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Abstract

We present Autoepistemic Description Logics
(ADLs), in which the language of Description Log-
ics is augmented with modal operators interpreted
according to the nonmonotonic logic MKNF. We
provide decision procedures for query answering
in two very expressive ADLs. We show their
representational features by addressing defaults,
integrity constraints, role and concept closure.
Hence, ADLs provide a formal characterization of
a wide variety of nonmonotonic features commonly
available in frame-based systems and needed in the
development of practical applications.

1 Introduction

Description Logics (DL) have been studied in the past years
to provide a formal characterization of frame-based systems.
However, while the fragment of first-order logic which char-
acterizes the most popular constructs of these languages has
been clearly identified (see for example [Woods & Schmolze,
1992]), there is not yet consensus on the features of frame-
based systems that cannot be formalized in a classical first-
order setting. In fact, frame systems, as well as DL-based
systems [Brachman et al, 1990, MacGregor, 1988], ad-
mit forms of nonmonotonic reasoning, such as defaults and
closed world reasoning, and procedural features, e.g. rules.
These issues have been addressed in the recent literature (see
for example [Baader & Hollunder, 1995, Donini et al.; 1992,
Donini, Nardi, & Rosati, 1995, Padgham & Zhang, 1993,
Quantz & Royer, 1992]), but the proposals typically capture
one of the above mentioned aspects.

In addition-, most implementations of DL-based systems
are object-centered, which enables them to perform efficient
reasoning on the properties of individuals. Such behaviour
can be naturally justified if one can restrict the reasoning to
the individuals that are known to the knowledge base (i.e. in-
dividuals that have an explicit name). Based on this intuition,
an epistemic extension of DLs with a modal operator K, in-
terpreted in terms of minimal knowledge has been proposed
in [Donini et a/., 1992]. In that formalism one can express
a form of closed-world reasoning, as well as integrity con-
straints in the form of epistemic queries (as proposed in [Re-
iter, 1990]); in addition, by admitting a simple form of epis-
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temic sentences in the knowledge base, one can formalize the
so-called procedural rules.

In this paper we propose a new framework of Autoepis-
temic Description Logics (ADLs) which follows the lines of
[Donini et al,, 1992], extending it in two respects: we rely on
the nonmonotonic modal logic MKNF [Lifschitz, 1994] and
we consider several kinds of epistemic sentences to be used
in the knowledge base. In MKNF one can formalize Default
Logic, Autoepistemic Logic, Circumscription and Logic Pro-
gramming, i.e. many of the best known formalisms for non-
monotonic reasoning. With MKNF we can naturally extend
the previous approach to modal DLs, by introducing a sec-
ond modal operator interpreted as autoepistemic assumption.
Moreover, reasoning methods are available for deduction in
propositional MKNF [Rosati, 1997].

As for the representational features of the framework, we
show that ADLs are able to capture a large variety of non-
first-order features. In addition to procedural rules and epis-
temic queries, the formalism accounts for defaults, integrity
constraints inside the KB, role and concept closure, which are
addressed in the paper. Moreover, the whole representational
power of MKNF becomes available, thus making it feasible
to consider new features, like autoepistemic reasoning, that
are not implemented in current DL-based systems.

As for reasoning in ADLs we define methods for query an-
swering which provide sound and complete reasoning proce-
dures in DL-based systems admitting the above mentioned
non-first-order features. It turns out that the proposed de-
duction methods constitute interesting decidable extensions
of propositional nhonmonotonic reasoning.

Based on the above considerations we argue that ADLs can
indeed be considered as a unified framework for the logical
reconstruction of frame-based systems.

The paper is organized as follows. We first present the ex-
tension of DLs obtained by adding the epistemic operators
of MKNF. We then discuss the representational features of
ADLs by considering several forms of honmonotonic reason-
ing and integrity constraints. Finally, we address reasoning
in these logics by providing reasoning methods for two rather
general cases.

