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Abs t rac t 

Th is paper proposes a new a lgor i thm which 
when provided the relative costs of computa
t ion vs. probing minimizes the to ta l cost of 
diagnosis. Dur ing the diagnosis process the de
cision of whether to probe or to compute is 
dependent on the expected costs and benefits 
of each al ternat ive. I t is unl ikely tha t we w i l l 
be able to find general analyt ic and simple-
to-compute models for the costs and benefits. 
Therefore, we base our a lgor i thm on simple em
pir ical ly derived models of costs and benefits. 
W i t h these models, our a lgo r i thm operates by 
continuously choosing the o p t i m u m action to 
make next. Th is a lgo r i thm w i l l not blow up 
on the rare pathological cases and w i l l always 
(on average) find diagnoses at equal to or better 
cost than a conventional GDE/Sher lock . When 
the cost of probing is h igh , then our a lgor i thm 
behaves exactly the same as GDE/Sher lock . 
When the cost of computa t ion is h igh, the algo
r i t h m performs the diagnosis at far lower cost 
than GDE/Sher lock . 

1 I n t r o d u c t i o n 
A key goal of the diagnostic task is the ident i f icat ion 
of which component mal funct ions are causing the unde
sirable symptoms. Recently there has been a consider
able amount of explorat ion of the task of restoring the 
device to correct funct ion ing at m in ima l cost [ l l ; 15; 
17]. Much of this research is aimed at m in im iz ing the 
to ta l cost of prob ing, repair ing, and downt ime. For ex
ample, the decision of whether to repair or to probe is 
dependent on the relat ive costs of probing vs. repair
ing. There has also been a considerable amount of effort 
into designing better diagnostic a lgor i thms [7]. A l though 
these a lgor i thms have made model-based diagnosis far 
more pract ical , their design goals have been to produce 
faster a lgor i thms w i thou t concern about the tradeoff of 
inference t ime vs. other costs. In this paper we ex
plore the tradeoff between inference and probing costs 

and propose a new a lgor i thm which when provided the 
relative costs of computa t ion vs. probing minimizes the 
to ta l cost of diagnosis. 

There are three basic reasons why it is impor tan t to 
take in to account computa t ion t ime. F i rs t , no mat-
ter how good the a lgo r i t hm, there are devices and in
puts tha t require an inordinate amount of computa t ion . 
When faced w i th these rare, but nevertheless very real, 
cases many a lgor i thms fa i l to provide useful diagnoses 
w i th in reasonable t ime. Second, the relative costs of 
computa t ion and probing vary tremendously in applica
t ions. In one appl icat ion, almost every signal can be 
measured immediate ly. In another appl icat ion, measur
ing a signal may require sending a technician a mi le down 
a mine shaft. On the other hand, some applications 
have enormous computa t iona l resources available, whi le 
in others the amount of computa t iona l resources avail
able is m i n i m a l . F inal ly , even if computa t ion could be 
regarded as "free," downt ime to the customer often is 
not . The cost of the computa t ion is often not the actual 
C P U charges, but the cost dur ing which the customer's 
system is nonoperat ional . 

2 T h e G D E / S h e r l o c k F ramework 

We adopt the model-based diagnosis f ramework of 
GDE/Sher lock [4; 5]. A typ ica l G D E [10] implemen
ta t ion consists of a constraint propagator (constraints 
are typ ica l ly used to model the components) and an 
assumption-based t r u t h maintenance system (the A T M S 
is used to record assumptions). G D E operates as follows: 

1. Using the constraint propagator and the A T M S , 
ident i fy al l (preferably m in ima l ) conflicts (a con
flict is a set of components, at least one of which 
is faul ted) . The conflicts are represented as A T M S 
nogoods. 

2. From the confl icts, construct al l diagnoses. 

3. Given al l the diagnoses, determine the op t ima l 
probe. 
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The sequence of computa t ion and probing can be i l lus
t rated by F ig . 1. On ly by determin ing al l the diagnoses 
first can G D E produce the op t ima l sequence of probes. 

