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Abstract 
Practical applications of description logics 
(DLs) in knowledge-based systems have forced 
us to introduce the following features which are 
absent from existing DLs: 

• allowing a concept to be regarded at the 
same time as an individual (the instance 
of some other meta-level concept) 

• allowing an individual to represent a col­
lection (set) of other individuals. 

The first extension, called concept reification, 
is more general and thus can cover the second 
one too. We argue that the absence of these fea­
tures from existing DLs is an important reason 
for the lack of a unified approach to description 
logics and object-oriented databases. 
We also show that concept reification cannot 
be dealt with by the standard DL semantics 
and propose a slightly modified semantics that 
takes care of the inherent higher-order features 
of reification in a first-order setting. A sound 
and complete inference algorithm for checking 
consistency in reified ACCOE knowledge bases 
is subsequently put forward. 

1 Introduction 
Description logics (DLs) are descendants of the famous 
KL-ONE system [Brachman and Schrnolze, 1985] and 
can be viewed as formalizations of the frame-based 
knowledge representation languages. 

Systems based on DLs are hybrid systems which sepa­
rate the described knowledge in two distinct categories: 
terminological and assertional knowledge. The termino­
logical knowledge is generic and refers to classes of ob­
jects and their relationships, while the assertional knowl­
edge describes particular instances (individuals) of these 
classes. These two levels are completely disjoint since 
a given object cannot be at the same time a concept 
and an instance. (Description logics further distinguish 
between two kinds of terminological knowledge, namely 
concepts and roles. Concepts are essentially unary pred­
icates interpreted as sets of individuals, while roles rep­

resent binary predicates interpreted as (binary) relations 
between individuals.) 

An important limitation of current description logics 
is the clear-cut separation between the terminological 
(intensional) and the assertional (extensional) level. For 
example, concepts (representing intensional descriptions 
of sets of individuals) and their instances are stored at 
different levels and cannot be mixed under any circum­
stances. 

In certain applications, however, it may be useful to 
be able to regard a given concept (class) as the instance 
of a higher level meta-concept (meta-class). This would 
allow us to reuse terminologies by constructing a unique 
generic terminology which could then be instantiated to 
produce several particular terminologies. 

This paper presents an extension of description logics 
in which a given concept can be regarded as an individ­
ual (i.e. an instance of some other meta-level concept). 
This process, called concept reification, has not been ex­
tensively studied in the framework of description logics1, 
mainly since it mixes the terminological and assertional 
levels and therefore spoils the simplicity of the currently 
used reasoning techniques. Also, reification introduces 
a form of higher-order constructs in description logics 
thereby complicating the issue of defining a proper se­
mantics of the logic as well as the associated inference 
services. 

In spite of these difficulties, reification is absolutely 
necessary whenever we want to achieve reusability in a 
knowledge-based system. The following example, taken 
from [Badea and Tilivea, 1996], deals with allocating the 
staff of some research institution. In such a setting we 
may want to introduce concepts like manager, secretary, 
researcher and instances like Tom, Joan, Mary, Peter, 
Fred, etc: Tom 6 manager, Joan 6 secretary, Mary 6 
secretary, Peter £ researcher, Fred € researcher. 

But now note that the concepts manager, secre-
tary and researcher represent positions in the re­
search institute. They are therefore not only con­
cepts, but also instances of the (metal-level) concept 

*The CLASSIC system [Brachman et al, 1991] already in­
cluded meta-individuals (a pre-theoretic form of concept reifi­
cation), but these are not taken into account in DL inferences. 
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position: manager 6 position, secretary € position, 
researcher € position. 

The concept position should not be confused with 
the concept employee, which is a super-concept of man­
ager, secretary and researcher: manager C employee, 
secretary C employee, researcher C employee. 

Now consider an employee allocation problem. In a 
typical knowledge-based system, we would have to write 
separate inferences for instance for retrieving managers, 
secretaries and researchers. This would amount to writ­
ing three separate pieces of code that are extremely sim­
ilar (though not identical, as at least the positions of the 
employees to be retrieved would be different). 

If we would like to avoid writing three separate pieces 
of code (inferences), we would have to write a generic 
inference that would be parametrized by the position of 
the employee we would like to choose. This can be ac­
complished by using an input parameter, called type, 
linked to the concept position and which is supposed to 
specify the position of the person to be chosen. Figure 1 
is a graphical representation of such a generic inference 
in the KADS-based ExClaim system (see [Badea, 1996] 
for more details on ExClaim). Note that we are making 
use of the built-in membership role €, which links an 
instance X with a concept C whenever X is an instance 
of C. 

The predefined role € links a concept {employee) with 
a meta-concept (position) and allows therefore a kind 
of generic inferences which are essential for developing 
domain-independent and reusable models.2 

Note that domain-independence and reusability of 
models could not have been achieved without concept 
reification and the role €. 

