
Challenges in bridging plan synthesis paradigms 

Subbarao Kambhampati* 
Department of Computer Science and Engineering 
Arizona State University, Tempe AZ 85287-5406 

rao@asu.edu; http://rakaposhi.eas.asu.edu/rao.html 

Abstract 
In the last three years, several "radically new" and 
promising approaches have been developed for tackling 
the plan synthesis problem. Currently, these approaches 
exist in isolation as there is no coherent explanation of 
their sources of strength vis a vis the traditional refine­
ment planners. In this paper, I provide a generalized 
view of refinement planning, that subsumes both tradi­
tional and newer approaches to plan synthesis. I will in­
terpret the contributions of the new approaches in terms 
of a new subclass of refinement planners called 
"disjunctive planners". This unifying view raises several 
intriguing possibilities for complementing the strengths 
of the various approaches. 1 will identify and pose these 
as challenges to the planning community. 

1. Introduction 
Most traditional approaches to plan generation, developed 
over the last twenty years, work by searching in the space of 
partial plans, extending a plan incrementally until it be­
comes a solution, and backtracking when a plan can no 
longer be fruitfully refined. More recently, several ap­
proaches have been developed that relate plan synthesis to 
constraint satisfaction. These include Graphplan [Blum & 
Furst, 1995], SATPLAN [Kautz & Selman, 1996], COPS 
[Ginsberg, 1996], Descartes [Joslin & Pollack, 1996] and 
UCPOP-D [Kambhampati & Yang, 1996]. Graphplan and 
SATPLAN approaches, in particular, have demonstrated 
impressive scale-up potential in practice. 

At present, there exists a huge gulf between these new 
breed of algorithms and the traditional refinement planning 
approaches. An important challenge for the planning com­
munity is to bridge these strands of research to see if their 
strengths can be complemented. To this end, I present a 
generalization of the refinement planning framework devel­
oped in our previous work [Kambhampati, Knoblock & 
Yang, 1995; Kambhampati & Srivastava, 1996] that covers 
most of the currently known approaches. 

According to my general framework, partial plans are 
shorthand notations for sets of action sequences (called the 
candidate set of the plan). Plan synthesis involves a "split 
and prune'' search [Pearl, 1980]. The pruning is carried out 
by applying refinement operations to a given set of partial 
plans (called a planset). Pruning attempt to incrementally 
get rid of non-solutions from the candidate set. The splitting 
part involves pushing the component partial plans of a plan-
set into different branches of the search tree. Its main aim is 

This research is supported in part by the NSF NYI award IRI-
9457634, the ARPI Initiative grant F30602-95-C-0247 and the 
ARPA AASERT grant DAAH04-96-1-0231.1 would like to thank 
Bart Selman, Laurie Ihrig, Amol Mali and the anonymous review­
ers for critical comments on a previous draft. 

44 AI CHALLENGES 

to reduce the cost of applying refinements and termination 
check to the planset. Termination test involves checking if a 
solution can be extracted from the (possibly exponential 
number of) minimal candidates of the current planset. The 
extraction process can in general be cast as a constraint sat­
isfaction search. 

Within this framework, traditional planners can be seen as 
doing both pruning (refinement) and full splitting (pushing 
each component of the planset into a different search 
branch). They thus refine and terminate on individual partial 
plans (rather than plansets). The scale-up problems associ­
ated with these planners can be related to their full splitting. 
An obvious way of curing this malady involves avoiding 
splitting or controlling it intelligently. To implement this 
idea-which I call "disjunctive planning"- we need to find 
ways of effectively refining and terminating on large sets of 
plans. All the newer planners can be seen as providing po­
tential solutions to these two problems. Graphplan (and 
COPS) can be seen as clarifying the issues involved in com­
pactly representing and reasoning with plansets. SATPLAN 
demonstrates how the problem of extracting solutions from 
a planset can be posed as a SAT problem, so that it can be 
solved by the new breed of efficient SAT solvers [Kautz et. 
al., 1992; Crawford & Auton, 1996; Bayardo & Schrag, 
1997]. Finally, Descartes and UCPOP-D can be seen as 
exploring the effect of controlled (rather than complete or 
no) splitting of the plansets. 

