Compiling Prioritized Circumscription into Extended Logic Programs

Toshiko Wakaki
Dept. of Computational Intelligence
and Systems Science
Tokyo Institute of Technology

Ken Satoh
Division of Electronics and
Information Engineering
Hokkaido University

Nagatsuda, Midori-ku, Yokohama, Japan NI13WS8, Kita-ku, Sapporo 060, Japan

Abstract

We propose a method of compiling circumscrip-
tion into Extended Logic Programs which is
widely applicable to a class of parallel circum-
scription as well as a class of prioritized cir-
cumscription. In this paper, we show theoret-
ically that any circumscription whose theory
contains both the domain closure axiom and
the uniqueness of names axioms can always be
compiled into an extended logic program II, so
that, whether a ground literal is provable from
circumscription or not, can always be evaluated
by deciding whether the literal is true in all an-
swer sets of II, which can be computed by run-
ning II under the existing logic programming
interpreter.

1 Introduction

Circumscription [McCarthy, 1980; Lifschitz, 1985] was
proposed to formalize the commonsense reasoning under
incomplete information.

So far, many studies have been proposed to explore
the approach of the use of logic programming for the
automation of circumscription based on the relationship
between the semantics of circumscription and the seman-
tics of logic programs.

Gelfond and Lifschitz [1988a] was the first to consider
a computational method for some restricted class of pri-
oritized circumscription which compiles circumscriptive
theories into a stratified logic program. Though their
method is computationally efficient, the applicable class
is too limited.

So we proposed the extension of Gelfond and Lifs-
chitz's method which also compile prioritized circum-
scription into a stratified logic program [Wakaki and
Satoh, 1995]. With keeping the efficiency of Gelfond
and Lifschitz's method, our method expands the appli-
cable class of circumscription by making use of the re-
sult [Lifschitz, 1985] about parallel circumscription of a
solitary formula. However, as far as a class of stratified
logic programs is considered as the target language to
which circumscription is compiled, the applicable class
is limited within a class of circumscription which has a

182 AUTOMATED REASONING

unique minimal model since every stratified logic pro-
gram has a unique perfect model [Przymusinski, 1987].
But there are many examples of nonmonotonic reason-
ing whose intended meaning cannot be represented by
a unique model such as multiple extension probtem, a
class of circumscription which has fixed predicates, and
SO on.

Recently Sakama and Inoue [1995; 1996] proposed
two methods both of which compile circumscription into
classes of more general logic programs whose semantics
are given by stable models for the first one [Sakama and
Inoue, 1995] and by preferred answer sets for the second
one [Sakama and Inoue, 1996]. Though both of their
methods can handle the multiple extension problem as
well as circumscription with fixed predicates, the first
one is only applicable to parallel circumscription but
not to prioritized circumscription. On the other hand,
the second one is applicable to prioritized circumscrip-
tion, but it gives only the semantic aspects and is lack of
the feasible logic programming interpreter for prioritized
logic programs proposed by them as the target language
into which prioritized circumscription is compiled.

In this paper, we propose a new method of compiling
circumscription into extended logic programs proposed by
Gelfond and Lifschitz [1991] as its target language. It is
widely applicable to a class of parallel circumscription
as well as a class of prioritized circumscription. Show-
ing the semantic correspondence between circumscrip-
tion with fixed predicates and Reiter's default theory
which generalizes Theorem 2 in [Etherington, 1987], we
can give not only the semantic relationship between a
class of parallel circumscription and a class of extended
logic programs but also the one between a class of prior-
itized circumscription and a class of extended logic pro-
grams. As a result, any circumscription whose theory
contains both the domain closure axiom and the unique-
ness of names axioms can always be compiled into an
extended logic program II, so that, whether a ground lit-
eral is provable from circumscription, can always be eval-
uated by deciding whether the literal is true in all answer
sets of II. This can be computed by running II under the
existing logic programming interpreter such as Satoh and
Iwayama's top-down query evaluation procedure for ab-
ductive logic programming [Satoh and Iwayama, 1992].

Finally, we present that our approach exploiting clas-
sical negation = can also give an extension of Sakama
and Inoue's first method [1995] to make it possible to
compute prioritized circumscription.

