always
(on average) find diagnoses at equal to or better
cost than a conventional GDE/Sherlock. When
the cost of probing is high, then our algorithm
behaves exactly the same as GDE/Sherlock.
When the cost of computation is high, the algo-
rithm performs the diagnosis at far lower cost
than GDE/Sherlock.

1 Introduction

A key goal of the diagnostic task is the identification
of which component malfunctions are causing the unde-
sirable symptoms. Recently there has been a consider-
able amount of exploration of the task of restoring the
device to correct functioning at minimal cost [II; 15;
17]. Much of this research is aimed at minimizing the
total cost of probing, repairing, and downtime. For ex-
ample, the decision of whether to repair or to probe is
dependent on the relative costs of probing vs. repair-
ing. There has also been a considerable amount of effort
into designing better diagnostic algorithms [7]. Although
these algorithms have made model-based diagnosis far
more practical, their design goals have been to produce
faster algorithms without concern about the tradeoff of
inference time vs. other costs. In this paper we ex-
plore the tradeoff between inference and probing costs
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and propose a new algorithm which when provided the
relative costs of computation vs. probing minimizes the
total cost of diagnosis.

There are three basic reasons why it is important to
take into account computation time. First, no mat-
ter how good the algorithm, there are devices and in-
puts that require an inordinate amount of computation.
When faced with these rare, but nevertheless very real,
cases many algorithms fail to provide useful diagnoses
within reasonable time. Second, the relative costs of
computation and probing vary tremendously in applica-
tions. In one application, almost every signal can be
measured immediately. In another application, measur-
ing a signal may require sending a technician a mile down
a mine shaft. On the other hand, some applications
have enormous computational resources available, while
in others the amount of computational resources avail-
able is minimal. Finally, even if computation could be
regarded as "free," downtime to the customer often is
not. The cost of the computation is often not the actual
CPU charges, but the cost during which the customer's
system is nonoperational.

2 The GDE/Sherlock Framework

We adopt the model-based diagnosis framework of
GDE/Sherlock [4; 5]. A typical GDE [10] implemen-
tation consists of a constraint propagator (constraints
are typically used to model the components) and an
assumption-based truth maintenance system (the ATMS
is used to record assumptions). GDE operates as follows:

1. Using the constraint propagator and the ATMS,
identify all (preferably minimal) conflicts (a con-
flict is a set of components, at least one of which
is faulted). The conflicts are represented as ATMS
nogoods.

2. From the conflicts, construct all diagnoses.

3. Given all the diagnoses, determine the optimal

probe.



The sequence of computation and probing can be illus-
trated by Fig. 1. Only by determining all the diagnoses
first can GDE produce the optimal sequence of probes.

Sherlock [7] is a far more efficient diagnostic algorithm,
upon which we base our new algorithm. The first two
steps of the GDE algorithm are inherently exponential.
We can remove much of those exponentials by observ-
ing that most diagnoses (the low probability ones) have
an insignificant effect on probe selection and most con-
flicts are irrelevant for determining those diagnoses. By
focusing the ATMS (an HTMS [9]) we avoid ATMS la-
bel explosion. Sherlock operates roughly as follows (for
more details see [7]):

1. Perform a best-first search (using prior probabili-
ties) to find a candidate diagnosis which does not
subsume any of the currently known conflicts.

2. Use the constraint propagator and the HTMS to test
whether the candidate diagnosis is consistent with
the observations. Ifit is not, then find one conflict
which subsumes it and add it to the current known
conflict set, and return to step 1.

3. Save the new diagnosis, compute its relative poste-
rior probability via Bayes Rule.

4. |If the cutoff criteria is not me, then go to step 1.
5. If we have one diagnosis, we are done.

6. Perform the best probe, based on the diagnoses so
far. Go to step 4.

In the situation (which we explore in this paper) where
most diagnoses have similar probability, the probe-
compute profile of Sherlock is no different than that, of
GDE (Fig. 1). We propose that computation and prob-
ing be intermixed (illustrated in Fig. 2). Intermixing
computation and probing will clearly increase the to-
tal amount of probing—probes will be selected with less
available information about the space of possible diag-
noses. What may not be as obvious is that this inter-
mixing will decrease overall computation time. When
the probabilities of diagnoses vary significantly, Sherlock
will also intermix computation and probing because if all
current diagnoses are eliminated, it will return to step 1.
But this is ad hoc — our new algorithm will make the
decision of whether to compute or probe on a principled
basis.