Viewing existing planners as points in a spectrum of pos­
sible disjunctive planners opens several exciting avenues of 
focused research: Could the missing planners corresponding 
to the other points in the spectrum be more efficient? What 
are the tradeoffs governing the efficiency of these spectrum 
of planners? I will identify specific short-term and interme­
diate-term challenges that have to be undertaken to answer 
these questions. 

The rest of the paper is organized as follows. Section 2 
presents my generalized framework for refinement planning. 
Section 3 motivates the idea of disjunctive planning, and 
interprets several newer approaches as providing guidelines 
for implementing disjunctive planners. Section 4 relates 
SATPLAN family of algorithms to disjunctive planning. 
Section 5 lists and motivates a set of challenge problems 
that arise from this unifying view. Section 6 briefly dis­
cusses the logistics of coordinating the research into the 
challenge problems. 

2. Refinement Planning: Overview 
Since a solution for a planning problem is ultimately a se­
quence of actions, plan synthesis in a general sense in­
volves sorting our way through the set of all action se­
quences until we end up with a sequence that is a solution. 
This is the essential idea behind refinement planning. The 



sets of action sequences are represented and manipulated in 
terms of partial plans which can be seen as a collection of 
constraints The action sequences denoted by a partial plan, 
i.e., those that are consistent with its constraints, are called 
its candidates. For technical reasons that will become clear 
later, we find it convenient to think in terms of sets of 
(instead of single) partial plans. A set of partial plans is 
called a planset with its constituent partial plans referred 
to as the components. The candidate set of a planset is de­
fined as the union of the candidate sets of its components. 

A refinement (pruning) operation narrows the candidate 
set of a planset by adding constraints to its component plans. 
If no solutions are eliminated in this process, we will 
eventually progress towards the set of all solutions. Termi­
nation can occur as soon as we can pick up a solution using 
some bounded time operation - called the solution extrac­
tion function. To make these ideas precise, we shall now 
look at the syntax and semantics of partial plans and refine­
ment operations. 

2.1 Partial Plan Representation: Syntax 

Figure 1. An example (partial) plan in rocket domain. 

A partial plan can be seen as any set of constraints that 
together delineate which action sequences belong to the 
plan's candidate set and which do not. One commonly used 
representation models partial plans as a set of steps, order­
ing constraints between the steps, and auxiliary constraints 
(we shall discuss alternative representations, such as that 
proposed by Ginsberg [1996], later). The ordering con­
straints may require steps to precede each other or be con­
tiguous. The auxiliary constraints demand the preservation 
of a condition over a time interval between two steps (called 
IPCs) or the truth of a condition at a time point (called point 
truth constraints). An example plan in this representation 
from the one-way rocket domain (involving transportation 
of two packages from earth to moon using a single one-way 
rocket) is shown in Figure 1. 

12 Partial Plan Representation: Semantics 

The semantics of the partial plans are given in terms of 
candidate sets. A candidate can be seen as a model of the 
partial plan constraints. An action sequence belongs to the 
candidate set of a partial plan if it contains the actions corre­
sponding to all the steps of the partial plan, in an order con­
sistent with the ordering constraints on the plan, and it also 
satisfies all preservation constraints. For the example plan 
shown in Figure 1, the action sequences shown on the left in 
Figure 2 are candidates, while those on the right are non-
candidates. 

Notice that the candidates may contain more actions than 
are present in the partial plan. Because of this, a plan's can­
didate set can be potentially infinite. We define the notion of 
minima] candidates" to let us restrict our attention to a 

finite subset of the possibly infinite candidate set. Specifi­
cally, minimal candidates are candidates that only contain 
the actions listed in the partial plan (thus their length is 
equal to the number of steps in the plan other than 0 and »). 
The top candidate on the left of Figure 2 is a minimal can­

didate while the bottom one is not. There is a one-to-one 
correspondence between the minimal candidates and-the 
syntactic notion of safe linearizations of a plan, where a safe 
linearization is a permutation of plan steps that satisfies the 
auxiliary preservation constraints. For example, the mini­
mal candidate on the top left of Figure 2 corresponds to the 
safe linearization 0-1-3-2-4-a (as can be verified by trans­
lating the step names in the latter to corresponding actions). 

