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Laboratories

Description logic-based configuration applications
have been used within AT&T since 1990 to process over
two and a half billion dollars worth of orders. While this
family of applications[4] has widely acknowledged impor-
tance, it is difficult to use for pedagogical purposes since
the typical product configured is a highly interconnected,
complicated technical piece of equipment like the DACS
IV-2000." We have developed a smaller-scale configura-
tion application that has analogous reasoning processes
but a more approachable domain—that of building home
theater systems. This application provides a platform for
explaining how Description Logic-based Systems (DLSs)
work, in our case the CLASSIC knowledge representation
system[l], and how they can support industrial applica-
tions like configuration.

CLASSIC? is an object-centered representation and
reasoning tool with a formal foundation in description
logic. CLASSIC and many DLSs are particularly well
suited for applications in areas like configuration that
must

1. encode rich class and object descriptions;

2. provide active inference (such as automatic classi-
fication of classes and objects into a generalization
hierarchy, rule firing and maintenance, inheritance,
propagation, etc.);

3. explain the reasoning process;

4. handle an incomplete and
knowledge base; and

incrementally evolving

5. handle errors in a way that keeps the knowledge base
consistent, but also provides useful information to
the user.

We will provide some examples in our domain that illus-
trate each of these areas.

Class and object descriptions: As in any applica-
tion, we need a domain ontology in which to work. Our
home theater application contains a knowledge base in-
cluding a concept taxonomy and instance descriptions.

IDACS 1V-2000 is a digital cross-connect system that
processes digitized signals for some US standard transmission
rates.

2CLASSIC is freely available for academic purposes, and
commercially available for other purposes. It has been dis-
tributed to over 80 universities and is in use in many internal
projects within AT&T.
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The knowledge base was created by working with an ex-
pert in the domain. The database of instance informa-
tion was also hand-compiled for this small application
but in other applications where we work with changing
instance information, we have written automatic transla-
tion routines that periodically access databases and then
update our knowledge base. The terminological knowl-
edge base contains definitional information concerning
classes as well as rules. We worked directly with an ex-
pert to obtain these rules, but in our larger applications
of this sort [4], system builders begin with preexisting
rule specifications and use a rule translator to generate
CLASSIC rules. Rules in this application fall into two
classes: both hard and fast electrical rules (for example,
a receiver must have an A/B switch in order to sup-
port secondary main speakers), and "rules of thumb"
(for example, home theater systems do not have more
than one TV or two VCRs). All products configured
by the knowledge base must abide by the hard and fast
electrical rules, and products configured following our
"guidance" also follow the rules of thumb.

Active inference: The home theater application
uses CLASSIC to provide active inference after our inter-
face has guided the user through a few simple questions.
We assume that people want to build audio only, home
theater only, or combination audio/video systems and
that they already have a price range in mind. Thus, we
ask which type of system they want, and what quality
they are willing to pay for. With these two inputs, the
application uses CLASSIC to ask follow up questions as
appropriate and to produce a complete (abstract) de-
scription of a consistent product. For example, if the
user chooses a high-quality combination system, then
CLASSIC deduces that the target system must have an
amplifier, preamplifier, tuner, main, surround, and cen-
ter speakers, a subwoofer, VCR, and TV, and presents
this information graphically. CLASSIC calculates the de-
ductive closure of the information provided, which usu-
ally implies properties of the system as a whole as well
as properties of all the individual components. The user
can view the completed information on any component
just by clicking on the icon. For example, if she clicks on
the TV, she sees, among other things, that the list price
must be at least $1000.

Explanation:
beliefs.[2].

CLASsSIC can justify all of its
In the example above, if the user asks how
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the TV acquired its price restriction, she learns that
a rule fired which says that high-quality systems must
have high-quality components, which for TVs enforces
a minimum price of $1000. The explanation facility can
also answer other questions such as why one object does
or does not "subsume" (is or is not more general than)
another object, why a rule fired on an object, or why an
error occurred.