2 Autoepistemic Description Logics

Autoepistemic Description Logics (ADLs) are defined as an
extension of DLs, in which the modal operators K and A



are allowed in the formation of concept and role expressions.
The meaning of modal sentences is given according to the
logic MKNF [Lifschitz, 1994, Lin & Shoham, 1992],

Let DL be a generic description logic. Then, DL+
stands for the description logic DL augmented with the
modal operators K and A. We say that C is a DLK i x-
concept if C is a concept expression of DLKyr. Anal-
ogously, B is a DLy r-role if R is a role expression in
DLENF.

Below we present the epistemic DL ALCK y =, namely we
refer to the DL ALC, although some of the results concern
more expressive DLs. The syntax of ALCK y 7 is as follows:

C u= TILIC|CINC|CLUC | ~C |
3R.C |YR.C |KC | AC
R u:= P|KP|AP

where C, denotes an atomic concept, C (possibly with a sub-
script) denotes a concept, P denotes an atomic role, arid R
(possibly with a subscript) denotes a role.

The semantics is obtained by interpreting concepts and
roles on MKNF structures. With respect to the original
semantics for MKNF in the first-order case, we introduce
two changes: (i) foilowing the approach of [Reiter, 1990,
Donini et al., 1992) the semantics of ADLs is based on the
Rigid Term Assumption: for every interpretation the mapping
from the individuals into the domain elements is fixed; (it) the
semantics of ADLs is also based on the following Common
Domain Assumption: in each model, every interpretation is
defined over the same, fixed, countable-infinite domain of in-
dividuals A. Hence, we define an epistemic interpretation as
atriple (Z, M, N') where T is a DL-interpretation (a possible
world) and M, N are sets of interpretations defined over the
domain A.

Atomic concepts and roles are interpreted as subsets of A
and A x A, respectively. T is interpreted as A and L as
. Non-epistemic concepts and roles are given the standard
semantics of DLs; conversely epistemic sentences are inter-
preted on epistemic interpretations, as follows.

(OYFMN = AN (o
(CI M CQ)I'M'N' = (Cl )I.M.JV N (Cz)I.M-N'
(Cuc)™™¥ = (MM uC) M

(ARCY"MN = [(deA|3d.(dd)e (RFMY
and d € ()M}
(YRC)*M¥N = [deA|vd.(dd) e (RFMV
implies &' € (C)TM¥}
(KC)I.M.N = n {c)I.M.N
JEM
(AC):'M'N = n (C)I.MJV
TEN
(KP)I.M.N' = m (P)I.M.N
JEM
(AP)I.M.N' = n (P)I.MHV
JEN

For example, an individual d € A is an instance of a concept
KC (ie.d € (KCYFMHY)iffd € CT-MN for all interpre-
tations J € M. In other words, an individual is “known” to
be an instance of a concept if it belongs to the concept inter-
pretation of every possible world in M. An individuald € A
is an instance of a concept AC (ie. d € (AC)YTMN) iff
d € CTMN for all interpretations .7 € A. In other words,
an individual is “assumed” to be an instance of a concept C
if it belongs to C in all possible worlds of AV. Similarly, an
individual d € A is an instance of a concept IKR. T iff there
is an individual &' € A such that (d,d’) € R for all
JeM.

The truth of inclusion statements in an epistemic interpre-
tation (Z, M, V) is defined in terms of set inclusion: C C D
is satisfied in (Z, M, N) iff (CYFMN C (DYELMN “As.
sertions are interpreted in terms of set membership: Cla)
is satisfied in (Z, M, N) iff ¢ € (C)TM¥ and R(a,b) is
satisfied in (Z, M, A) iff (a,b) € (REMN. A DLy 7-
knowledge base ¥ is defined as a pair ¥ = (7, .A), where
T (called TBox) is a finite set of inclusion statements (in-
tensional knowledge) of the form C C D, where C, D are
DLK pr7-concepts, and A (called the ABox) is 2 finite set of
membership assertions {(extensional knowledge) of the form
C{a) or R{a,b), where C is a DLy x-concept, R is 2
DLK ) £-role, and a, b are individuals in A. We call Og the
set of individuals occurring in X.