In order to be usable in real-life applications, descrip­
tion logics will also have to allow for an individual (in­
stance) to represent a collection (set) of other individu­
als. However, existing (implemented) DL systems usu-

2 Not only is it cumbersome to have three identical pieces 
of code, but these pieces of code would depend on the do­
main level (the types of positions - director, secretary and 
researcher are domain-dependent; we cannot change the do­
main level, for example by introducing a new position, with­
out having to modify the inference level too, since we would 
have to add a new inference for the new position type). 

ally lack constructors for sets or lists of objects3 and we 
therefore have to represent such collections outside the 
DL thereby affecting the completeness of the DL reason­
ing services. 

Using concept reification, we can obtain individuals 
representing sets of other individuals by reifying con­
cepts of the form one_o/(t'i,'..., in). This observation 
allows us to concentrate in the following on "concept 
reification". 

Note that the role £ allows us to regard the assertional 
component of the DL (the ABox) as consisting of role 
tuples only, since instance assertions of the form X : C 
can be viewed as tuples of the role E. 

Concept reification, as studied in this paper, is dif­
ferent from Kobsa's role reification implemented in SB-
ONE [Kobsa, 1991). More precisely, while the reification 
of a concept is an individual, Kobsa's reification of a 
role is a concept. (Kobsa's approach has been motivated 
by natural language applications in which a verb, for 
example, is regarded in some contexts as a role and in 
other contexts as a concept.) Therefore, while we are 
concerned with mixing the TBox and the ABox of a DL, 
Kobsa has dealt with mixing concepts and roles within 
the TBox (while keeping TBox and ABox disjoint). 

As previously mentioned, concept reification involves 
a form of higher-order logic since the interpretations of 
value and existential restrictions on the €-role employ 
a form of quantification over concept-valued variables. 
Therefore, whereas in ordinary DLs concepts exist only 
as named, terminological (TBox) level elements, in rei­
fied DLs concepts may be individuals ("data") as well. 

Reification and the related higher-order features are 
also essential in object oriented databases (OODBs) 
[Beeri, 1990]. In classical database systems there are 
two distinct levels: data and schema (similar to ABox 
and respectively TBox in description logics). 

In OODBs, meta-data (such as classes and functions), 
are frequently treated as data. Class objects acquire 
thereby a dual nature: on the one hand they are data 
and can be manipulated by the system; on the other 
hand, they are schema-level objects and thus part of the 
schema. 

This situation is similar to concept reification as in­
troduced in this paper. In fact, it is our opinion that 
the lack of a unified approach to description logics and 
OODBs is mainly due to the clear-cut separation of 
TBox and ABox (i.e. to the absence of reification) in 
DLs. 

However, introducing concept reification in DLs is sig­
nificantly harder than in OODBs since we have to modify 
the DL inference services (consistency and subsumption 
tests) to cope with the new construct. Since no ana­
log inference services exist in OODBs and as long as we 

3Some description logics provide the one-o/(*i,... ,tn) 
construct which denotes the concept whose extension is given 
by the set of instances {i1,..., in} . However, what we need 
is a concept construct whose instances denote sets or lists of 
other instances. 
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deal with reification in an explicit manner alone, there 
seem to be no complications in reasoning with the new 
construct in OODBs. 

Another somewhat related formalism is F-logic [Kifer 
et al, 1995], which attempts to provide sound logical 
foundations of object-oriented as well as frame-based 
languages and can be considered as a declarative ap­
proach to deductive object-oriented databases. 

F-logic provides a form of explicit reification, but 
it lacks the €-role and the related DL inference ser­
vices. Therefore, we can easily represent F-logic object 
models in reified DLs. For instance, an F-logic non-
inheritable property object\property —► value] would be 
represented in reified DLs as a tuple of the role prop-
erty involving the individual object: (object, value) : 
property, while an inheritable property of the form 
object[property •—> value] would be captured by a 
DL terminological axiom imposing a restriction on the 
fillers of the role property for the instances of bbject: 
object {value}. F-logic signature (typing) 
expressions of the form object\property => type] can also 
be represented in DLs as value restrictions object 
^property.type. Of course, set-valued attributes in F-
logic correspond to DL roles, while normal F-logic at­
tributes would be represented in DLs as functional roles 
(attributes). It is our opinion that the DL representa­
tion makes the distinction between the assertional and 
terminological properties of objects clearer. 

It is worth noting that many frame-based knowledge 
representation systems (for example KEE) allow a class 
to be at the same time an instance, but this feature has 
usually no associated formal semantics. 

2 Reifying concepts in description 
logics - semantical considerations 

Traditional description logics separate the terminologi­
cal (TBox) and assertional (ABox) levels completely by 
not allowing a concept to be regarded at the same time 
as an individual. This simplifies the semantics and cor­
responding reasoning algorithms. 

In this paper we consider an extension to DLs that 
eliminates this restriction. Concept reification amounts 
to associating with each concept C an individual C". 

