
Reifying Concepts in Description Logics
Liviu Badea

AI Research Lab
Research Institute for Informatics

8-10 Averescu Blvd., Bucharest, Romania
e-mail: badeaQroearn.ici.ro

Abstract
Practical applications of description logics
(DLs) in knowledge-based systems have forced
us to introduce the following features which are
absent from existing DLs:

• allowing a concept to be regarded at the
same time as an individual (the instance
of some other meta-level concept)

• allowing an individual to represent a col­
lection (set) of other individuals.

The first extension, called concept reification,
is more general and thus can cover the second
one too. We argue that the absence of these fea­
tures from existing DLs is an important reason
for the lack of a unified approach to description
logics and object-oriented databases.
We also show that concept reification cannot
be dealt with by the standard DL semantics
and propose a slightly modified semantics that
takes care of the inherent higher-order features
of reification in a first-order setting. A sound
and complete inference algorithm for checking
consistency in reified ACCOE knowledge bases
is subsequently put forward.

1 Introduction
Description logics (DLs) are descendants of the famous
KL-ONE system [Brachman and Schrnolze, 1985] and
can be viewed as formalizations of the frame-based
knowledge representation languages.

Systems based on DLs are hybrid systems which sepa­
rate the described knowledge in two distinct categories:
terminological and assertional knowledge. The termino­
logical knowledge is generic and refers to classes of ob­
jects and their relationships, while the assertional knowl­
edge describes particular instances (individuals) of these
classes. These two levels are completely disjoint since
a given object cannot be at the same time a concept
and an instance. (Description logics further distinguish
between two kinds of terminological knowledge, namely
concepts and roles. Concepts are essentially unary pred­
icates interpreted as sets of individuals, while roles rep­

resent binary predicates interpreted as (binary) relations
between individuals.)

An important limitation of current description logics
is the clear-cut separation between the terminological
(intensional) and the assertional (extensional) level. For
example, concepts (representing intensional descriptions
of sets of individuals) and their instances are stored at
different levels and cannot be mixed under any circum­
stances.

In certain applications, however, it may be useful to
be able to regard a given concept (class) as the instance
of a higher level meta-concept (meta-class). This would
allow us to reuse terminologies by constructing a unique
generic terminology which could then be instantiated to
produce several particular terminologies.

This paper presents an extension of description logics
in which a given concept can be regarded as an individ­
ual (i.e. an instance of some other meta-level concept).
This process, called concept reification, has not been ex­
tensively studied in the framework of description logics1,
mainly since it mixes the terminological and assertional
levels and therefore spoils the simplicity of the currently
used reasoning techniques. Also, reification introduces
a form of higher-order constructs in description logics
thereby complicating the issue of defining a proper se­
mantics of the logic as well as the associated inference
services.

In spite of these difficulties, reification is absolutely
necessary whenever we want to achieve reusability in a
knowledge-based system. The following example, taken
from [Badea and Tilivea, 1996], deals with allocating the
staff of some research institution. In such a setting we
may want to introduce concepts like manager, secretary,
researcher and instances like Tom, Joan, Mary, Peter,
Fred, etc: Tom 6 manager, Joan 6 secretary, Mary 6
secretary, Peter £ researcher, Fred € researcher.

But now note that the concepts manager, secre-
tary and researcher represent positions in the re­
search institute. They are therefore not only con­
cepts, but also instances of the (metal-level) concept

*The CLASSIC system [Brachman et al, 1991] already in­
cluded meta-individuals (a pre-theoretic form of concept reifi­
cation), but these are not taken into account in DL inferences.

142 AUTOMATED REASONING

position: manager 6 position, secretary € position,
researcher € position.

The concept position should not be confused with
the concept employee, which is a super-concept of man­
ager, secretary and researcher: manager C employee,
secretary C employee, researcher C employee.

Now consider an employee allocation problem. In a
typical knowledge-based system, we would have to write
separate inferences for instance for retrieving managers,
secretaries and researchers. This would amount to writ­
ing three separate pieces of code that are extremely sim­
ilar (though not identical, as at least the positions of the
employees to be retrieved would be different).

