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Abstract 
Can an AI program contribute to scientific 
discovery? An area where this gauntlet has 
been thrown is that of understanding the mech­
anisms of chemical carcinogenesis. One ap­
proach is to obtain Structure-Activity Relation­
ships (SARs) relating molecular structure to 
cancerous activity. Vital to this are the ro­
dent carcinogenicity tests conducted within the 
US National Toxicology Program by the Na­
tional Institute of Environmental Health Sci­
ences (NIEHS). This has resulted in a large 
database of compounds classified as carcino-
gens or otherwise. The Predictive-Toxicology 
Evaluation project of the NIEHS provides the 
opportunity to compare carcinogenicity predic­
tions on previously untested chemicals. This 
presents a formidable challenge for programs 
concerned with knowledge discovery. Desirable 
features of this problem are: (1) involvement 
in genuine scientific discovery; (2) availability 
of a large database with expert-certified classi­
fications; (3) strong competition from methods 
used by chemists; and (4) participation in true 
blind trials, with results available by next IJ-
CAI. We describe the materials and methods 
constituting this challenge, and provide some 
initial benchmarks. These show the Inductive 
Logic Programming tool Progol to be compet­
itive with current state-of-the-art. The chal­
lenge described here is aimed at encouraging 
AI programs to avail themselves the opportu­
nity of contributing to an enterprise with im­
mediate scientific value. 

1 Introduction 
Programs developed under the umbrella of Machine 
Learning are increasingly being used for "knowledge dis-
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covery" tasks. Early specialised programs (for exam­
ple, [Feigenbaum et a/., 1971; Langley et a/., 1983]) have 
given way to more general-purpose ones (for example, 
Muggleton, 1995; Muggleton and Feng, 1990]) which 

have been applied with some success in areas of bio­
chemistry ([King et al, 1996; 1992; Muggleton et a/., 
1992]). While the experimental studies reported are pre­
liminary, they have at least one commendable feature, 
namely, they constitute examples of AI programs par­
ticipating in true scientific discovery tasks. By "true" 
here, we mean problems where existing scientific knowl­
edge is incomplete, the descriptions found automatically 
were unknown to experts in the field, and have been ac­
knowledged by publication in peer-reviewed journals in 
the field. Given the promise shown by machine learning 
programs in biology and chemistry, this paper describes 
a challenging test-bed with the following desirable fea­
tures: (1) a widespread scientific interest in any new 
results; (2) the availability of a large database of chem­
icals with classifications certified by experts; (3) strong 
competition from methods developed by expert chemists; 
and (4) the opportunity to participate in true blind tri­
als. 

The problem concerns obtaining a better understand­
ing of the molecular mechanisms of chemical carcino­
genesis. This is central to the prevention of many envi­
ronmentally induced cancers. One approach is to form 
Structure Activity Relationships (SARs) that empiri­
cally relate molecular structure with ability to cause can­
cer. This work has been greatly advanced by the long 
term carcinogenicity tests of compounds in rodents (util­
ising both genders of one rat and mouse strain) by the US 
National Toxicology Program (NTP) of the National In­
stitute of Environmental Health Sciences (NIEHS: [Huff 
and Haseman, 1991]). So far, the NTP tests have 
resulted in a database of more than 300 compounds 
that have been shown to be carcinogens or otherwise. 
The NIEHS Predictive Toxicology Evaluation (or PTE) 
project ([Bristol et a/., 1996]) is closely associated with 
the NTP. The PTE project identifies a group of assays 
that are scheduled or ongoing in the NTP. These chem­
icals form the "test" set for researchers. Predictions 
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for presence or absence of carcinogenicity activity are 
compared against true activity as observed in the ro-
dents. The first such blind trial, PTE-1, is now com­
plete. The second, PTE-2, is ongoing, and true activity 
levels will be available by June 1998. It is the prediction 
of, and reasons for, carcinogenic activity in chemicals 
constituting PTE-2 that we commend as a challenge for 
AI programs concerned with knowledge discovery from 
databases. 

This paper is organised as follows. Section 2 presents 
the statement of the challenge. Section 3 summarises the 
data available in the NTP database, and the chemicals 
in PTE-1 and PTE-2. Section 4 sets out the evaluation 
criteria. Section 5 describes the results obtained using 
the Inductive Loeic Programming (ILP) system Progol 
[Muggleton, 1995]. These results are intended to provide 
initial benchmarks for future entries. Section 6 concludes 
this paper including information on submitting entries to 
the challenge. 