Additionally, we allow the membership role G and its 
inverse The role € links an individual X with some 
other reified concept C" whenever X is an instance of C 
(regarded as a concept). 

As already mentioned, concept reification involves a 
form of higher-order logic. For example, in defining the 
interpretation of 

we quantify over all concepts y, not just the ones that 
are explicitly given. Since higher-order logics lack even a 
sound a complete axiomatization and in order to preserve 
the desired computational properties, we will restrict the 
semantics of the logic to a first-order semantics. This 
amounts to interpreting quantified concept variables as 
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ranging over (explicitly given) reined individuals, or in­
tensions, rather than over all concepts that potentially 
exist (or their extensions). Therefore, we will allow reifi­
cation of concept names only. 

Actually, we can drop the explicit reification construct 
•' (and use C instead of C for all concept names C) be­
cause we can determine the type of an object (whether it 
is a concept or an individual) from the context in which 
it is used. For example, C in the concept term V R . C 
is regarded as a concept, while if we use it in the as­
sertional axiom C : D, then C represents the reification 
of the corresponding concept (i.e. an individual). As 
previously mentioned, since we don't have an explicit 
reification operator, we will allow reification of concept 
names only. For instance, we will not allow ABox asser-
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The examples and observations above give a flavour 
of the intricate ways in which reification and the €-role 
interact with one another and the other DL constructors. 

After having informally presented concept reification 
in DLs, let us now try to formalize it. For reasons of sim-

The set Names contains individuals and concept 
names occurring in the DL knowledge base. Since we 
want to allow for the reification of concept names, in­
dividuals and concept names will have to belong to a 
single syntactic category (Names) (as opposed to tradi­
tional DLs where they fall under syntactically disjoint 
categories). 

Concept-Terms are terms built from concept names 
Using the "value function" and the "name function", 

we can now construct the extensions of concept names 
as 
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Starting from an initial constraint system represent­
ing the KB, the calculus tries to construct a model of 
the knowledge base by applying a series of propagation 
rules. In doing so, it may discover obvious contradictions 
(clashes) and report the inconsistency of the original KB, 
or it may come up with a complete clash-free model, thus 
proving the satisfiability of the knowledge base. 

The initial knowledge base to be tested for consistency 
is represented as a set of constraints of the form: 

where X, Y and CN are names, C is a concept term 
and R a role term. We also assume that all the concepts 
and roles occurring in constraints have been previously 
brought to the negation normal form. 

The KB consistency checking algorithm applies a se­
ries of propagation rules to a given constraint set 5, until 
either an obvious contradiction (or clash) is generated 
(thereby proving the consistency of 5 ) , or no propaga­
tion rules are applicable any more (case in which the 
constraint system is called complete and can be used to 
construct an interpretation of 5) . 

current constraint system contains constraints match­
ing a. After execution, the first deletes the constraints 
matching a from the constraint system, while the second 

The same kind of problem occurs if we allow role in­
verses and general inclusions, for which the results in 
[Buchheit et a/., 1993] are no longer applicable (because 
the stability lemma fails in the presence of role inverses). 
The problems posed by role inverses are deep and will not 
be tackled in the present paper since they are orthogonal 
to the issue of interest here (namely reification). 



posed by its inherent higher-order features and because 
of the complications in the reasoning algorithms. 

The semantical problems related to the higher-order 
features implicit in reification are solved by defining a 
first-order semantics which ensures the decidability of 
the main inference services. We have also described 
sound and complete inference algorithms for the reified 
terminological language ACCO€ (but the algorithms can 
be extended to more expressive languages). 

In our view, concept reification represents an essential 
element for bridging the gap between description logics 
and (deductive) object-oriented databases. 

It also makes description logics expressive enough to 
be used for developing generic problem solving models 
[Badea and Tilivea, 1996] and even libraries of such mod­
els. 
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to the TBox axiom stating the validity of C and can 
therefore be used to express general concept inclusions 
or equations. In order to avoid the above-mentioned 
problems with general inclusions, we wi l l not allow T to 
be used as a concept name.7 

The following sequence of constraints illustrates the 
consistency checking algorithm applied to the KB con­
sisting of constraints (1) and (2) below. 

3.1 Soundness a n d completeness 
The termination and soundness of the algorithm are easy 
to prove. Its completeness is established by construct­
ing a canonical interpretation Is for each clash-free and 
complete constraint system S. Note that the propaga­
tion rules deal wi th so-called "extended" constraints, i.e. 
constraints of the form X : Y and (X, Y) : R where 
X and Y can be not just names, but also "extended" 
individuals represented by arbitrarily nested singletons 
like { . . . {Z} . . . } ( i f we disallow extended individuals, we 
loose the completeness of the algorithm). 

4 Conclusions 
Extending description logics wi th concept reification 
is essential for developing domain-independent and 
reusable models. Nevertheless, it has not been exten­
sively studied, mainly due to the semantical problems 