If we would like to avoid writing three separate pieces
of code (inferences), we would have to write a generic
inference that would be parametrized by the position of
the employee we would like to choose. This can be ac­
complished by using an input parameter, called type,
linked to the concept position and which is supposed to
specify the position of the person to be chosen. Figure 1
is a graphical representation of such a generic inference
in the KADS-based ExClaim system (see [Badea, 1996]
for more details on ExClaim). Note that we are making
use of the built-in membership role €, which links an
instance X with a concept C whenever X is an instance
of C.

The predefined role € links a concept {employee) with
a meta-concept (position) and allows therefore a kind
of generic inferences which are essential for developing
domain-independent and reusable models.2

Note that domain-independence and reusability of
models could not have been achieved without concept
reification and the role €.

In order to be usable in real-life applications, descrip­
tion logics will also have to allow for an individual (in­
stance) to represent a collection (set) of other individu­
als. However, existing (implemented) DL systems usu-

2 Not only is it cumbersome to have three identical pieces
of code, but these pieces of code would depend on the do­
main level (the types of positions - director, secretary and
researcher are domain-dependent; we cannot change the do­
main level, for example by introducing a new position, with­
out having to modify the inference level too, since we would
have to add a new inference for the new position type).

ally lack constructors for sets or lists of objects3 and we
therefore have to represent such collections outside the
DL thereby affecting the completeness of the DL reason­
ing services.

Using concept reification, we can obtain individuals
representing sets of other individuals by reifying con­
cepts of the form one_o/(t'i,'..., in). This observation
allows us to concentrate in the following on "concept
reification".

Note that the role £ allows us to regard the assertional
component of the DL (the ABox) as consisting of role
tuples only, since instance assertions of the form X : C
can be viewed as tuples of the role E.

Concept reification, as studied in this paper, is dif­
ferent from Kobsa's role reification implemented in SB-
ONE [Kobsa, 1991). More precisely, while the reification
of a concept is an individual, Kobsa's reification of a
role is a concept. (Kobsa's approach has been motivated
by natural language applications in which a verb, for
example, is regarded in some contexts as a role and in
other contexts as a concept.) Therefore, while we are
concerned with mixing the TBox and the ABox of a DL,
Kobsa has dealt with mixing concepts and roles within
the TBox (while keeping TBox and ABox disjoint).

As previously mentioned, concept reification involves
a form of higher-order logic since the interpretations of
value and existential restrictions on the €-role employ
a form of quantification over concept-valued variables.
Therefore, whereas in ordinary DLs concepts exist only
as named, terminological (TBox) level elements, in rei­
fied DLs concepts may be individuals ("data") as well.

Reification and the related higher-order features are
also essential in object oriented databases (OODBs)
[Beeri, 1990]. In classical database systems there are
two distinct levels: data and schema (similar to ABox
and respectively TBox in description logics).

In OODBs, meta-data (such as classes and functions),
are frequently treated as data. Class objects acquire
thereby a dual nature: on the one hand they are data
and can be manipulated by the system; on the other
hand, they are schema-level objects and thus part of the
schema.

This situation is similar to concept reification as in­
troduced in this paper. In fact, it is our opinion that
the lack of a unified approach to description logics and
OODBs is mainly due to the clear-cut separation of
TBox and ABox (i.e. to the absence of reification) in
DLs.

However, introducing concept reification in DLs is sig­
nificantly harder than in OODBs since we have to modify
the DL inference services (consistency and subsumption
tests) to cope with the new construct. Since no ana­
log inference services exist in OODBs and as long as we

3Some description logics provide the one-o/(*i,... ,tn)
construct which denotes the concept whose extension is given
by the set of instances {i1,..., in} . However, what we need
is a concept construct whose instances denote sets or lists of
other instances.

BADEA 143

deal with reification in an explicit manner alone, there
seem to be no complications in reasoning with the new
construct in OODBs.

Another somewhat related formalism is F-logic [Kifer
et al, 1995], which attempts to provide sound logical
foundations of object-oriented as well as frame-based
languages and can be considered as a declarative ap­
proach to deductive object-oriented databases.