2 The PTE Challenge 
The aim is to obtain a theory for predicting the carcino­
genicity of 30 compounds currently undergoing rodent 
bioassays in the NTP (called PTE-2: see below). The 
performance of the theory is to be evaluated according 
to the criteria described in Section 4. 

3 Materials 
3.1 The NTP database 
A compilation of 330 chemicals is available directly 
from the database of the National Cancer Institute and 
NTP ([Huff and Haseman, 1991], and via the Internet 
at http://ntp-server.niehs.nih.gov/. These compounds 
represent all the organic chemicals that have completed 
NTP reports at the time of writing this paper. Of the 
330 compounds, 182 (55%) are classified carcinogenic, 
and the remaining 148 non-carcinogenic. Carcinogenic­
ity is determined by analysis of long term rodent bioas­
says. For the purposes of this challenge, compounds 
classified by the NTP as equivocal are considered non-
carcinogenic, as this allows direct comparison with other 
SAR predictive methods. No analysis is made of differ­
ences in incidence between rat and mouse cancer, or the 
role of sex, or particular organ sites. 39 of the 330 com­
pounds in the NTP database formed the first of the blind 
trials (PTE-1) conducted by the PTE project. Results 
from the bioassays for these chemicals are now available, 
and show 22 (56%) to be carcinogenic, and the remain­
ing 17 to be non-carcinogenic. Further details of these 
compounds are available in [Bahler and Bristol, 1993]. 
The 330 chemicals make this database very large and 
diverse, making it a great challange to learn in. 

The PTE-2 compounds 
The second round of blind trials (PTE-2) consists of 30 
compounds (of which 5 are inorganic). These are fully 
described in [Bristol et a/., 1996], where the schedule of 

events suggest that all bioassay results will be available 
by July 1998. 

3.2 Other in fo rmat ion available 
The NTP has recently made available a number of 
structural attributes (features) describing a large section 
of their database. These descriptions are available at 
http://ntpserver.mehs. nth. gov/Main-Pages. The other 
information available is in the form of the atom and bond 
connectivity of the compounds (including those in PTE-
1,2). This is described further in Section 5. 

4 Evaluation 
In [Bristol et a/., 1996], the goal of predicitive toxicol­
ogy (PT) is summarised as ".. .the ultimate value and 
most important goal of PT research may lie in the de­
velopment of its potential to identify, characterise, and 
understand the various mechanisms or modes of action 
that determine the type and level of response observed 
when biological systems are exposed to chemicals . . . " . 
Given this emphasis on understandability of models, we 
follow [Muggleton et a/., 1996] in using the following def­
inition for comparing the performance of rival theories. 
Definition 1 Performance comparison. // the pre­
dictive accuracies of two theories are statistically equiv­
alent then the theory with better explanatory power has 
better performance. Otherwise the one with higher accu­
racy has better performance. 
We now elaborate further on the methods for evaluating 
predictive accuracy and "explanatory power". 

4.1 Predic t ive accuracy-
Predictive accuracy is taken to be the proportion of com­
pounds in PTE-2 whose predicted classification (carcino­
genic or non-carcinogenic) agrees with that rodent bioas­
says. Significant differences in predictive accuracy are 
best assessed by McNemar test for changes [Bland, 1989]. 
This test exploits the fact that the different prediction 
methods are applied to the same data and is based on 
counting the examples where the methods disagree about 
predictions. We suggest that differences be judged to be 
significant at least at P = 0.10. 

4.2 Exp lanatory power 
In the absence of an expert chemist to act as adjudica­
tor, we propose that the simple criterion that theories are 
judged to have "explanatory power" - a boolean prop­
erty - if some or all of it can be represented diagram-
matically as chemical structures. The intuition underly­
ing this is that such structural alerts form the preferred 
mode of discourse amongst chemists. 

5 An experiment wi th the ILP system 
Progol 

5.1 Progol 
We refer the reader to [Muggleton, 1995] for complete de­
scriptions of the ILP system Progol. In the current con-
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text, Progol is provided with a set of carcinogenic ("pos­
itive" ) and non-carcinogenic ("negative") examples from 
the NTP database together with background knowledge 
B about these compounds (see Section 5.2). The aim 
is to generate a theory (expressed as a set of rules) 
which explains all the carcinogens in terms of the back­
ground knowledge whilst remaining consistent with the 
non-carcinogens. To achieve this Progol 1) randomly se­
lects a positive example e,-; 2) uses inverse entailment 
to construct the most specific hypothesis (B,,e,) which 
explains e, in terms of B; 3) finds a rule Di, which gen­
eralises _(B,e,) and which maximally compresses a set 
of entailed example Ei; and 4) adds Di, to the theory 
H and repeats from 1) with examples not covered so far 
until no more compression is possible. Compression is 
here defined as the difference, in numbers of descriptors, 
between Ei, and Di. 