The structure of the paper is as follows. In section
2, we give preliminaries related to circumscription and
extended logic programs. In section 3, we provide two
syntactical definitions of extended logic programs into
which parallel circumscription and prioritized circum-
scription are compiled respectively. Then, we present
theorems and corollaries on which our method is theo-
retically based, along with examples. We finish section
4 with comparing our method with related researches.

2 Preliminaries

We review paraliel circumseription and prioritized cir-
cumscription as well as the syntax and semantics of
extended logic programs (ELP) {Gelfond and Lifschitz,
1991] in a slightly extended form.

Let T{P, Z) be a sentence, P be a tuple of minimized
predicates and Z be a tuple of variable predicates. ¢ de-
notes the rest of the predicates occurring in T, called the
fixed predicates. Then parallel circumscription of P in
T(P, Z) with variable Z is denoted by Circum(T; P; Z).
If P is broken into parts Pl,..., P*, then the circum-
scription assigning a higher priority to the members of
P' than to the members of P7 for i < j is denoted by
the following prioritized circumscription:

Circum(T; P! > P2 > ... > P%; Z).

Prioritized circumscription can be represented by using
parailel circumscription as follows:

Cireum(T; P'> ... > P, Z)
EAf=ICl.fCﬂm(T;P‘.;P"+I‘_”’P‘k‘Z) (21)

Extended logic programs have the expressive power to
represent classical negation (-) along with negation as
failure (not) which enables us to represent incomplete
information.

A extended logic program is a set of rules of the form:

L - Ll, “aay Lm‘ ﬂOfLm+1, Peay ﬂOtL,n (2-2)
or of the form:
—Ly,...,Lp,notLeyq,...,notL,, (2.3)

where n > m > 0, and L and L,’s are literals. Each rule
of the form (2.3) is called an integrity constraint.

The semantics of an extended logic program is an ex-
tension of the stable model semantics{Gelfond and Lif-
schitz, 1988b)] and is given by the answer sets [Gelfond
and Lifschitz, 1991). The answer sets of an extended
logic pregram are defined in the following two steps.

1. Let 11 be a set of ground rules of an extended logic
program not containing not and Lit be the set of
ground literals in the langnage. The answer set,
a(Il}, of I is the smallest subset S of Lit satisfying
the conditions:

(a) For any rule L <~ L,,...,L, in I, if .
Liy....Ly, €5, then L€ S;

(b) For any integrity constraint ~— L;,..., L, in
o, Ly,...,Ly € §, then § = Lit;

{c) if S contains a pair of complementary literals,
then § = Lit.

2. Let IT be any extended logic program without vari-
ables. For any set § C Lit, let II° be the set of rules
without not obtained from IT by deleting
(a) every rule containing a formula notZ in its body

with L € §, and
(b) every formula notl in the bodies of the remain-
ing rules.
Then, S is an answer set of Il if § is the answer set
of II?, that is, § = o([I5).

Let X be a set of clauses. Then Th(E) stands for
a set of clauses which are theorems of £. A clause in
Th{Z) which is not properly snbsumed by any theorem
in Th(E) is called a characteristic clause. pTh&E) de-
note? the set of all characteristic clanses in TA(Z) [Inoue,
1992,

3 Translation from Circumscription
into Extended Logic Programs

We give a translation from circumscription to extended
logic programs. Parallel circumseription is translated
into ELP II” and prioritized circumscription is trans-
lated into ELP II? respectively.

In the following Definition 3.1 and Definition 3.2,
we restrict a first order theory T to the one which
is function-free and contains both the domain closure

ariom (DCA) and unigueness of names azioms
(UNA). We consider T as a set of clauses:

T £ UDCAUUNA.
We suppose that every clause in ¥ containing variables
is replaced by all its ground instances obtained by sub-
stituting every ground term in DCA for each variable, ¢
stands for a tuple of ground terms occurring in DCA.