F-logic provides a form of explicit reification, but
it lacks the €-role and the related DL inference ser­
vices. Therefore, we can easily represent F-logic object
models in reified DLs. For instance, an F-logic non-
inheritable property object\property —► value] would be
represented in reified DLs as a tuple of the role prop-
erty involving the individual object: (object, value) :
property, while an inheritable property of the form
object[property •—> value] would be captured by a
DL terminological axiom imposing a restriction on the
fillers of the role property for the instances of bbject:
object {value}. F-logic signature (typing)
expressions of the form object\property => type] can also
be represented in DLs as value restrictions object
^property.type. Of course, set-valued attributes in F-
logic correspond to DL roles, while normal F-logic at­
tributes would be represented in DLs as functional roles
(attributes). It is our opinion that the DL representa­
tion makes the distinction between the assertional and
terminological properties of objects clearer.

It is worth noting that many frame-based knowledge
representation systems (for example KEE) allow a class
to be at the same time an instance, but this feature has
usually no associated formal semantics.

2 Reifying concepts in description
logics - semantical considerations

Traditional description logics separate the terminologi­
cal (TBox) and assertional (ABox) levels completely by
not allowing a concept to be regarded at the same time
as an individual. This simplifies the semantics and cor­
responding reasoning algorithms.

In this paper we consider an extension to DLs that
eliminates this restriction. Concept reification amounts
to associating with each concept C an individual C".

Additionally, we allow the membership role G and its
inverse The role € links an individual X with some
other reified concept C" whenever X is an instance of C
(regarded as a concept).

As already mentioned, concept reification involves a
form of higher-order logic. For example, in defining the
interpretation of

we quantify over all concepts y, not just the ones that
are explicitly given. Since higher-order logics lack even a
sound a complete axiomatization and in order to preserve
the desired computational properties, we will restrict the
semantics of the logic to a first-order semantics. This
amounts to interpreting quantified concept variables as

144 AUTOMATED REASONING

ranging over (explicitly given) reined individuals, or in­
tensions, rather than over all concepts that potentially
exist (or their extensions). Therefore, we will allow reifi­
cation of concept names only.

Actually, we can drop the explicit reification construct
•' (and use C instead of C for all concept names C) be­
cause we can determine the type of an object (whether it
is a concept or an individual) from the context in which
it is used. For example, C in the concept term V R . C
is regarded as a concept, while if we use it in the as­
sertional axiom C : D, then C represents the reification
of the corresponding concept (i.e. an individual). As
previously mentioned, since we don't have an explicit
reification operator, we will allow reification of concept
names only. For instance, we will not allow ABox asser-

BADEA 145

The examples and observations above give a flavour
of the intricate ways in which reification and the €-role
interact with one another and the other DL constructors.

After having informally presented concept reification
in DLs, let us now try to formalize it. For reasons of sim-

The set Names contains individuals and concept
names occurring in the DL knowledge base. Since we
want to allow for the reification of concept names, in­
dividuals and concept names will have to belong to a
single syntactic category (Names) (as opposed to tradi­
tional DLs where they fall under syntactically disjoint
categories).

Concept-Terms are terms built from concept names
Using the "value function" and the "name function",

we can now construct the extensions of concept names
as

146 AUTOMATED REASONING

Starting from an initial constraint system represent­
ing the KB, the calculus tries to construct a model of
the knowledge base by applying a series of propagation
rules. In doing so, it may discover obvious contradictions
(clashes) and report the inconsistency of the original KB,
or it may come up with a complete clash-free model, thus
proving the satisfiability of the knowledge base.

The initial knowledge base to be tested for consistency
is represented as a set of constraints of the form:

where X, Y and CN are names, C is a concept term
and R a role term. We also assume that all the concepts
and roles occurring in constraints have been previously
brought to the negation normal form.

The KB consistency checking algorithm applies a se­
ries of propagation rules to a given constraint set 5, until
either an obvious contradiction (or clash) is generated
(thereby proving the consistency of 5) , or no propaga­
tion rules are applicable any more (case in which the
constraint system is called complete and can be used to
construct an interpretation of 5) .

current constraint system contains constraints match­
ing a. After execution, the first deletes the constraints
matching a from the constraint system, while the second

The same kind of problem occurs if we allow role in­
verses and general inclusions, for which the results in
[Buchheit et a/., 1993] are no longer applicable (because
the stability lemma fails in the presence of role inverses).
The problems posed by role inverses are deep and will not
be tackled in the present paper since they are orthogonal
to the issue of interest here (namely reification).

posed by its inherent higher-order features and because
of the complications in the reasoning algorithms.