Figure 2. Candidate set of a plan 

23 Refinement Strategies 

A refinement strategy R maps a planset P to another planset 
PR such that the candidate set of PR is a subset of the candi­
date set of P. R is said to be complete if PR contains all the 
solutions of P. It is said to be progressive if the candidate 
set of PR is a strict subset of the candidate set of P. R is said 
to be strongly progressive if the length of the minimal can­
didates increases after the refinement. The degree of pro-
gressiveness is measured in terms of the reduction in the 
candidate set size. It is said to be systematic if no action 
sequence falls in the candidate set of more than one compo­
nent of PR. 

Completeness ensures that we don't lose solutions by the 
application of refinements. Progressiveness ensures that 
refinement narrows the candidate set (i.e., has pruning 
power). Strongly progressive refinement strategies simul­
taneously shrink the candidate set of the plan, and increase 
the length of its minimal candidates. This provides an in­
cremental way of exploring the (potentially infinite) candi­
date set of a planset for solutions: Examine the minimal 
candidates (corresponding to safe linearizations) of the 
planset after each refinement to see if any of them cone-
spond to solutions. Systematicity ensures that we never con­
sider the same candidate more than once, if we were to ex­
plore the components of the planset separately. 

Refinements are best seen as canned inference procedures 
that compute the consequences of the meta-theory of plan­
ning, and the domain theory (in the form of actions), in the 
specific context of the current partial plan constraints. Tra­
ditional planners use four types of refinement strategies -
forward state space, backward state space, plan space and 
task-reduction [Kambhampati, 1997]. Figure 3 shows a for­
ward state space refinement of a partial plan in the one-way 
rocket domain. It takes the null planset, corresponding to all 
action sequences and maps it to a planset containing 3 
components. In this case, given the theory of planning, 
which says that solutions must have actions that are execu­
table in their respective states, and the current planset con­
straint that the state of the world before the first step is the 
initial state, the forward state space refinement infers that 
the only actions that can come as the second step in the so­
lution are Load(A), Load(B) and Fly(). 

This particular refinement is complete since no solution 
to the rocket problem can start with any other action for the 
given initial state. It is progressive since it eliminated the 
action sequences not beginning with Load(A), Load(B) or 
Fly() from consideration. Finally, it is systematic since no 

KAMBHAMPATI 45 



Figure 3. An example refinement strategy (Forward State 
Space) 

24 Plan Synthesis 

We are now in a position to present the general refinement 
planning template, which we do in Figure 4. If the current 
planset has an extractable solution—which is checked by 
inspecting its minimal candidates to see if any of them is a 
solution— we terminate. If not, we select a refinement 
strategy R and apply it to the current planset to get a new 
planset. This is the pruning step. The third step is the split-
ting step, and involves pushing the components of the re­
fined planset into different branches. The splitting is con­
trolled by the parameter k. If k equals 1, no splitting is done. 
If k equals the number of components of the refined planset, 
full splitting is done. Intermediate values of k correspond to 
intermediate levels of splitting. After the splitting step, one 
of the search branches is selected non-deterministically, and 
pruning and splitting is applied to it recursively. 

Figure 4, Refinement planning with pruning and splitting 

As long as the selected refinement strategy R is complete, 
the algorithm wil l never lose a solution. As long as the 
refinements are strongly progressive, for solvable problems, 
the algorithm wil l eventually reach a planset one of whose 
minimal candidates wil l be a solution. 

The solution extraction process involves searching 
through the possibly exponential number of minimal candi­
dates of a planset for a solution. As k increases, individual 
plansets have fewer components, and consequently the cost 
of solution extraction reduces. 