An inclusion C C D is satisfied by a structure (M, N)
{denoted by (M, N) [ ¥) iff each interpretation 7 €
M is such that (I, M,N) satisfies C © D. An asser-
tion C(a) (resp. R{a,b)) is satisfied by (M, N) (denoted
by (M,N) [ ¥) iff each interpretation Z € M is such
that (I, M, N) satisfies C(a) (resp. R(a,b)). A DLKyr:
knowledge base ¥ is satisfied by a structure (M, N) (de-
noted by (M,N) [= ¥) iff each interpretation Z € M is
such that every sentence (inclusion or mesmbership assertion)
of ¥ is true in the epistemic interpretation (Z, M, N).

A set of inerpretations M is a model for ¥ iff the structure
{M, M) satisfies W and, for each set of interpretations M, if
M C M then (M’, M) does not satisfy ¥. Roughly speak-
ing, such a preference semantics gives a minimal knowledge
interpretation to the modality K, while the operator A is
interpreted in terms of autoepistemic assumption (see [Lif-
schitz, 1994, Lin & Shoham, 1992] for further details).

The DLK i 7-knowledge base W is catisfiable if there ex-
ists a model for ¥, unsatisfiable otherwise. ¥ logically
implies an inclusion assertion C C D (where C,D are
DLK yrr-concepts), writen W |= C C D, ifC C Dis
true in every model for ¥. Analogously, instance checking in
T of a membership assertion C(a) (where C is a DLK y7-
concept and @ € Og) is defined as follows: ¥ |= C{a} iff
C(a) is satisfied by every model of ¥.

3 Reconstruction of frame-based systems

In this section we show that the expressive capabilities of
ADLs allow for the reconstruction of several nonmonotonic
features of KR systems. In particular, we focus on: defaults,
integrity constraints, role and concept closure.
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Defaults. Some studies on formalizing defaults in frame-
based systems in DLs [Baader & Hollunder, 1995, Quantz
& Royer, 1992] propose the extension of DLs through the
use of Default Logic. We argue that, in order to provide a
unified framework to the formalization of several forms of
KB closure, it is more convenient to treat defaults as epis-
temic sentences. A first attempt in this direction is presented
in [Donini, Nardi, & Rosati, 1995], where it is shown that
one can translate defaults in a logic of minimal knowledge,
but based on a different (and less intuitive) semantics for the
modal operator K. In the following, we only address the
"closed" semantics for defaults, but it is worth noticing that
also different forms of “open” semantics (see e.g. [Kamin-
ski, 1995]) can be formalized in ADLs. We call DL-default
a default rule of the form d = 2ixlls | where a, 8;, 7 are
DL-conceptsand 1z > 0.

The semantics proposed in [Baader & Hollunder, 1995} for
defaults in DL-KBs restricts the application of defaults only
to the individuals explicitly mentioned in the ABox. Notice
that this semantics can be viewed as the natural extension
of the semantics of procedural rules given in [Donini et al.,
1992], where rules are applied onty to the known individu-
gls in the KB. Under this assumption, we are able to transiate
defauit rules in terms of DL vx inclusions in the frame-
work of ADLs. To this purpose, the translation of defaults
into MKNF [Lifschitz, 1994] provides a modular and faithful
translation of default rules into DL ». More specifically,
a DL-default d is translated as:

ok (d) = KIT -KaUA-§ U... A8, UKy

where [ is an atomic concept not appearing in the KB,

Let (X, D) be a pair such that £ = {T,.4) is a DL-KB
and D is a set of DL-defaults. Then, Tpx(E, D) = (T7, A",
where T = T U {rpk(d) : d € D}, A' = AU {I{a) :
a € Og}. i.e. for each individual ¢ € Oy, the assertion I{a)
is added to .A. The condition KJ corresponds to adding an
extra prerequisite for the application of the default, which ex-
presses the fact that the individual must be in Og. Such an
extra condition is needed to realize the closed semantics for
prerequisite-free defaults. Indeed, without imposing the pre-
requisite J, a prerequisite-free default would be applicable to
eachindividual of A, The resulting modular translation based
on Tpy is faithful.