Sherlock [7] is a far more efficient diagnostic a lgor i thm, 
upon which we base our new a lgor i thm. The first two 
steps of the G D E a lgor i thm are inherently exponent ial . 
We can remove much of those exponentials by observ
ing that most diagnoses (the low probabi l i ty ones) have 
an insignif icant effect on probe selection and most con
flicts are irrelevant for determin ing those diagnoses. By 
focusing the A T M S (an H T M S [9]) we avoid A T M S la
bel explosion. Sherlock operates roughly as follows (for 
more details see [7]): 

1. Perform a best-first search (using pr ior probabi l i 
ties) to find a candidate diagnosis which does not 
subsume any of the current ly known conflicts. 

2. Use the constraint propagator and the H T M S to test 
whether the candidate diagnosis is consistent w i th 
the observations. If i t is not , then find one conflict 
which subsumes i t and add i t to the current known 
confl ict set, and return to step 1. 

3. Save the new diagnosis, compute its relative poste
rior probabi l i ty v ia Bayes Rule. 

4. If the cutoff cr i ter ia is not me, then go to step 1. 

5. If we have one diagnosis, we are done. 

6. Perform the best probe, based on the diagnoses so 
far. Go to step 4. 

In the s i tuat ion (which we explore in this paper) where 
most diagnoses have s imi lar probabi l i ty , the probe-
compute profi le of Sherlock is no different than that, of 
G D E (F ig . 1). We propose that computat ion and prob
ing be in termixed ( i l lustrated in F ig . 2). In te rmix ing 
computa t ion and probing w i l l clearly increase the to
tal amount of probing—probes wi l l be selected w i th less 
available in fo rmat ion about the space of possible diag
noses. W h a t may not be as obvious is that this inter
m i x i n g w i l l decrease overall computat ion t ime. When 
the probabi l i t ies of diagnoses vary signif icantly, Sherlock 
w i l l also in te rm ix computa t ion and probing because i f al l 
current diagnoses are e l iminated, i t w i l l return to step 1. 
Bu t this is ad hoc — our new a lgor i thm wi l l make the 
decision of whether to compute or probe on a pr incipled 
basis. 

In Sherlock, every candidate diagnosis has to be 
checked and e l iminated ( in step 1 or step 2). The fact 
tha t computa t ion and probing are in termixed does not 
reduce the to ta l number of candidates that have to be 
checked. Compu ta t i on t ime is improved because candi
dates can be e l iminated far more quickly if more infor
mat ion is known about the fau l ty device. A probe may 
yield a new confl ict which can easily el iminate a large 

number of the candidates in step 1. If a part icular can
didate is not subsumed by a confl ict, it s t i l l needs to be 
checked to see whether it gives rise to new conflicts in 
step 2. Every new probe made of the device, in essence, 
splits the device into two or more pieces. Thus the test 
of a new candidate is much less expensive. So the ba
sic advantage of in te rmix ing computa t ion and probing 
is tha t the same computa t ion task w i l l become cheaper 
once more is known about the device. 

Steps 1 through 3 above fo rm an anyt ime a lgo r i t hm— 
it can be stopped at any t ime and provide a current list of 
val id diagnoses in decreasing probabi l i ty order and the 
accuracy of this diagnosis set increases monotonical ly. 
Steps 2 and 6 consume al l the cost, so we w i l l modi fy the 
a lgor i thm to do a cost-benefit analysis at those points to 
decide whether to probe or to compute. The result ing 
a lgor i thm wi l l be described later. 

In order to s impl i fy the analysis we make a number of 
assumptions about the nature of the diagnosis task: 

♦ Costs of all probes are constant and equal. This 
can be relaxed somewhat by in t roduc ing mul t i -s tep 
lookahead; but we do not explore this issue in this 
paper. If probe costs vary, then the decisions made 
by the a lgor i thm may not be reasonable. 

♦ The cardinal i ty of the diagnoses is presumed to be 
constant. In other words, we do not expect the car-
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dina l i ty of the diagnoses being considered to change 
dur ing the diagnosis session. (For example, we can
not handle the case where al l singlefaults are e l im
inated, and then doublefaults are considered. Our 
proposed a lgor i thm w i l l suggest subopt imal probes 
in th is case.) 