The algorithm template in Figure 4 covers both traditional 
and newer plan synthesis approaches (see [Kambhampati, 
1997] for a more elaborate discussion). Traditional refine­
ment planners, such as UCPOP, Prodigy, SNLP, etc. corre­
spond to complete splitting (i.e., k equals the number of 
components of the planset) differing mainly in the type of 
refinements they employ. The newer approaches such as 
Graphplan, COPS, Descartes and UCPOP-D can be seen as 
handling plansets without splitting. The first two do not do 
any splitting, while the last two do controlled splitting. Fi­
nally, SATPLAN approaches can be understood as posing 
the solution extraction as a SAT problem. 

3. Disjunctive planning 
We saw that traditional planners do refinement planning 
with full splitting, differing mainly in terms of the specific 
refinement strategies they use. Unfortunately, these planners 
tend to generate huge search spaces and have in practice 
shown disappointing scale-up potential. Viewing the newer 
approaches such as Graphplan and SATPLAN as instances 
of our framework suggests that a promising general solu­
tion involves handling plansets without splitting. This idea, 
referred to as disjunctive planning, raises three immediate 
issues: How do we (a) represent, (b) refine and (c) extract 
solutions from large plansets? I wil l discuss the first two 
issues in this section. The most promising approach for so­
lution extraction at present seems to be to pose it as a 
CSP/SAT problem. I wil l discuss this further in Section 4, in 
the context of SATPLAN. 

3.1 Disjunct ive Representations 

First off, keeping plansets together may lead to very un­
wieldy data structures. The way to get around this is to 
"internalize" the disjunction in the plansets so that we can 
represent them more compactly. The general idea of dis­
junctive representations is to allow disjunctive step, order­
ing, and auxiliary constraints into a plan. Figure 5 and 
Figure 6 show two examples the idea. The three plans on the 
left in Figure 5 can be combined into a single disjunctive 
step, with disjunctive contiguity constraints. Similarly, the 
two plans in Figure 6 can be combined by using a single 
disjunctive step constraint, a disjunctive precedence con­
straint, a disjunctive interval preservation constraint and a 
disjunctive point truth constraint. 

46 AI CHALLENGES 



in practice since it makes the refinement stage exponentially 
hard. We need to generalize the traditional refinement 
strategies so that they can apply directly to the disjunctive 
plans. I will now attempt to outline the critical issues in do­
ing this. 

Since refinement strategies essentially derive the conse­
quences of planning and domain theory in the context of the 
current plan constraints, it is clear that internal disjunction 
in the partial plan may lead to the derivation of weaker con­
sequences (thus reducing their pruning power). For exam­
ple, for the disjunctive plan on the right in Figure 5, we 
don't know which of the three steps will actually occur in 
the eventual solution. Consequently, we don't exactly know 
what the state of the world will be after the disjunctive step. 
This means that the forward state space refinement will not 
be able to infer exactly which actions can appear in the sec­
ond step of the solution. Similarly, for the disjunctive plan 
in Figure 6, we don't know whether steps 1 or 2 or both will 
be present in the eventual solution. Thus a plan space re­
finement won't know whether it should introduce steps 
relevant to At(A,E) precondition, those relevant to At(B,E) 
precondition, or both. 

All is not lost however, as the refinements can still infer a 
superset of the relevant actions. For example, for the plan in 
Figure 5, although we do not know the exact state after the 
first (disjunctive) step, we know that it can only be a subset 
of the union of conditions in the effects of the three steps. 
Knowing that only Load(A), Load(B) or Fly(R) can be the 
first steps in the plan tells us that the state after the first step 
can only contain the conditions In(A), In(B) and At(R,M). 
We can thus generalize forward state space refinement to 
add only those actions whose preconditions are subsumed 
by the union of propositions comprising the effects of the 
three steps. Similarly, plan-space refinement can be gener­
alized to introduce actions to achieve all parts of a disjunc­
tive precondition. 

These "naive" generalizations of the standard refinements 
are still complete, but have far less pruning power than the 
standard refinements operating on non-disjunctive plansets. 
In the case of the generalized forward state space refine­
ment, even if the preconditions of an action are in the un­
ion of effects of the preceding disjunctive step, there may be 
no real way for that action to actually be take place. For 
example, in Figure 5, although the preconditions of "unload 
at moon" action may seem satisfied, it is actually never go­
ing occur as the second step in any solution because Load() 
and Fly() cannot be done at the same time. In fact, this naive 
generalization may allow an exponential number of addi­
tional actions that will not be considered by traditional for­
ward state space refinement operating on non-disjunctive 
plans [Kambhampati & Lambrecht, 1997]. 