Incomplete and evolving knowledge bases:
cLASSIC allows refinement of (and changes to) a system
specification. For example, a user could add new com-
ponents (e.g., a turntable), chosen from a panel of icons.
She might also "instantiate" a component description
by choosing a particular make and model. The interface
will only generate choices that appear to be consistent
with the information that cLASSIC has derived about the
component (by using the specification of the component
as a query to the database of individuals). The user may
also delete a requirement on the system, in which case
any deductions that were made as a result of this require-
ment are removed from the specification. When the user
has finished refining the system to her satisfaction, she
can ask the application to complete the specification for
her. The application will then choose consistent makes
and models for all the components she has left unspec-
ified. She can then view a parts list, after which she
might want to ship the order off to the factory.

If the user is not familiar with different types of stereo
equipment, she may wish to trust our expert, and build a
system starting with one of the example systems, where
all the components are known to work well together. She
can then refine this system according to her needs, re-
questing alternative makes and models to the ones cho-
sen, and adding and removing components.

Errors: Although CLASSIC and the application min-
imize the places where a user can make an error, errors
can still occur the application does not ask CLASSIC to
precalculate all possible consequences of a given choice.
The user could make a choice which would cause a rule
to fire, which would then cause a propagation of some
inconsistent information. For example, suppose the user
wants to build a system, starting with a few components
she already owns, including a small TV. She may later
add a price range for the whole system, and based on
this information, CLASSIC classifies her system as a high-
quality system. All the high-quality system rules then
fire, including one which requires the system's TV to
have at least a 27-inch diagonal. This information gets
propagated onto the user's small TV, which causes an
error, CLASSIC does not allow the knowledge base to be
in an inconsistent state, so it will roll back the knowledge
base to the previous consistent state, meanwhile saving
copies of all the individuals that led to the error, in their
inconsistent states. If the user asks CLASSsIC for an expla-
nation of the error, CLASSIC can access the inconsistent
state information to generate an explanation.

We feel that description logic technology is particu-
larly well matched to this style of configuration prob-
lem for the following reasons: First, the application is
fairly logical (not heuristic) so we would either have to
implement the logic in a programming language or start
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with a tool like CLASSIC that incorporates a formal logic.
Second, this domain is naturally hierarchical and rule in-
formation is appropriate at many different levels of the
taxonomy. DLSs support hierarchical rules instead of us-
ing a more traditional, flat rule-based approach. This
may simplify knowledge engineering and maintenance[3].
CLASSIC rules can be simpler because they only need to
contain content appropriate to a certain level of con-
cept in the hierarchy, and they do not need to contain
any control information. Finally, the application natu-
rally incorporates many different types of inference; a
few of which include: inheritance, propagation, bounds
constraints, and rules. These can be encoded directly
in DLSs instead of needing to be paraphrased into rules.
Possibly more importantly, explanations of the reason-
ing process may be in terms of the naturally occurring
inferences.

This home theater system is a simple example of a
family of applications where a description logic-based
platform is used to implement standard configuration
tasks and provide the basis for additional functionalities.
The deployed applications built on this design have pro-
vided many advantages including decreased order pro-
cessing intervals (facilitating hypothetical configuration
evaluations, which were previously infeasible), reduc-
tions in personnel required to maintain product informa-
tion, accurate and up-to-date pricing for sales quotes,
elimination of duplication in databases, and identifica-
tion of incompatible knowledge.
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Information Access research at Xerox PARC focuses
on amplifying the users' cognitive abilities, rather than
trying to completely automate them. This framework
emphasizes the participation of the user in a cycle of
query formulation, presentation of results, followed by
query reformulation, and so on. This framework is in-
tended to help the user iteratively refine a vaguely un-
derstood information need. Since the focus is on query
repair, the information presented is typically not docu-
ment descriptions, but rather intermediate information
that indicates relationships between the query and the
retrieved documents. We have developed information ac-
cess tools intended to supply some of this functionality,
and describe two of these here.

As an illustration, suppose a user is interested in med-
ical diagnosis software. Assume that initially the user
has available a large, unfamiliar information source. In
our example, this source is the 2.2 Gigabyte TIPSTER
text collection [Harman, 1993]. Because the collection
is unfamiliar, the user will be unsure whether it contains
relevant information, and if so, how to access it.