Theorem 3.1 Given a DL-KB with defauits (X, D), where T
is a DL-KB and D is a set of DL-defaults, the DLK v x KB
o (L, D) is suck that {(£,D) E C(a) iff ok (E,D) E
C(a) for each DL-concept C and each a € Ox.

Integrity Constraints. In this section we study the prob-
lem of representing integrity constraints (IC) in ADLs. [Re-
iter, 1990] pointed out the epistemic nature of ICs : they are
not statements about the world, they are statement about what
the KB is said to know. Generally speaking, the satisfaction
of ICs in Reiter's approach is checked in the following way:
let P be a property that the KB must satisfy. Find a suitable
epistemic query Qp formalizing P. Then, check whether the
KB (interpreted under a closure agsumption) entails Qp.

Previous work [Donini ef al., 1992] has shown that Reiter's
approach can be realized in D.L-KBs by sndowing the query
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language with epistemic abilities. Nevertheless, it would be
very desirable to express ICs as any other piece of informa-
tion on the domain of interest, i.e. as sentences inside the
KB. The difficulty that arises is precisely in the formaliza-
tion of the notions of closure underlying these forms of in-
tegrity constraints. Notably, ICs do not add "objective infor-
mation": rather, they impose conditions on the consistency
of the KB. This is true in the case of first-order KBs, or KBs
with a single model as in the case under consideration. In
the case of KBs with multiple models, ICs can be viewed as
an a fortiori check which establishes which of the models
are actually allowed. In particular, many forms of ICs impose
properties that must hold for the known individuals of the KB.
The modal operator K appears as an appropriate way to for-
malize this intuition. Moreover, conditions imposed by ICs
are consistency conditions which cannot change the content
of the KB. In other words, augmenting the KB with ICs can
only have one of the following two possible effects: either the
model of the KB remains unchanged (it satisfies the ICs), or
the KB becomes inconsistent (since its model does not satisfy
the ICs). As we shall see, the modal operator A turns out to
be well-suited to this purpose.

We now show that the combination of the modalities K and
A provides for the formalization in ADLs of sophisticated
constraints on the KB content.
Example 1. Let us consider the IC "each known person must
be known to be either male or female", which is meant to
avoid any situation where an individual has been added to the
KB without specifying her/his sex. One might attempt to for-
malize it through the DLy x inclusion I; = Kperson C
(Kmale Ll Kfemale). However, this formalization is incor-
rect, since such an assertion forces in the KB the knowledge
about the sex of each known person. Instead, the meaning
of the IC is to check whether the sex of each known per-
son is known to the KB. This difference can be better ex-
plained as follows. Suppose X contains only one assertion,
person(Bob). Of course, X does not satisfy the IC. Now, if
we add /; to I, we obtain two models for (X, {I, }): one in
which male(Bob) holds, and another in which female(Bob)
holds. On the contrary, we would like (X, {I;}) to be in-
consistent, since X does not satisfy the IC. The solution to
the above problem lies in the use of the autoepistemic belief
operator A. Indeed, if we add to a KB the DLK i F inclu-
sion I = Kperson C (Amale L} Afemale) we formalize
the intended meaning of the IC. The difference between I
and I{ lies in the fact that I] does not force any new knowl-
edge on known persons. In our example, since person(Bob)
holds, the assertion Amale {J Afemale(Bob) must hold.
Now, since there is no reason to conclude either male(Bob) or
female(Bob) from I, the autoepistemic beliefs Amale(Bob)
and Afemale(Bob) are not consistent with the objective
knowledge of L, therefore Amale LI Afemale(Bob) is in-
consistent with . O

We remark that there is a precise correspondence between
the A operator and Moore's L operator of Autoepistemic
Logic [Rosati, 1997]. From this correspondence, the above
example can also be understood as a variation of the "classi-
cal” inconsistent autoepistemic theory {L}. Thus, the idea



in the formalization of ICs is precisely to represent an IC as
a believed sentence: if such a belief is not "supported” by the
objective knowledge, then an inconsistency arises.