Although the loss of progressiveness in refining a dis­
junctive plan cannot be completely avoided, it can be re­
duced to a significant extent by extending the types of con-
sequences inferred by the refinements. Traditional refine­
ment strategies concentrate exclusively on inferring the 
identities of new actions that must be part of any eventual 
solution. We can widen the focus in the context of disjunc­
tive plans. For example, in Figure 5, using the domain and 
planning theory, we can recognize that actions Load(A) and 
Fly(R) cannot both occur in the first step (since their pre­
conditions and effects are interacting). Propagating this in­
formation tells us that the second state may either have 
In(A) or At(R,M), but not both. Here the interaction be­
tween the steps 1 and 3 propagates to make the conditions 
In(A) and At(R,M) "mutually exclusive" in the next dis­
junctive state. Thus any action which needs both In(A) and 

At(R,M) can be ignored at the next level. The particular 
strategy described here is similar to the one employed by 
Blum and Furst's [1995] Graphplan algorithm, and has been 
shown to be a major source of its efficiency [Kambhampati 
& Lambrecht, 1997]. Similar techniques need to be devel­
oped for plan-space refinements. 

To summarize, disjunctive plans can be refined directly 
and efficiently, at the expense of some of the progressive­
ness (pruning power) of the refinement. The loss of pruning 
power can be countered by widening the scope of the re­
finements to infer more than just the potential actions in the 
solution. 

4. Relating SATPLAN to disjunctive planning 

The SATPLAN approach involves generating a SAT en­
coding, all models of which will correspond to it-length so­
lutions to the problem (for some fixed integer k). Model-
finding is done by efficient SAT solvers [Selman et. al., 
1992; Crawford & Auton, 1996; Bayardo & Schrag, 1997]. 
Kautz et. al. propose to start with some arbitrary value of k 
and increase it if they do not find solutions of that length. 
They have considered a variety of ways of generating the 
encodings, corresponding loosely to different traditional 
planning algorithms. 

In the context of the general refinement planning frame­
work, we can offer a rational basis for the generation of the 
various encodings. Specifically, the natural place where 
SAT solvers can be used in refinement planning is in the 
"solution extraction phase". As illustrated in Figure 7, after 
doing k "complete" and "strongly progressive" refinements 
on a null plan, we get a planset whose minimal candidates 
contain all k-length solutions to the problem. So, picking a 
solution boils down to searching through the minimal can­
didates- which can be cast as a SAT problem. This account 
naturally relates the character of the encodings to the type of 
refinements used in coming with the kth Level planset and 
how the plansets themselves are represented. 

Figure 7. Relating refined plan at k-th level to SATPLAN 
encodings. 

Kautz et. al. concentrate primarily on direct translation of 
planning problems to SAT encodings, sidelining refinement 
planning [Kautz et. al., 1996] (the only exception is their 
Graphplan based encoding; see below). I believe that such 
an approach confounds two orthogonal issues: (1) Reaching 
a disjunctive plan whose minimal candidates contain all the 
solutions and (2) Posing the solution extraction as a SAT 
problem. 

It is best to separate these issues and see the main contri­
butions of SATPLAN as pertaining to the second one. The 
issues guiding the first are by and large specific to planning, 
and are best addressed in terms of refining disjunctive plans. 
The issues guiding the second are general heuristics re­
garding the effective ways of compiling a combinatorial 

KAMBHAMPATI 47 



search problem into a SAT instance, and are only loosely 
tied to planning. The main concern here is to end up with a 
SAT instance that is "small" (e.g., in terms of number of 
variables). The techniques used to achieve this involve syn­
tactic optimizations such as converting n-ary predicates into 
binary predicates, or compiling out dependent variables. 