3 Benefit of Knowing Another 
Candidate 

GDE/Sher lock 's a lgo r i thm searches the diagnostic space 
in a fixed order. It yields the diagnoses in decreasing 
probabi l i ty . At any point the search can be suspended 
and restarted. The basic question we need to answer 
is the relat ive value of finding a next candidate. T h a t 
value w i l l be the number of fewer measurements the al
gor i thm w i l l have to make given that we know tha t can
didate. Th is is not easy to estimate. GDE/Sher lock can
not easily provide the number of diagnoses that explain 
the symptoms before the cutoff cr i ter ia w i l l be met 1 , nor 
what their probabi l i t ies. Hence, we have no in fo rmat ion 
about the number of diagnoses that might exist. To t ru ly 
make the o p t i m u m next probe requires knowing all the 
diagnoses. Perhaps there is some analyt ic fo rmula t ion 
of the number of candidates, but we have not been able 
to construct one. Instead we employ an heuristic for
mu la t ion based on extensive exper imentat ion w i t h the 
GDE/Sher lock a lgor i thm. 

We have extensively analyzed a set of logic devices 
described in [2]. Those analyses provide considerable 
indirect in fo rmat ion about computat iona l cost. There 
is essentially very l i t t le benefit obtained f rom mul t ip le 
step lookahead to determine the next probe [6]. In [8] we 
showed that it isn ' t even necessary to use GDE/Sher lock 
to obta in a reasonable a lgo r i thm. We presented a crude 
diagnostic a lgor i thm based on random generate-and-test 
which works reasonably well using a small number of d i 
agnoses to decide the next probe. T h a t paper includes 
a number of graphs of how the number of measurements 
needed to diagnose drops w i t h the number of diagnoses 
used to make the decision of which measurement to make 
next. GDE/Sher lock is, of course, a much computat ion
ally efficient a lgor i thm (but much more complex). As 
the graphs only show the number of diagnoses, they are 
independent of the candidate generation a lgor i thm and 
therefore apply to G D E 2 as wel l . The hor izontal axis 
shows the number of diagnoses used to make the probe 
decision. The vert ical axis shows the diagnostic cost (the 
average number of probes required to find every single-

For all the examples discussed here failure mode proba
bilities are similar and small. The cutoff criteria used is met 
when the upper bound of posterior probability of the next 
candidate is significantly less than that of the best candidate. 
See summary for more discussion. 

2They were, in fact, generated by GDE so if there is any
thing suspect about this, its not that they do not describe 
GDE correctly. 

faul t in the device—each w i t h a number of sensitive vec
tors) . 

F ig . 3 shows the graphs for device c880. Th is device 
has 383 gates and 880 test points. As there are a large 
number of diagnoses, and only some of them are con
sidered, different subsets yield different results. Samples 
were gathered by randomly choosing different subsets of 
the diagnoses. The midd le graph on the figure shows the 
mean, the upper and lower ones show one standard devi
at ion away. (These upper and lower curves are not used 
in this paper.) We have generated these curves for all of 
the devices in the test suite. These curves asymptot ica l ly 
approach log2n where n is the number of components in 
the device. Th is is roughly what one would expect in the 
s i tuat ion where components have two faul t modes and 
we only consider single faul ts. If there are n components, 
there are 2n i n i t ia l diagnoses. On average, hal f of those 
are e l iminated by the in i t ia l s y m p t o m leaving n possible 
diagnoses. Using binary tests to d iscr iminate among n 
alternatives takes log2n probes on average. More gen
erally, if components have / faul t modes and the cardi
na l i ty of the diagnoses are /, we expect the diagnostic 

cost in these graphs to approach /og2 ^ - The shape of 
the curve is harder to est imate. The case where k < 3 
(k is the number of diagnoses considered) is di f f icult to 
analyze. For k > 2, the result can be modeled fair ly 
consistently w i th (c is diagnostic cost) a decreasing ex
ponent ia l : 
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af ter subsequent p robes . M o r e l i ke l y i t w i l l decrease i t 
because t he va lue o f h i g h e r k's d r o p s as the n u m b e r o f 
d iagnoses t h a t r e m a i n d r o p . O n t he p r i n c i p l e t h a t the 
best p r e d i c t i o n o f a f u t u r e dec is ion is w h a t we decide in 
the p resent , we use t h i s f o r m u l a . 