Example 2. The IC “Each known employee must have a
known social security number, which must be known to be
valid” can be correctly formalized by the set of ALCK
assertions [ = {~Kemp U IKSSN.Avalid(a) | a € Og).
In fact, it can be shown that an ALCK -+ ABox does not
satisfy the IC iff £ U I; is inconsistent. 0

Role and concept closure. Finally, we show how two par-
ticular forms of closed-world reasoning, namely role closure
and concept closure, can be nicely formalized in the frame-
work of DLX 7. These kinds of closure appear as very use-
ful tools in knowledge representation.

Closure on roles is available both in CLASSIC LBrachman
et al, 1990] and in LOOM [MacGregor, 1988]. The idea is to
restrict universal role quantifications to the known individuals
filling the role in the KB.

Example (Role closure). Let ¥, be the following ALC-KB:
{CHILD(Ann,Marc), CHILD(Ann, Paula)}, where doctor
is an abbreviation for the concept dN-1Mrich, and
lawyer is an abbreviation for 1Mrich (expressing that
doctors and lawyers are disjoint concepts, and both are rich).
Now, suppose we want to formalize the property: “one of
the known children of Ann is known to be a doctor, and
another one is known to be a lawyer”. One would like
to conclude that “all known children of Ann are known to
be rich”. It turns out that the correct formalization is pro-
vided by the use of both modalities A and K. Formally:
let B = 3JACHILD.Kdoctor M JACHILD.Klawyer(inn).
Then, ¥, U { B} |= VKCHILD.Kxich({Ann). 0

Epistemic operators make it natural to extend the notion of
¢losure t0 concept expressions.

Example (Concept closure). Let ¥, be
the following ALCK-KB: {doctor(Paula), lawyer(Marc),
VYCHILD.hasBlueEyes({Ann)}. Suppose we want to add
to ¥; the following informal property P: “One of Ann's
children is one of the known doctors”. Now, since Paula
is the only known doctor, we want to be able to conclude
that Paula is one of Ann’s children, and hence ¥, U {P} =
hasBlueEyes(Paula). This can be obtained by formaliz-
ing P through the assertion JKCHILD. Adoctor(Aun), since
it can be shown that all models for the KB ¥, U {P} ei-
ther Paula or Marc is one of Ann's children. Therefore,
¥, U {P} F hasElueEyes(Paula). O

4 Reasoning in ADLs

In this section we study reasoning in ADLs. First, we
study DLK ) r-simple KBs, i.e. DLK y 7-knowledge bases
in which there is no occurrence of epistemic operators in the
scope of quantifiers. We prove that decidability is preserved
in simple theories. Furthermore, in many cases the worst-case
complexity of deduction is not affected by such a nonmono-
tonic extension. We also provide an algorithm for instance
checking in DLK yr r-simple KBs which is parametric wrt the
DL in which the KB is expressed. As we shall see, such an
algorithm allows for reasoning in DLs with (closed) defaults.

Then, we address subjectively quantified ALCKyF-
ABoxes, ie. ALCKyx-ABoxes in which occurrences of
epistemic operators in the scope of quantifiers are allowed
(under some restrictions). We prove that instance checking
in such ABoxes is decidable. This result allows us to prove
decidability of reasoning in DLs with features like role and
concept closure and integrity constraints, which can be ex.
pressed in ALCK v r-ABoxes with quantifying-in, as shown
in the previous section.

Notably, in the case of ALCK v x we can easily reduce a
simple KB to a subjectively quantified ABox. On the other
hand, the method for reasoning on simple KBs is applica-
ble to any non-modal DL for which a procedure for instance
checking is available.