Separating planset construction and its compilation into a 
SAT instance allows SATPLAN techniques to exploit, 
rather than re-invent, (disjunctive) refinement planning. It 
also removes the arbitrariness involved in "guessing" the 
length of the solution as a pre-requisite for coming up with a 
SAT encoding, since solution extraction is interleaved with 
refinements. It may also be possible to develop heuristics 
that attempt to predict whether it is worth doing solution 
extraction on the current plan (as for example, Graphplan 
does). 

In addition, I speculate that basing encodings on kth level 
plansets may also lead to SAT instances that are "smaller" 
on the whole. Specifically, the pruning done by disjunctive 
refinements can also lead to a planset with fewer number of 
minimal candidates than can be achieved by direct encod­
ings. This can in turn lead to a tighter SAT encoding. My 
speculation is supported to some extent by the results re­
ported in [Kautz and Selman, 1996] which show that SAT 
encodings based on k-length planninggraphs generated by 
Graphplan, can be solved more efficiently than the "linear" 
encodings generated by direct translation/ 

5. Challenge Problems 
The framework of relations that we have outlined in this 
paper gives rise to several open issues that are worth inves­
tigating. I pose them below as challenge problems to the 
researchers in the planning community: 

5.1 Disjunctive refinements 
In Section 3,1 argued that the success of Graphplan can be 
interpreted in terms of the idea of disjunctive planning. The 
only implemented and widely tested disjunctive planner is 
Graphplan, and it is based on forward state space refine­
ments. Given the known disadvantages of forward state-
space refinements vis a vis the other goal directed refine­
ments, it seems likely that disjunctive planners based on 
these other refinements may scale-up even better. This 
leads to the first challenge: 

Challenge 1. Develop disjunctive planners based on (1,a) 
backward state space, (1,b) plan-space and (l.c) task re-
duction refinements, either working independently or in 
combination. 

Section 3 explicates some of the critical issues involved 
in implementing disjunctive planners, but a lot remains to be 
done. An easy first step in this direction would be to have a 
version of Graphplan algorithm that uses backward state 
space refinements (which can in principle out-perform 
Graphplan by being goal-directed). A more interesting step 
is to develop a disjunctive planner based on plan-space re­
finement, and see if the advantages of plan-space refinement 
over state-space ones in the traditional planners carry over 
to disjunctive planners. Given the dominance of task reduc­
tion refinements in practical planners, it is also imperative to 
1 Kautz and Selman interpret the superior performance of graph-
plan encodings over linear encodings to the fact that the former 
allow action parallelism. However, as shown in [Kambhampati & 
Lambrecht, 1997], the real contribution of graphplan is not sup­
porting parallel actions, but rather allowing forward state space 
refinements over disjunctive plans. 

develop disjunctive planners based on task reduction re­
finement. Finally, since interleaving refinements is known 
to have advantages in traditional planners [Kambhampati & 
Srivastava, 1996], it would be worth considering disjunctive 
planners that interleave refinements. The key in all these 
cases will be to handle the tradeoff between cost of the re­
finement and the loss of pruning power by generalizing the 
corresponding refinements to make them infer more than 
just action constraints. The discussion in Section 3 may 
suggest some ideas in this regard. Progress on the first 
challenge can put us at a good vantage point to answer a 
more global one: 

Challenge 2. Characterize tradeoffs offered by different 
refinements in supporting disjunctive planning. 

The most interesting issues to be resolved here include 
whether and how the tradeoffs between the various refine­
ments change when we shift from traditional refinement 
planners to disjunctive planners (c.f. [Barrett & Weld, 
1994]): Would plan-space and task-reduction refinements 
maintain their advantages over in disjunctive planning algo­
rithms too, or would they be less effective (presumably be­
cause they do not support effective refinement and con­
straint propagation)? The answer may depend on how ef­
fectively the corresponding refinements can be generalized 
to disjunctive plans. 

5.2 Issues in SAT compilation 
Given that SAT compilation seems to be the most promising 
way of doing solution extraction on disjunctive plans, de­
velopment of effective disjunctive planners will require at­
tention to the SAT compilation issues. The problem-
independent tradeoffs in SAT compilation are the subject of 
a challenge paper by Selman et. al. [1997], and will not be 
discussed here. Our interest here is to understand the spe­
cific compilation tradeoffs directly related to planning: 

Challenge 3. Characterize the tradeoffs offered by SAT-
encodings based on disjunctive plans derived by different 
types of refinements (alone or working in an interleaved 
combination). 