4 C o s t o f G e n e r a t i n g A n o t h e r 

C a n d i d a t e 

T h e cost o f g e n e r a t i n g a n o t h e r c a n d i d a t e i s dependen t 
on t he k i n d o f dev ice , t he size o f t he dev ice , t he i n p u t s , 
etc. A g a i n we are n o t ab le t o come up w i t h an ana
l y t i c m o d e l o f t he c o m p u t a t i o n a l cost o f f i n d i n g t he n e x t 
d iagnos is . Howeve r , b y o b s e r v i n g t he G D E / S h e r l o c k a l 
g o r i t h m in o p e r a t i o n one sees some v a l u a b l e p rope r t i es . 
Le t ' s f i r s t l o o k a t t he case where we are n o t m a k i n g 
probes . G D E / S h e r l o c k generates d iagnoses a t a r o u g h l y 
cons tan t r a te . I n t u i t i v e l y , one can see how t h i s arises 
f r o m the bes t - f i r s t search. D u r i n g the bes t - f i r s t search 
m o s t d iagnoses are e l i m i n a t e d by e x i s t i n g con f l i c t s . T h e 
bes t - f i r s t search avo ids these d iagnoses a t near l y neg l i g i 
ble cost . T h e s i gn i f i can t cost is i n c u r r e d w h e n a c a n d i 
da te i s d iscovered w h i c h i s n o t s u b s u m e d by any k n o w n 
con f l i c t , b u t we c a n n o t be sure is free o f con f l i c t s . In 
t h i s case we have t o re - i nvoke the A T M S . I f no i n c o n 
s is tency is f o u n d , t h e n we have a new d iagnos is . I f an 
incons is tency is f o u n d , t h e n a con f l i c t ( s ) is f o u n d and 
used to accelerate t he bes t - f i r s t search. Ra re l y does a 
dev ice have a la rge n u m b e r o f con f l i c ts w o r t h r e c o r d i n g 
before f i nd ing a n o t h e r d iagnos is . 

T h e r e f o r e , o u r a l g o r i t h m p red i c t s t he c o m p u t a t i o n a l 
t i m e to p r o d u c e t he n e x t c a n d i d a t e as equa l t o the av
erage t i m e to f i nd t he cand ida tes i t has so fa r . I n o rder 
to accoun t for t he rare case where the cost o f gene ra t i ng 
cand ida tes var ies g r e a t l y , i t i nc ludes t he t i m e spent since 
the las t d iagnos is was f o u n d in the c a l c u l a t i o n . T h e r e 
fore, i f i t spends a l o t o f c o m p u t a t i o n a l e f for t to f i nd the 
nex t d iagnos i s , t h e n i t s p r e d i c t i o n o f w h e n t he n e x t d i 
agnosis w i l l b e f o u n d gets f u r t h e r and f u r t h e r o u t and 
i f the t i m e t o f i nd t h i s d iagnos is becomes t o o large t he 
search is a b a n d o n e d . 

T h e i n t r o d u c t i o n o f p r o b i n g l ias l i t t l e effect o n the 
ra te o f c a n d i d a t e d iagnos is p r o d u c t i o n . T h i s can be 
q u a l i t a t i v e l y u n d e r s t o o d as f o l l ows . T h e a d d i t i o n o f a 
p robe makes t h e test o f any c a n d i d a t e a b o u t tw i ce as 
fas t . T h i s i s p a r t i a l l y due to t he fac t t h a t a p robe m a y 
have i n t r o d u c e d new genera l con f l i c t s there fore m a k i n g 
i t easy fo r t he bes t - f i r s t search to sk i p these cand ida tes 
d i r e c t l y . I n a d d i t i o n , w h e n a c a n d i d a t e d iagnos is m u s t 
b e tes ted aga ins t t h e obse rva t i ons (a t s tep 2 ) , the T M S 
o p e r a t i o n s are fas ter because t he p robe f i xed a dev ice 
q u a n t i t y t h e r e b y s p l i t t i n g t he dev ice a n d the reby sho r t 
e n i n g A T M S labe ls . A s t h e p robes t e n d t o b e q u i t e g o o d 
[8] even w h e n k i s s m a l l , t he p r o b e reduces the n u m b e r 
o f d iagnoses b y a p p r o x i m a t e l y 1 / 2 . I t reduces the n u m b e r 
o f d iagnoses t he a l g o r i t h m has d iscovered by 1 /2 , as we l l 
as t he ye t und i scove red ones. Hence, d i scover ing new 