4.1 Reasoning without quantifying-in
We start by defining the notion of DL »-simple KBs.

Definition 4.1 A DLy r-concept C is simple iff there are
no occurrences in C of an epistemic operator in the scope of
quantifiers.

Definition 4.2 A DLK yr5-simple KB is a pair (E,T') such
that T = (T, A isa DL-KB and T is a set of DLy -
simple inclusions, i.e. inclusions of the form KC C D, where
D isa DLK yr 5-simple concept and C is a DL-concept such
thatTETCC.

As in [Donini et al., 1992), the condition T = T C C cor-
responds to a “closed” semantics for the DLK yr x-simple in-
clusion KC C D, in the sense that it corresponds to consider
the application of such axioms only to the individuals in Og,
This is precisely due to the minimal knowledge semantics of
the modal operator K: in fact, due to the form of DLK v 7-
simple inclusions, there is no way to force the property KC
on individuals € Oy, (since £ ¢ T C C). Now, from the
definition of model in DL »»x (that is, from the minimai
knowledge semantics of the operator K) it is easy to see that
only sets of DL-interpretations in which —KC holds for each
individual not in Og are preferred. That is, the application on
such individuals of the epistemic inclusion KC T D has no
effect. Therefore, the following property holds,

Lemmad.3 Ler T = ((T,A),T) be a DLy 5-simple KB.
La ' = (TUT, A, and let " = (T, AU {~KC U
D(a)JKC C D €T and a € Ox}). Then, the sets of models
of T and T coincide.

We now present a method for computing instance check-
ing in DLK yrx-simple KBs, based on the procedure defined
for propositional MKNF theories (see [Rosati, 1997]). How-
ever, the extension to the case of ADLs requires several pre-
liminary notions. In particular, we have to dsfine consistency
of a partition of assertions wrt a DLK yx-simple KB.

Definition 4.4 Let C be a DLK r-concept expression.
Let PN be sets of DLKyr-assertions of the form
KD(a), AD{a), such that PN N = 0. Then, C(a)(P,N)
is the assertion obtained by substituting with T each occur
rence in C of a concept D which is not within the scope of a
modal aperator, and such that D(a) € P, and with L each
occurrence in C of a concept D which is not within the scope
of a modal operator, and such that D(a) € N,
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Informally, C(a){ P, N) is the assertion representing the eval-
uation of C{a) wrt the guess of the modal subformulas
of C(a) according to the partition (P, N). Notice that,
if each modal subexpression in C(a) appears either in P
or in N, then C{a)(P, N) is a non-modal assertion. We
denote PX = {C(a}(P,N)KC € Panda € Og},
PA = {C(a)(P, N)JAC € Panda € Og}, and APX =
{AC(a)|C(a) € P*}.

In order to reason with DLy #-simple KB we need an ef-
fective method for identifying models. Let C be a DLK pr 5~
concept. The set of modal atoms of C, denoted as M A(C),
is the set of role subexpressions or concept subexpressions of
C of the form KC' or AC'. The set of modaj atoms of an in-
clusion C C D is the union of the sets M A(C) and M A(D).

Definition 4.5 Let v be a DLy x-inclusion. Let O be g
set of individuals. Let M A() be the set of modal atoms in
~v. Then, the set of instances of M A(y) in O, denoted as
MI(r,0), isthe set {C(a)ja € O and C € MA(v)}. More-
over, if I is a set of DLK yrx-inclusions, then MA(T', 0) =
Uner MA(Y,0).

Definition 4.6 Let (E,T') be a DLK yx-simple KB, Let
(P, N} be a partition of MI(T,0x). Then, (P,N) is con-
sistent with (I, I') iff the following conditions hold:

i. foreachy € T andfor eacha € Oz, y(e)(P,N}) = T:

il. the DL-knowledge base (T, AU PX) is satisfiable;

iii. the DL-knowledge base (T, At P4} is satisfiable;

iv. for each KC(a) € N, TU PX }£ C(a)(P,N);

v. for each AC(a) € N, Zu PA | Cla)(P,N).