In Sherlock, every candidate diagnosis has to be
checked and eliminated (in step 1 or step 2). The fact
that computation and probing are intermixed does not
reduce the total number of candidates that have to be
checked. Computation time is improved because candi-
dates can be eliminated far more quickly if more infor-
mation is known about the faulty device. A probe may
yield a new conflict which can easily eliminate a large
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Figure 1: A complete computation phase followed by a
probing phase.
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Figure 2: Intermixing computation and probing.

number of the candidates in step 1. If a particular can-
didate is not subsumed by a conflict, it still needs to be
checked to see whether it gives rise to new conflicts in
step 2. Every new probe made of the device, in essence,
splits the device into two or more pieces. Thus the test
of a new candidate is much less expensive. So the ba-
sic advantage of intermixing computation and probing
is that the same computation task will become cheaper
once more is known about the device.

Steps 1 through 3 above form an anytime algorithm—
it can be stopped at any time and provide a current list of
valid diagnoses in decreasing probability order and the
accuracy of this diagnosis set increases monotonically.
Steps 2 and 6 consume all the cost, so we will modify the
algorithm to do a cost-benefit analysis at those points to
decide whether to probe or to compute. The resulting
algorithm will be described later.

In order to simplify the analysis we make a number of
assumptions about the nature of the diagnosis task:

¢ Costs of all probes are constant and equal. This
can be relaxed somewhat by introducing multi-step
lookahead; but we do not explore this issue in this
paper. If probe costs vary, then the decisions made
by the algorithm may not be reasonable.

¢ The cardinality of the diagnoses is presumed to be
constant. In other words, we do not expect the car-
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dinality of the diagnoses being considered to change
during the diagnosis session. (For example, we can-
not handle the case where all singlefaults are elim-
inated, and then doublefaults are considered. Our
proposed algorithm will suggest suboptimal probes
in this case.)

3 Benefit of Knowing Another
Candidate

GDE/Sherlock's algorithm searches the diagnostic space
in a fixed order. It yields the diagnoses in decreasing
probability. At any point the search can be suspended
and restarted. The basic question we need to answer
is the relative value of finding a next candidate. That
value will be the number of fewer measurements the al-
gorithm will have to make given that we know that can-
didate. This is not easy to estimate. GDE/Sherlock can-
not easily provide the number of diagnoses that explain
the symptoms before the cutoff criteria will be met', nor
what their probabilities. Hence, we have no information
about the number of diagnoses that might exist. To truly
make the optimum next probe requires knowing all the
diagnoses. Perhaps there is some analytic formulation
of the number of candidates, but we have not been able
to construct one. Instead we employ an heuristic for-
mulation based on extensive experimentation with the
GDE/Sherlock algorithm.

We have extensively analyzed a set of logic devices
described in [2]. Those analyses provide considerable
indirect information about computational cost. There
is essentially very little benefit obtained from multiple
step lookahead to determine the next probe [6]. In [8] we
showed that it isn't even necessary to use GDE/Sherlock
to obtain a reasonable algorithm. We presented a crude
diagnostic algorithm based on random generate-and-test
which works reasonably well using a small number of di-
agnoses to decide the next probe. That paper includes
a number of graphs of how the number of measurements
needed to diagnose drops with the number of diagnoses
used to make the decision of which measurement to make
next. GDE/Sherlock is, of course, a much computation-
ally efficient algorithm (but much more complex). As
the graphs only show the number of diagnoses, they are
independent of the candidate generation algorithm and
therefore apply to GDE? as well. The horizontal axis
shows the number of diagnoses used to make the probe
decision. The vertical axis shows the diagnostic cost (the
average number of probes required to find every single-

For all the examples discussed here failure mode proba-
bilities are similar and small. The cutoff criteria used is met
when the upper bound of posterior probability of the next
candidate is significantly less than that of the best candidate.
See summary for more discussion.

’They were, in fact, generated by GDE so if there is any-
thing suspect about this, its not that they do not describe
GDE correctly.
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Figure 3: Scores of C880.

fault in the device—each with a number of sensitive vec-
tors).

Fig. 3 shows the graphs for device ¢c880. This device
has 383 gates and 880 test points. As there are a large
number of diagnoses, and only some of them are con-
sidered, different subsets yield different results. Samples
were gathered by randomly choosing different subsets of
the diagnoses. The middle graph on the figure shows the
mean, the upper and lower ones show one standard devi-
ation away. (These upper and lower curves are not used
in this paper.) We have generated these curves for all of
the devices in the test suite. These curves asymptotically
approach logon where n is the number of components in
the device. This is roughly what one would expect in the
situation where components have two fault modes and
we only consider single faults. Ifthere are n components,
there are 2n initial diagnoses. On average, half of those
are eliminated by the initial symptom leaving n possible
diagnoses. Using binary tests to discriminate among n
alternatives takes log2n probes on average. More gen-
erally, if components have / fault modes and the cardi-
nality of the diagnoses are /, we expect the diagnostic

cost in these graphs to approach /og2 * - The shape of
the curve is harder to estimate. The case where k < 3
(k is the number of diagnoses considered) is difficult to
analyze. For k > 2, the result can be modeled fairly
consistently with (c is diagnostic cost) a decreasing ex-
ponential:

f
n
Therefore the number of measurements saved by find-
ing one more diagnosis (beyond k) is:
i
g—t—l‘logz (fn)
2
There is one caveat worth mentioning in using this for-
mula: it makes the presupposition that the algorithmic
strategy does not change for the duration of the session.
In actual fact, the algorithm may increase or decrease k

c = loga



after subsequent probes. More likely it will decrease it
because the value of higher k's drops as the number of
diagnoses that remain drop. On the principle that the
best prediction of a future decision is what we decide in

the present, we use this formula.