T a b l e 1 : T y p i c a l e x a m p l e o f c i r c u i t c880 s h o w i n g t i m e 
t o p r o d u c e c a n d i d a t e does n o t v a r y s i g n i f i c a n t l y d u r i n g 
d iagnos is . 

d iagnoses has become t w i c e as d i f f i c u l t . T h e t w o effects 
t e n d to cancel y i e l d i n g an u n c h a n g e d ra te o f gene ra t i on 
o f new d iagnoses. T a b l e 1 i l l u s t r a t e s t he k i n d o f costs 
we see in d i a g n o s i n g devices. 

A l t h o u g h the r a t e o f d iagnos is p r o d u c t i o n af ter a 
p robe does n o t change, the n u m b e r o f d iagnoses t h a t 
r e m a i n to be f o u n d af ter a reasonab le p robe is ha l ved . 
T h e p robe has, in effect, e l i m i n a t e d these diagnoses for 
free. 

5 A d i a g n o s t i c a l g o r i t h m w h i c h t a k e s 

c o s t i n t o a c c o u n t 

I n o rder t o u t i l i z e ou r m o d e l o u r a l g o r i t h m w i l l a lways 
f ind at least (k = 3) cand ida tes . T h i s is b o t h because 
our m o d e l o f t he bene f i t o f a n e x t d iagnos is o n l y app l ies 
i f k > 2 and i t a l lows fo r t he c o m p u t a t i o n a m e a n i n g 
f u l average cost o f d iagnos is d iscovery . T h e a l g o r i t h m 
is p r o v i d e d t w o exchange ra tes : ep w h i c h is the cost 
i n c u r r e d per p robe ; e 9 w h i c h is t he cost i n c u r r e d per 
second o f in ference. T h e key step in t he a l g o r i t h m is 
t o d e t e r m i n e w h e t h e r i t i s w o r t h w h i l e t o m a k e ano the r 
m e a s u r e m e n t . T h e i m p l e m e n t a t i o n m a i n t a i n s a va r i ab le 
t ( i n i t i a l l y t = 0) w h i c h represents t he t i m e t a k e n to 
f ind the c u r r e n t d iagnoses. M w i l l be t he e s t i m a t e o f 
t he n u m b e r o f p robes necessary to i so la te the d iagnos is 

( l o g 2 - ( f n ) / 2 i n i t i a l l y ) . 

1 . I f t hey can be f o u n d before Sher lock ' s s t o p p i n g c r i 
t e r i a is m e t , f ind 3 d iagnoses w h i c h e x p l a i n a l l the 
c u r r e n t s y m p t o m s . U p d a t e t w i t h the t i m e t o f i n d 
these d iagnoses. 

2 . I f there i s o n l y one d iagnos is , s t o p . 

3 . I f t he s t o p p i n g c r i t e r i a has been m e t , go to Step 7 . 

4. If M < log2k, set M to log2k. C o m p u t e t he benef i t 
(B) o f f ind ing ano the r c a n d i d a t e : 

5 . I f te i /k B ( i . e . , t he cost o f f ind ing t h e n e x t cand i -
d a t e o u t w e i g h s the bene f i t ) , t h e n go to S tep 7 . 

DE KLEER AND RAIMAN 1 7 3 9 



6. Allow the computation to run for Bk/ et seconds 
or until another diagnosis is found. Update t. If a 
diagnosis is found, go to Step 3. 

7. Perform the probe (using one-step lookahead and 
then entropy) which best discriminates among the 
current k diagnoses. Divide M by 2. 

8. Remove the diagnoses eliminated by the probe re
sult. Update k and t accordingly. Go to Step 1. 

6 Experimental Results 
We have run our algorithm on all the devices in our 
test suite. Table 2 lists the costs to diagnose a signifi
cant sample of c880's faults. The first line in the table 
makes computation nearly free and probing expensive. 
This is the presumption of GDE's architecture and the 
resulting costs for GDE and the new algorithm are the 
same. In the second entry, cost of computation has be
come extremely expensive. GDE which does not take 
cost of computation into account performs much worse, 
while the new algorithm performs significantly better. 
The last column of the table, p, is the average number of 
probes the new algorithm makes. Here we see the num
ber of probes changes significantly depending on the cost 
tradeoff—exactly what one would expect. Table 3 shows 
the results for the smaller device C432 (432 test points, 
160 components). The cost benefit of the new algorithm 
is clear for this device also. 