Notice that in the above definition both PX and P4 are sets
of DL-assertions, since (P, N} is a partition of MI(T, Og).
Therefore, {T, AU PX) and (T, ALt PA) are DL-KBs.
Lemma 4.7 Let (P, N') be defined as above. (P, N) identi-
fiesamodel for (T UT, A} iff
i. (P,N) is consistent with (£,T);

i, ZUPK | PA;

iti. for each partition (P',N") of MI(I", Og), where I =
TV {APX} either (a) (P, N') is not consistent with (Z,T)
or () TUPK £ PK or(c) T U PK = PK or (d)
TUPK | pA

The proof follows from Lemma 4.3 and properties of the
logic MKNF [Rosati, 1997]. Based on the above lemma, we
can provide a procedure for establishing whether a partition
(P, N) identifies a model for (T UT, A?.

Figure 1 reports the algorithm Simple-Not-Entails for com-
puting instance checking in DLK s r-simple KBs. Notice
that, in the case when the query C(a) is non-modal, the
method can be realized using a procedure for computing in-
stance checking in VC.

Based on the algorithm Simple-Not-Entails, one can prove
decidability of instance checking in DLK y -simple KBs.
Theorem 4.8 Let (£,T) be a DLK pr7-simple KB. Let C(a)
be a DL-assertion. The problem (Z,1) |= C(a) is decidable
iff instance checking in DL is decidable.

We can provide a computational characterization of the in-
stance checking problem in DLK y »-simple KBs. In par-
ticular, the above theorem implies that adding ALCK y »-
simple inclusions to an ALC-KB with empty TBox & =
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Algorithm Simple-Not-Entails(DL, (X, T), C(a))

Input: description logic DL,
DLy r-simple KB (T = {T,.4), ),
DLK-assertion (query) C(a):

Output: true if (Z, ') p= C(a), false otherwise.

M A(T) = set of modal atoms in T';

MI(T,Ocg) = {D{a)|a € Op and D € M A{I)}:

if there exists partition (P, N') of MX(T, Ox)
such that
(P, N) identifies a model of {7 UT, A) and
LU P¥ E Cla)

then return true

else return false

end

Figure 1: Algorithm Simple-Not-Entails.

(8, A) does not increase the worst-case complexity of in-
stance checking of an ALCK -assertion, which is PSPACE-
complete in the case of a non-modal I [Donini et al, 1992].
The same resuit holds in the case of an ALC-KB E = (T, A)
with ALCK y r-simple inclusions (i.e. instance checking is
EXPTIME-compiete as in the non-modal case).

Notably, it is easy to see that the translation Tpg (X, D) of
a DL-KB with defaults (I, D) is equivalent to the DLK 5~
simple KB (Z,T), in which I is the set {rpx(d) : d € D}.
Therefore, from Thecrem 3.1 it follows that in many cases
adding defaults to a DL-KB does not increase the complexity
of deduction: in particular, reasoning in ALC-ABoxes with
defaults is PSPACE-complete.

4.2 Reasoning with quantifying-in

We start by defining the notion of subjectively quantified
ALCK pr x-ABoxes.

Definition 4.9 A subjectively quantified ALCK y 7-assertion
is an ALCK yr 7-assertion C{a) where C is a concept expres-
sion of ACCK y x in which each quantified subexpression is
of the form 3P.D', YP.D', SMP.M'D, YMP.M'D, where
M,M’ € {K,A}, D' is an ALC-concept, P is an atomic
mwle.

An ALCK yr-ABox composed of subjectively quantified
assertions is calied subjectively quantified ALCK yrr-ABox.
The method for reasoning on subjectively quantified ABoxes
is based on a tableaux calculus following the lines of [Donini
et al, 1996], where special closure conditions are defined to
enforce the preference criterion on the models represented
by the branches of the tableau. For ADLs, the lifting from
propositional logic to DLs raises several difficulties that are
addressed in the sequel. In particular, we sketch a calcu-
lus for characterizing the models of a subjectively quantified
ALCK s 5-ABox in terms of ALC-KBs, to which the proce-
dure for query answering defined in [Donini et al, 1992] can
be applied.