The issues to be resolved here include understanding (1) 
how easy would it be to solve the SAT encodings resulting 
from different refinements and (2) how to effectively exploit 
the shared structure of the SAT encodings corresponding to 
successive levels of disjunctive plans. The first issue is es­
pecially interesting in light of the current experience that 
SNLP encodings, despite being more compact, are harder to 
solve [Selman et. al., 1997]. The second issue is motivated 
by the fact that solution extraction is interleaved with in­
cremental refinement operations, and thus the disjunctive 
plans at successive levels share a significant amount of sub­
structure. Indeed, one of the sources of efficiency for 
Graphplan algorithm is the way the backward search phase 
on successive planning-graphs can use the information 
computed in the previous levels (e.g. memoizing). 

It would also be interesting to understand why SAT com­
pilation is so effective in the first place. Kautz and Selman's 
[1996] original arguments seemed to imply that the effec­
tiveness has a lot to do with stochastic search methods used 
in solving SAT problems. This implication been called into 
question by the recent results of Bayardo and Schrag [1997], 
which show that systematic approaches can do just as well. 
So, a pertinent question is: Is the compilation into SAT jus­
tified purely by modularity concerns (in that different plan­
ning algorithms do not have to worry about specialized so­
lution extraction procedures), or is there any inherent ad-

48 Al CHALLENGES. 



vantage to SAT representation? A partial attempt at resolv­
ing this issue would be to enrich the backward search 
(solution extraction) phase of the Graphplan algorithm with 
the CSP techniques such as dependency directed back­
tracking, to see if it could rival the SAT performance. 

53 The util ity of controlled splitting 
In terms of our general refinement planning template, tradi­
tional planners split each of their component plans into a 
different search branch, while Graphplan and SATPLAN 
can be thought of in terms of not splitting the plansets at all. 
Research in constraint satisfaction and operations research 
shows that pruning and splitting can have synergistic inter­
actions. In fact, the best CSP search strategies combine 
low-level constraint propagation (pruning) techniques, such 
as forward checking, with splitting [Bayardo & Schrag, 
1997]. This raises the possibility that best disjunctive plan­
ners may also do controlled splitting of plansets (rather than 
no splitting at all) to facilitate refinements with more prun­
ing power. Controlled splitting may also be helpful in sce­
narios where planning and execution need to be interleaved 
of necessity. Although some initial exploration has been 
done in this direction by Descartes and UCPOP-D planners, 
a more systematic analysis of tradeoffs is still needed. This 
leads to the next challenge: 

Challenge 4. Develop and explore the tradeoffs offered by 
planners that split some of the disjunction into the search 
space, while keeping the rest together in disjunctive format. 

One immediate question is exactly how many branches 
should a planset be split into? Since the extent of propaga­
tion depends on the amount of shared sub-structure between 
the disjoined planset components, one way of controlling 
splitting may be to keep plans with shared sub-structure 
together. Of particular theoretical interest would be exhib­
iting domains and problems where full disjunction is 
counter-productive. A first step in this direction would in­
volve experimenting with versions of Graphplan algorithm 
that maintain multiple planning-graphs at each level 
[Kambhampati & Lambrecht, 1997]. 

54 Exploring alternative Representations 
We have noted in Section 2.2 that there is nothing sacro­
sanct about the particular representation for partial plans 
that is used by most existing planners. Alternative repre­
sentations may either be dictated by necessity (for example, 
the time-map based plan representations used in planners 
like HSTS [Muscettola, 1993] to support the use of expres­
sive resource constraints in planning), or as more flexible 
ways of representing and handling sets of action sequences 
(for example, the representation used in COPS [Ginsberg, 
1996]). The general framework and ideas described in this 
paper are independent of the specific representations used 
for partial plans. For example, Ginsberg's COPS planner 
can be seen as an instance of the disjunctive planning ap­
proach, that uses a very different partial plan representation 
(albeit with the same candidate set semantics). The approach 
shares the ideas of direct refinement of disjunctive plans and 
solution extraction by enumerating minimal candidates. 
Representations can however have a significant impact on 
the kinds of refinements that can be supported. Ginsberg 
describes a type of refinement on his plan representation 
that has the ability compute both upper and lower approxi­
mations on the set of solutions. This leads us to an interest­
ing, but somewhat open-ended challenge. 