7 Perspective f rom Decision Theory 
Our algorithm can be viewed as a very simple, myopic, 
decision theoretic strategy. For clarity, the following 
analysis presumes binary valued variables. Let / ( p , s) be 
our best estimate the cost to diagnose the device having 
made p probes and s candidates remaining. Our algo-
r i thm repeatedly makes the decision of whether to probe 
or to compute. The decision of whether to compute or 
to probe is determined with one-step lookahead. The 
decision to probe has cost ep + f(p + 1 , s/2). The decision 
to compute is more complex to compute. We need to 

obtain the best estimate of cost if we continue to com
pute. By tracking the costs to compute past candidates 
we maintain the mean and standard deviation of times 
to compute candidates. Let p(t) be the area under a 
normal curve from present to t. Suppose we compute 
for time t, the expected cost is: 

I . 

We choose t such this is minimized. 
For simplicity let us only compute changes of / ( p , s). 

Therefore, the cost of computation is the maximum of: 

Our algorithm estimates f(p, s) — f(p, s + 1) directly (B 
in our algorithm). To accurately determine the cost of 
probing we need to compute / (p ,s) — / ( p + ! ,§ ) • We 
estimate this to be negligible as two effects tend to can-
cel. Every good probe reduces the number of possible 
candidates by 1/2. Likewise every good probe reduces the 
number of known candidates by 1/2 (i.e., the s/2). Our pre
liminary experiments demonstrate it to be of l itt le uti l i ty 
to compute the standard deviations and means of can
didate computation costs. We will continue to use our 
simpler approximation for decision making. It is likely 
that if we encounter devices which have wide variance 
in candidate computation times that our approximation 
wil l become significantly suboptimal. 

8 Summary 
We have presented a simple algorithm which explicitly 
trades off computational cost against probing cost. By 
intermixing computation with probing, the new algo-
r i thm lowers the total cost of finding a diagnosis over 
the less flexible approach that is usually employed. 

The overall result is only a small beginning of the re
search needed to understand the tradeofTs within diag
nosis in order to develop minimal cost algorithms. There 
are a number of immediate simplifications made in this 
paper that need to be more closely analyzed. Some of 
them are: 

1. Our algorithm always needs at least 3 diagnoses 
to function. However, if probing is completely free 
there is no necessity to ever construct any diagnoses 
at all as the faulty component can be determined 
directly. Our algorithm's architecture does not ac
commodate this possibility. 

2. Sometimes all faults of the init ial cardinality are 
eliminated. Our algorithm needs to be extended to 
take this possibility into account. 

3. When the prior probabilities of component failure 
modes vary significantly, the estimate of the size of 
the diagnosis space (M) in the algorithm is too high, 
producing too high a benefit of future probes. 
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4. The a lgor i thm should be extended to accommodate 
vary ing probe costs. For example, it would expend a 
signif icant amount of computa t ion , i f the next probe 
to per form was very expensive. 

5. The model of the benefit of f ind ing a new candidate 
was derived f rom the case where fai lure probabi l i 
ties are nearly equal and w i t h the standard u l t imate 
GDE/Sher lock stopping cr i ter ia (probabi l i ty cl i f f) 
for f inding new candidates. The stopping cr i ter ia 
used clearly influences the benefit of finding a next 
candidate. 

6. We observe tha t the a lgor i thm usually lowers k dur
ing a diagnostic session. Which is of l i t t le surprise— 
as the number of diagnoses goes down, the advan
tage of f ind ing more candidates becomes less. How
ever, our benefit model was based on a constant k. 
Th is probably introduces a smal l overest imation in 
the a lgor i thms calculat ion of the benefit of a next 
candidate. 

7. We assume / ( p , s) — f(p + 1, s/2) is negligible. Th is 
needs more careful analysis and exper imentat ion. 
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