To address this situation, we have developed a brows-
ing method, called Scatter/Gather [Cutting et a/., 1992;
1993], that allows a user to rapidly assess the general
contents of a very large collection by scanning through
a dynamic, hierarchical representation that is motivated
by a table-of-contents metaphor. Initially the system
automatically scatters, or clusters, the collection into a
small number of document groups, and presents short
summaries of the groups to the user. These summaries
consist of two types of information: topical titles (titles
of documents close to the cluster centroid) and typical
terms (terms of importance in the cluster). Based on
these summaries, the user selects one or more of the
groups for further study. The selected groups are gath-
ered) or unioned, together to form a subcollection. The
system then applies clustering again to scatter the new
subcollection into a small number of document groups,
which are again presented to the user. With each succes-
sive iteration the groups become smaller, and therefore
more detailed. The user may, at any time, switch to a
more focused search method. Figure 1 shows a portion

Tt -
G e TN »*
. 5 L 1 £ 4 P Y L. - L
H aF o
Ioiatigde 3 —
N R N R R R B
Woeo et d I T TIE kll!"\"::"-’ii’ﬁl e P M L
B SR S N L ST a

Figure 1: A portion of a top-level view of the Scat-
ter/Gather algorithm over the TIPSTER corpus.

of the top level clusters on the TIPSTER collection.

By browsing the collection in this manner, the user ob-
tains an idea about the technical contents of the corpus,
and can choose whether or not to further explore here or
try another text collection. From the titles and terms re-
trieved, it becomes apparent that the collection contains
commercially oriented discussions of technology, rather
than predominantly academic ones. From this overview
information, the user can conclude that this is indeed a
promising collection for the user's information need.

Once a premising collection has been identified, the
user can issue a search. In a typical information retrieval
system, documents satifying the query are returned and
are rank-ordered according to some function of the num-
ber of hits for each term [Salton, 1988]. But this kind
of ranking is opaque to the user; it is not clear how well
each term is represented in the retrieved documents.

To address these issues, the TileBars interface
[Hearst, 1995] allows the user to make informed decisions
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Figure 2: The TileBar Display on a query about auto-
mated systems for query diagnosis.

about which documents and which passages of those doc-
uments to view, based on the distributional behavior of
the query terms in the documents. The goal is to simul-
taneously and compactly indicate (i) the relative length
of the document, (ii) the frequency of the term sets in
the document, and (iii) the distribution of the term sets
with respect to the document and to each other. Each
document is partitioned in advance into a set of multi-
paragraph subtopical segments using an algorithm called
TextTiling [Hearst, 1994].

Figure 2 shows an example run on a query about auto-
mated systems for medical diagnosis, run over the ZIFF
portion ofthe TIPSTER collection. Each large rectangle
indicates a document, and each square within the docu-
ment represents a coherent text segment. The darker the
segment, the more frequent the term (white indicates 0,
black indicates 8 or more hits, the frequencies of all the
terms within a term set are added together). The top
row of each rectangle correspond to the hits for Term Set
1, the middle row to hits of Term Set 2, and the bottom
row to hits of Term Set 3. The first column of each rect-
angle corresponds to the first segment of the document,
the second column to the second segment, and so on.

The TileBars representation allows the user to sort the
retrieved documents according to which aspects of the
query are most important. For example, in the figure
the query is formulated as: (patient OR medicine OR
medicall AND (test OR scan OR cure OR diagnosis)
AND (software OR program). This formulation allows
the interface to indicate the role played by each concep-
tual part of the query: the medical terms, the diagnosis
terms, and the software terms. In Figure 2, the user has
indicated that the diagnosis aspect of the query must
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be strongly present in the retrieved documents, by set-
ting the minimum term distribution percentage to 30%
for the second termset. The document whose title begins
"VA automation means faster admissions" is quite likely
to be relevant to the query, and has all three term sets
well-distributed throughout. By contrast, the document
whose title begins "lt's hard to ghosibust a network ..."
is about computer-aided diagnosis, but has only a pass-
ing reference to medical diagnosis, as can be seen by the
graphical representation. If the user decides that med-
ical terms should be better represented, the constraint
on this term set can be adjusted accordingly.

Note that a system that simply ranks the documents
does not make these kinds of distinctions available to
the user. The graphical representation allows the users
to rapidly assess the structure of the retrieved documents
with respect to the query, to better aid their decisions
about which documents to view, or how to refine the

query.
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