The semantical problems related to the higher-order
features implicit in reification are solved by defining a
first-order semantics which ensures the decidability of
the main inference services. We have also described
sound and complete inference algorithms for the reified
terminological language ACCO€ (but the algorithms can
be extended to more expressive languages).

In our view, concept reification represents an essential
element for bridging the gap between description logics
and (deductive) object-oriented databases.

It also makes description logics expressive enough to
be used for developing generic problem solving models
[Badea and Tilivea, 1996] and even libraries of such mod­
els.

Acknowledgments
Thanks are due to Doina Tilivea and Alon Levy for interest­
ing discussions as well as to anonymous reviewers for their
helpful comments and especially for pointing out the paper
[Franconi, 1993] (which also introduces an explicit member­
ship role, but does not provide a complete reasoning algo-
rithm).

References
[Badea, 1996] Badea L. ExClaim: a hybrid language for

knowledge representation and reasoning using description
logics. Proc. ECAP96 Workshop on Validation, Verifica­
tion and Refinement of KBS, Budapest, 1996.

[Badea and Tilivea, 1996] Badea L., Tilivea D. ExClaim:
a language for operationalizing Common KADS expertise
models using description logics. PEKADS Report 4.5.1.

[Beeri, 1990] Beeri C. A formal approach to object-oriented
databases. Data & Knowledge Eng. 5 (1990) 353-382.

[Brachman and Schmolze, 1985] Brachman R.J., Schmolze
J.G. An Overview of the KL-ONE Knowledge Represen­
tation System. Cognitive Science 9(2), 171-216, 1985.

[Brachman et al. 1991] Brachman R.J., e.a. Living with
CLASSIC: When and How to Use a KL-ONE like Lan­
guage, in Sowa J.F. (ed) Principles of Semantic Networks,
Morgan Kaufmann 1991.

[Buchheit et a/., 1993] Buchheit M., Donini F.M., Schaerf A.
Decidable Reasoning in Terminological Knowledge Repre­
sentation Systems. J. of Al Research 1 (1993), 109-138.

[De Giacomo and Lenzerini, 1995] De Giacomo G., Lenz-
erini M. What's in an aggregate: foundations for descrip-
tion logics with tuples and sets. Proc. IJCAP95, 801-807.

[Franconi, 1993] Franconi E. A treatment of plurals and plu­
ral quantifications based on a theory of collections. Minds
and Machines, 1993 special issue on KR for NL, 453-474.

[Kobsa, 1991] Kobsa A. Reification in SB-ONE. In Proc. Int.
Workshop on Terminological Logics, 72-74, DFKI D-91-13.

[Kifer et a/., 1995] Kifer M., Lausen G., Wu J. Logical foun­
dations of object-oriented and frame-based languages. Jour­
nal of the ACM, May 1995.

[Schmidt-SchauB and Smolka, 1991] Schmidt-Schaufl M.,
Smolka G. Attributive concept descriptions with comple­
ments. Artificial Intelligence 48 (1), 1-26, 1991.

BADEA 147

to the TBox axiom stating the validity of C and can
therefore be used to express general concept inclusions
or equations. In order to avoid the above-mentioned
problems with general inclusions, we wi l l not allow T to
be used as a concept name.7

The following sequence of constraints illustrates the
consistency checking algorithm applied to the KB con­
sisting of constraints (1) and (2) below.

3.1 Soundness a n d completeness
The termination and soundness of the algorithm are easy
to prove. Its completeness is established by construct­
ing a canonical interpretation Is for each clash-free and
complete constraint system S. Note that the propaga­
tion rules deal wi th so-called "extended" constraints, i.e.
constraints of the form X : Y and (X, Y) : R where
X and Y can be not just names, but also "extended"
individuals represented by arbitrarily nested singletons
like { . . . {Z} . . . } (i f we disallow extended individuals, we
loose the completeness of the algorithm).

4 Conclusions
Extending description logics wi th concept reification
is essential for developing domain-independent and
reusable models. Nevertheless, it has not been exten­
sively studied, mainly due to the semantical problems