4 Cost of Generating Another
Candidate

The cost of generating another candidate is dependent
on the kind of device, the size of the device, the inputs,
etc. Again we are not able to come up with an ana-
lytic model of the computational cost of finding the next
diagnosis. However, by observing the GDE/Sherlock al-
gorithm in operation one sees some valuable properties.
Let's first look at the case where we are not making
probes. GDE/Sherlock generates diagnoses at a roughly
constant rate. Intuitively, one can see how this arises
from the best-first search. During the best-first search
most diagnoses are eliminated by existing conflicts. The
best-first search avoids these diagnoses at nearly negligi-
ble cost. The significant cost is incurred when a candi-
date is discovered which is not subsumed by any known
conflict, but we cannot be sure is free of conflicts. In
this case we have to re-invoke the ATMS. If no incon-
sistency is found, then we have a new diagnosis. If an
inconsistency is found, then a conflict(s) is found and
used to accelerate the best-first search. Rarely does a
device have a large number of conflicts worth recording
before finding another diagnosis.

Therefore, our algorithm predicts the computational
time to produce the next candidate as equal to the av-
erage time to find the candidates it has so far. In order
to account for the rare case where the cost of generating
candidates varies greatly, it includes the time spent since
the last diagnosis was found in the calculation. There-
fore, if it spends a lot of computational effort to find the
next diagnosis, then its prediction of when the next di-
agnosis will be found gets further and further out and
if the time to find this diagnosis becomes too large the
search is abandoned.

The introduction of probing lias little effect on the
rate of candidate diagnosis production. This can be
The addition of a

probe makes the test of any candidate about twice as

qualitatively understood as follows.

fast. This is partially due to the fact that a probe may
have introduced new general conflicts therefore making
it easy for the best-first search to skip these candidates
directly. In addition, when a candidate diagnosis must
be tested against the observations (at step 2), the TMS
operations are faster because the probe fixed a device
quantity thereby splitting the device and thereby short-
ening ATMS labels. As the probes tend to be quite good
[8] even when k is small, the probe reduces the number
of diagnoses by approximately1/2.It reduces the number
of diagnoses the algorithm has discovered by1/2,as well

as the yet undiscovered ones. Hence, discovering new
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Table 1:
to produce candidate does not vary significantly during

Typical example of circuit ¢880 showing time

diagnosis.

diagnoses has become twice as difficult. The two effects
tend to cancel yielding an unchanged rate of generation
of new diagnoses. Table 1 illustrates the kind of costs
we see in diagnosing devices.

Although the rate of diagnosis production after a
probe does not change, the number of diagnoses that
remain to be found after a reasonable probe is halved.
The probe has, in effect, eliminated these diagnoses for
free.

5 A diagnostic algorithm which takes

cost into account

In order to utilize our model our algorithm will always
find at least (k = 3) candidates. This is both because
our model of the benefit of a next diagnosis only applies
if k > 2 and it allows for the computation a meaning-
ful average cost of diagnosis discovery. The algorithm
is provided two exchange rates: e, which is the cost
incurred per probe; eg which is the cost incurred per
second of inference. The key step in the algorithm is
to determine whether it is worthwhile to make another
measurement. The implementation maintains a variable
t (initially ¢ = 0) which represents the time taken to
find the current diagnoses. M will be the estimate of
the number of probes necessary to isolate the diagnosis

(l1og2-(fn)/2initially).
1. If they can be found before Sherlock's stopping cri-

teria is met, find 3 diagnoses which explain all the

current symptoms. Update t with the time to find

these diagnoses.
2. If there is only one diagnosis, stop.
3. If the stopping criteria has been met, go to Step 7.

4. If M < log2k, set M to log2k.
(B) of finding another candidate:

Compute the benefit

B =Ml

5. If teilk B (i.e., the cost of finding the next candi-
date outweighs the benefit), then go to Step 7.
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s ey | GDE/Sherlock cost { New cost P
1 | 1000 5554 5554 | 5.6
1000 1 4705 3606 | 13.1

Table 2: Diagnostic Costs for C880 with different cost
tradeoffs.