5.2 Background knowledge 
The generic atom/bond representation used in an ear­
lier study [King et a/., 1996; Srinivasan ct al., 1996] 
is used. This consists of two basic relations to repre­
sent structure: atom and bond. For example, the fact 
atom(127,127-1,c,ar-C-6-ring,0.133) states that in com­
pound 127, atom no. 1 is of element carbon, and of 
type aromatic carbon in a 6 membered ring, and has 
a partial charge of -0.133. The type of the atom and 
its partial charge were taken from the molecular mod­
elling package QUANTA, although any similar mod­
elling package would have been suitable. Equivalently, 
bond(127,127-1,127.2, ar) states that in compound 127, 
atom no. 1 and atom no. 2 are connected by an aro­
matic bond. In QUANTA, a partial charge assignment 
is based on a specific molecular neighbourhood. This 
has the effect that a specific molecular sub- structure 
can be identified by an atom type and partial charge. 
This relational representation is completely general for 
chemical compounds and no special attributes need to 
be invented. The structural information of these com­
pounds was represented by » 18,300 facts of background 
knowledge. 

Information was also given about the results of 
Salmonella mutagenicity tests for each compound. The 
mutagenic compounds were represented by the relation 
Ames, e.g. ames(127) states that compound 127 is 
mutagenic. The Progol algorithm allows for the in­
clusion of complex background knowledge, either in 
the form of facts, or in the form of arbitrary Pro-
log programs. In this study we included the back­
ground knowledge of chemical groups defined in [Srini­
vasan et al., 1996], along with the structural alerts 
in [Ashby et al., 1989]. All the information used is 
available in Prolog form at a prescribed Internet site: 
http://www. comlab. ox. ac. uk/oucl/'groups/machlearn. 

5.3 Results and discussion 
The 39 compounds comprising PTE-1 were excluded and 
rules for carcinogenicity obtained using Progol. The re­
sulting theory consists of 18 rules. Figure 1 tabulates 

a comparative evaluation on PTE-1. More details on 
the rules obtained are available in [King and Srinivasan, 
1996]. Figure 2 tabulates the predictions made by the 
Progol theory for compounds in PTE-2. The first three 
entries in Figure 1 have been marked out for special 
attention because they had access to additional infor­
mation in the form of short-term rodent (in-vivo) tests. 
The first two entries also require a degree of expert eval­
uation. The Ashby structural alerts are based on elec-
trophilic attack on DNA, which makes them statistically 
dependent on the Ames test. It is also worth noting 
that the TIPT and Benigni methods rely on structural 
alerts derived by the Ashby method for their explana­
tory component. CASE, TIPT and Progol are the only 
data-driven inductive methods, and Progol is the only 
automated method capable of identifying new structural 
alerts. With these comments in place, the results in Fig­
ure 1 offer significant encouragement for machine learn­
ing programs on the following counts. First, we point 
out that one PTE-1, the results of Progol, TIPT and 
CASE demonstrate performance that is competitive with 
the current state-of-the-art - Progol has marginally the 
highest accuracy of all methods that do not use rodent 
tests. Second, the relatively low accuracies of all meth­
ods is primarily due to the diversity of compounds in­
volved. It does however leave the door open for signifi­
cant improvement. Progol, for example, achieves its per­
formance with a very low-level atom/bond representa­
tion of compounds. Enriching this background informa­
tion with the new structural descriptors available from 
the NTP could significantly improve its accuracy. These 
comments are reinforced by early results of using the 
Progol theory to classify compounds in PTE-2. Figure 
2 shows that tentative classifications are available from 
the NTP for 13 chemicals. Progol's theory has correctly 
classified 7 of these. This should be seen in context of 
the performance of other theories listed in [Bristol et al., 
1996] which shows that most chemists and automated 
methods have not been able to better this count. This 
should provide further impetus for participation by other 
Al programs. 