Challenge 5. Develop and investigate the utility of alterna­
tive plan representations on the efficiency of plan genera­
tion. 

While development of new representations is an open-
ended task, a first feasible step in this direction would be to 
do a direct empirical comparison of currently available al­
ternative representations, such as those used in COPS or 
HSTS. It would also be interesting to undertake each of the 
previous challenges in the context of the alternative repre­
sentations. 

6. Conclusion 
In this paper, I presented a generalized view of refinement 
planning that bridges several hither-to distinct strands of 
planning research. I have outlined how the insights from this 
unification can help both traditional and SAT-based plan­
ners. Finally, I have proposed as a challenge to the commu­
nity, a set of research problems, tackling which can lead to a 
significantly improved understanding of the issues involved 
in efficient plan synthesis. 

To support research into these challenge problems, I in­
tend to maintain a web site that will act as a clearing house 
for information on our evolving understanding. Its URL 
will be http://rakaposhi.eas.asu.edu/challenge.html. This 
site will contain references to other relevant literature, 
pointers to benchmark problems and test-domains, as well 
as more fleshed out versions of the challenges and their up-
to-date status. 

References 
Barrett, A. and Weld, D. 1994. Partial Order Planing: Evaluating 

possible efficiency gains. Artificial Intelligence, 67(1):71-112. 
Bayardo, R and Schrag, R. 1997. Using CSP look-back techniques 

to solve real-world SAT instances. In Proc. AAAI-97. 
Blum, A. and Furst, M. 1995. Fast planning through plan-graph 

analysis. In Proc. IJCAI-95. 
Crawford, J. and Auton, L. 1996. Experimental results on the 

crossover point in random 3SAT. Artificial Intelligence, 81. 
Ginsberg, M. 1996. A new algorithm for generative planning. In 

Proc. KR-96. 
Joslin, D and Pollack, M. 1996. Is least commitment always a good 

idea? In Proc. AAAI-96. 
Kambhampati, S. and Srivastava, B. 1996. Unifying classical 

planning approaches. ASU CSE TR 96-006. (Preliminary version 
appeared in Proc. 3rd European workshop on planning). 

Kambhampati, S., Knoblock, C, and Yang, Q. 1995. Planning as 
refinement search: A unified framework for evaluating design 
tradeoffs in partial order planning. Artificial Intelligence, 76(1-
2): 167-238. 

Kambhampati, S. and Yang, X. 1996. On the role of disjunctive 
representations and constraint propagation in refinement plan­
ning. In Proc. KR-96. 

Kambhampati, S and Lambrecht, E. 1997. Why does Graphplan 
work? ASU CSE TR 97-005. (Poster at IJCAI-97) 

Kambhampati, S. 1997. Refinement planning as a unifying frame-
work for plan synthesis. AI Magazine. Summer issue. 

Kautz, H. and Selman, B. 1996. Pushing the envelope: Planning 
Propositional Logic and Stochastic Search. In Proc. AAAI-96. 

Kautz, H., McAllester, D. and Selman, B. 1996. Encoding plans in 
propositional logic. In Proc. KR-96. 

Muscettola, N. 1993. HSTS: Integrating planning and Scheduling. 
In: Intelligent Scheduling. M. Fox and M. Zweben (eds). Morgan 
Kaufmann. 

Pearl,J.Heuristics. Addison-Wesley. 1984. 
Selman, B., Levesque, H.J., and Mitchell, D. 1992. GSAT: 

a new method for solving hard satisfiability problems. In 
Proc. AAAI-92. 

Selman, B., Kautz, H. and McAllester, D. 1997. Computa­
tional challenges in propositional reasoning and search. In 
Proc. IJCAI-97. 

KAMBHAMPATI 49 