€, e, | GDE/Sherlock cost | New cost 7
11 1000 2052 2052 | 2.05
1000 1 2904 966 | 2.3

Table 3: Diagnostic Costs for C432 with different cost
tradeofls.

6. Allow the computation to run for Bk/ et seconds
or until another diagnosis is found. Update t. If a
diagnosis is found, go to Step 3.

7. Perform the probe (using one-step lookahead and
then entropy) which best discriminates among the
current k diagnoses. Divide M by 2.

8. Remove the diagnoses eliminated by the probe re-
sult. Update k and t accordingly. Go to Step 1.

6 Experimental Results

We have run our algorithm on all the devices in our
test suite. Table 2 lists the costs to diagnose a signifi-
cant sample of c880's faults. The first line in the table
makes computation nearly free and probing expensive.
This is the presumption of GDE's architecture and the
resulting costs for GDE and the new algorithm are the
same. In the second entry, cost of computation has be-
come extremely expensive. GDE which does not take
cost of computation into account performs much worse,
while the new algorithm performs significantly better.
The last column of the table, p, is the average number of
probes the new algorithm makes. Here we see the num-
ber of probes changes significantly depending on the cost
tradeoff—exactly what one would expect. Table 3 shows
the results for the smaller device C432 (432 test points,
160 components). The cost benefit of the new algorithm
is clear for this device also.

7 Perspective from Decision Theory

Our algorithm can be viewed as a very simple, myopic,
decision theoretic strategy. For clarity, the following
analysis presumes binary valued variables. Let /(p, s) be
our best estimate the cost to diagnose the device having
made p probes and s candidates remaining. Our algo-
rithm repeatedly makes the decision of whether to probe
or to compute. The decision of whether to compute or
to probe is determined with one-step lookahead. The
decision to probe has cost e, + f(p + 1, s/2). The decision
to compute is more complex to compute. We need to
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obtain the best estimate of cost if we continue to com-
pute. By tracking the costs to compute past candidates
we maintain the mean and standard deviation of times
to compute candidates. Let p(f) be the area under a
normal curve from present to t. Suppose we compute
for time t, the expected cost is:

e. At + p(t)f(p, s + 1) + (1 — p{1)f(p, 2).

We choose t such this is minimized.
For simplicity let us only compute changes of /(p, s).
Therefore, the cost of computation is the maximum of:

es At + p(2)[f(p, s} = f(p,s + 1)].

Our algorithm estimates f(p, s) — f(p, s + 1) directly (B
in our algorithm). To accurately determine the cost of
probing we need to compute /(p,s) — /(p + !,§)* We
estimate this to be negligible as two effects tend to can-
cel. Every good probe reduces the number of possible
candidates by 1/2. Likewise every good probe reduces the
number of known candidates by 1/2 (i.e., the s/2). Our pre-
liminary experiments demonstrate it to be of little utility
to compute the standard deviations and means of can-
didate computation costs. We will continue to use our
simpler approximation for decision making. It is likely
that if we encounter devices which have wide variance
in candidate computation times that our approximation
will become significantly suboptimal.

8 Summary

We have presented a simple algorithm which explicitly
trades off computational cost against probing cost. By
intermixing computation with probing, the new algo-
rithm lowers the total cost of finding a diagnosis over
the less flexible approach that is usually employed.

The overall result is only a small beginning of the re-
search needed to understand the tradeofTs within diag-
nosis in order to develop minimal cost algorithms. There
are a number of immediate simplifications made in this
paper that need to be more closely analyzed. Some of
them are:

1. Our algorithm always needs at least 3 diagnoses
to function. However, if probing is completely free
there is no necessity to ever construct any diagnoses
at all as the faulty component can be determined
directly. Our algorithm's architecture does not ac-
commodate this possibility.

2. Sometimes all faults of the initial cardinality are
eliminated. Our algorithm needs to be extended to
take this possibility into account.

3. When the prior probabilities of component failure
modes vary significantly, the estimate of the size of
the diagnosis space (M) in the algorithm is too high,
producing too high a benefit of future probes.



4. The algorithm should be extended to accommodate

varying probe costs. For example, it would expend a
significant amount of computation, ifthe next probe
to perform was very expensive.

. The model of the benefit of finding a new candidate

was derived from the case where failure probabili-
ties are nearly equal and with the standard ultimate
GDE/Sherlock stopping criteria (probability cliff)
for finding new candidates. The stopping criteria
used clearly influences the benefit of finding a next
candidate.

We observe that the algorithm usually lowers k dur-
ing a diagnostic session. Which is of little surprise—
as the number of diagnoses goes down, the advan-
tage of finding more candidates becomes less. How-
ever, our benefit model was based on a constant k.
This probably introduces a small overestimation in
the algorithms calculation of the benefit of a next
candidate.

We assume /(p, s) — f(p +1,s/2)is negligible. This
needs more careful analysis and experimentation.
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