The tableaux rules include the standard rules for an S5
tableau [Fitting, 1983] for handling propositional connec-
tives and epistemic expressions of the form KC, AC and
=KC,-AC. The tableaux calculus for generating the mod-
eis for subjectively quantified ALC-KBs behaves as usual,



except tor the tact that each rule is applied only to epistemic
prefixed formulas.

First, we define the notion of modal atoms of a subjec-
tively quantified ALCK x r-assertion C(z) as the set of as-
sertions C’(z), where C' is a subexpression of C of the
form KC" or AC" or IMP.M'C" or YMP.M'C", where
M, M € {K, A}. The set of modal atoms M A(Z) of a sub-
jectively quantified ALCK r-ABox ¥ is the union of the
sets of modal atoms of all the assertions it contains.

A branch B is a set of prefixed formulas of the form (1 :
C(z)). The tableau for ¥ starts with the set {{1 : KA4) |
assertion A € L}. Op is the set of individuals in .

We concentrate on the rules that handle subjectively quan-
tified expressions, and on a rule that saturates the branch wrt
modal atoms of E. We phrase them using K; the cases arising
from the use of both modalities K and A are analogous. The
rules are as follows:

V-rule: if (w : VKP.KC(z)} € B, then for each (1 :
KP(z,y)) € Badd (1: KC(y)) to B,

S-role; if (w : IKP.KC(z)) € B and there is no y such
that both (1 : KP(z,y)) and {1 : KC(3)} € B, then
add (1 : KP(z,z)} and (1 : KC(2)) to B, where z €
OpuU{i}and: ¢ Op.

mcut-rule: if KC(z) € MA(Z) then add {1 : KC(z)) or
(1: -KC(z)) to B, if neither is present in 8.

A branch is compieted if no rule is applicable to it; a branch is
open if there is no pair of prefixed formulas in B of the form
{(w: C(xz)) and {w : ~C(z}).

An open completed branch B does not always represent a
model. To select models according to the preference criterion,
one needs to characterize the objective knowledge associated
with B. In particular, one has to distinguish between the
objective knowledge implied by K-prefixed and A-prefixed
modal atoms [Rosati, 1997]. To this aim, we remark that the
mcut-rule forces a partition on the modal atoms of ¥ in B.
We call {Pg, Ng) such a partition. Based on Def. 4.4, we
define the following ALC-ABoxes:

OBJk(B)
OBJ 4(B)

{C(x)(Py, Ng)IKC(z) € Fg}
{C(x)(Ps, Np)|AC(z) € Ps}

We can now define the notion of preferred branch.

Definition 4.10 A branch B of the tableau for ¥ is preferred
iff B is open and completed, OBJ k(B) = OBJA(B) and,
for each open and completed branch B' of the tableau for
Z U {AC(2)IC(z) € OBJk(B)}, either OBJ(B) [
OBJx(B") or OBJ(B') = OBJk(B) or OBJx(B)
OBJ 4(B").

The above notion of preferred branch allows us to identify
all the models of T, up to renaming of individuals in Os-Ox.

Theorem 4.11 Let T be a subjectively quantified ACCK yrx-
ABox. Then, a branch B of the tableau for T is preferred iff
there exists a model M for & and a mapping p : & = A such
that M = {I|I = p(OBJ (B))}. Moreover, letC(a) bean
ALCK -assertion. Then, £ k= C(a) iff there exists a preferred
branch B of the tableau for T such that OBJ . (B) £ C(a).

It can be shown that the tableaux method above outlined al--
ways terminates. Moreover, since OBJ x (B) f C(a) can be
checked by the algorithm presented in [Donini ef al., 1992],
we have proved decidability of the instance checking problem
for subjectively quantified ALCK o x-ABoxes.
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