6 Conclusions 
The field of toxicology is a rich source of difficult scien­
tific problems, and there is a pressing need for analysis 
methods that can advance our understanding of the is­
sues involved. We believe that the Predictive Toxicology 
Evaluation trials being conducted by the US National In­
stitute for Environmental Health Sciences afford Al pro-
grams a unique opportunity to participate in obtaining 
an improved understanding of the molecular mechanisms 
underlying chemical carcinogenesis. Should they be suc­
cessful, it would also constitute a noteworthy example of 
a realistic application of Al techniques. 

Entering the PTE Challenge 
Entries to the PTE Challenge can be submitted via 
http://www. comlab. ox. ac. uk/oucl/groups/machlearn/PTE. 
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Entries are accepted here for compounds in PTE-2. A 
submission requires the following: (a) name of entry; (b) 
predictions for the compounds in PTE-2; (c) whether or 
not the theory has explanatory power; and (d) a short 
description of the technique used for prediction. This 
is sufficient to compute automatically the accuracy and 
performance ranking of each entry. 
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Ashby [Tennant et a/., 1990J 
RASH [Jones and Easterly, 1991] 
T I P T [Bahler and Bristol, 1993] 
Progol [Muggleton, 1995] 
Benigni [Benigni, 1995] 
DEREK [Sanderson and Earnshaw, 1991] 
Bakale [Bakale and McCreary, 1992] 
T O P K A T [Enslein et a/., 1990] 
CASE [Rosenkranz and Klopman, 1990] 
C O M P A C T [Lewis et a/., 1990] 

Type 

Chemist 
Biological potency analysis 
Propositional machine learning 
Inductive logic programming 
Expert-guided regression 
Expert system 
Chemical reactivity analysis 
Statistical discrimination 
Statistical correlation analysis 
Molecular modelling 

Acc-
uracy 
0.77 
0.72 
0.67 
0.64 
0.62 
0.57 
0.63 
0.54 
0.54 
0.54 

Explan-
ation 
yes 
yes 
yes 
yes 
yes 
yes 
no 
yes 
yes 
yes 

Performance 
ranking 

1 
2 
2 
2 
2 
2 
3 
4 
4 
4 

Figure 1: Benchmarks on PTE-1. Methods above the central horizontal line had access to short-term rodent tests, 
which were unavailable to others. Further, the Ashby and RASH methods require a degree of subjective evalua­
tion, making them semi-automatic. The performance ranking is obtained using the combined accuracy-explanation 
criterion described earlier. 



Compound Id. 
6533-68-2 
147-47-7 
8003-22-3 
78-84-2 
125-33-7 
84-65-1 
518-82-1 
5392-40-5 
104-55-2 
76-57-3 
75-52-8 
109-99-9 
1948-33-0 
100-41-4 
126-99-8 
127-00-4 
11-42-2 
77-09-8 
110-86-1 
1300-72-7 
98-00-0 
111-76-2 
115-11-7 
93-15-2 
434-07-1 
10026-24-1 
1313-27-5 
1303-00-0 
7632-00-0 
1314-62-1 

Name 
Scopolamine hydrobroamide 
l,2-Dihydro-2,2,4-trimethyquinoline 
D&C Yellow No. 11 
Isobutyraldehyde 
Primaclone 
Anthraquinone 
Emodin 
Citral 
Cinnamaldehyde 
Codeine 
Nitromethane 
Tetrahydrofuran 
t-Butylhydroquinone 
Ethylbenzene 
Chloroprene 
1 - Chloro- 2- Propanol 
Diethanolamine 
Phenolphthalein 
Pyridine 
Xylenesulfonic acid, Na 
Furfuryl alcohol 
Ethylene glycol monobutyl ether 
Isobutene 
Methyleugenol 
Oxymetholone 
Cobalt sulfate heptahydrate 
Molybdenum trioxide 
Gallium arsenide 
Sodium nitrite 
Vanadium pentozide 

Actual " 
-
+ 
+ 
-
+ 

T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 

-
-
+ 
-
+ 
+ 

T.B.A. 
T.B.A. 

+ 
T.B.A. 

-
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 
T.B.A. 

Progol prediction 

not 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

predicted 
not predicted 
not predicted 
not predicted 
not predicted 

Figure 2: Progol predictions for PTE-2. The first column are the compound identifiers in the NTP database. The 
column headed "Actual" are tentative classifications from the NTP. Here the entry T.B.A. means "to be announced" 
- confirmed classifications will be available by July, 1998. An entry "+" means carcinogenic, and "-" means non-
carcinogenic. The 5 compounds not predicted are inorganic compounds - Progol's rules are applicable to organic 
compounds only. 
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