Definition 3.1 N
Given parallel circumscription Circum(yT; P; Z) where

; is a universal closure, ELP II* is constructed as follows:
1. For any minimized predicate p from P and any ¢,
—p(t) — not p(t).
2, For any fixed predicate g from Q and any ¢,

-g{t} — not ¢(t}),
g(t) « not —g(t).
def ;)
3. For any clause C = £ V& V...V, in pgTh(X) and

any contrapositive of C such as i, A... A=, D £,
and =&, A, AL AL, O false,

zi: - “‘l‘p veny -'zi.v

WAKAKI & SATOH 183

i TR TR PR
where {;, € {f,..., 8} (forj=1,...,n)
As a special case, if C' i a unit literal /,

-, — =f,

Definition 3.2
Given prioritized circumscription as follows:

Circum(;'T(Pl...P",Z,Q);Pl >P> ... > Pt 2),

where P7(1< r < k),Z,Q are tuples of predicate symbols
such as [Pr)ls RN (Pr)ﬂ.-lslzl 'R Zm]a[Ql& ey Qn]|
ELP II¥ is constructed in the following two steps:

1. According to (2.1), a given prioritized circumscrip-
tion is represented by the conjunction of k paralle]
circumscriptions. So, let every ith (1 € ¢ < k) par-
allel circumscription,

Circum(¥ T(P' ... P*, 2,Q); P\ P+, . Pt Z)

be transformed in such a way that all predicate
symbols occurring in it are renamed using
Pil,.. . Pi* Zi Qi instead of P,...,P* Z,Q,
which leads to as follows:

Circum(y Ti; Pi'; Pit*! . Pi* Zi), (3.1)

where Ti denotes T(Pi',...,Pi* 2i,Qi), and

Pit, Zi, Qi are tuples of predicate sym-

bols such as [(Pi")1,. .., (Pi")e. [(Z8)1y- - oy (Zi}m)s

[{(Qih,- - {Qi)n]):

2. ELP II? consists of all rules from (II*),,..., (II*);

and II., where

(a) each (II?); is an extended logic program {ELP)
which is constructed from the ith renamed par-
alle]l circumscription (3.1} according to Defini-
tion 3.1,

(b} Il is an extended logic program which consists
of the following rules:
For any predicate u from P, Z, @ and any ¢,

u(t) A ﬂi(t),

Su(t) — =u(t). (1<i<k)

where u and %; stand for any predicate
symbol of (P")s,Z,,Qn and any one of
(Pi")s,(Zi),, (Qi{h respectively.

1Lt 1<9g<m1<h<n)

First of all, we show the following theorem which gener-
alizes Theorem 2 in [Etherington, 1987].

Theorem 3.3 Assume that T is a first order theory in-
cluding DCA and UNA. Then, those formulas true in
every default extension of the default theory:

i op(2) 1 gl(2) :g(=) })
€ Pge@;,T
({58 55 lreraco
art precisely those theorems of'C',‘ircum('T; P; Z)‘ where

P,Q and Z are tuples of minimized, fixed and variable
predicate symbols respectively.

184 AUTOMATED REASONING

Proof:(sketch) According to Theorem 1 in [de Kleer
and Konolige, 1989], circumscription including fixed
predicates g; can be logically equivalently transformed
into circumscription without fixed predicates where g;
and —g; are added to circumsacribed predicates. As a
result, this theorem is proved by applying Etherington’s
result [Etherington, 1987] abont. correspondence between
circumscription without fixed predicates and Reiter’s de-
fault theory [Reiter, 1980} to the transformed circum-
scription.

Based on Theorem 3.3 as well as a 1-1 correspondence
between the extensions of a default theory and the an-
swer sets of an extended logic program shown in [Gel-
fond and Lifschitz, 1991}, the semantic relationships be-
tween circumscription and the translated ELPs IT 117
are given as follows.

Theorem 3.4 For any ground literal G of the language
of T' whose predicate symbol is not equalbity, it holds that,

Circum(¥T; P; Z) = G

iff G is true in all answer sets of ELP I,
where ELP TI? is constructed from Cirmm(;‘T; P, Z)
by using definition 3.1.

Theorem 3.5 For any ground literal G of the language
of T whose predicate symbol is not equality, it holds that,

Circum(YT;P' > P2 > ...> P52 = G
iff G is true in all answer sets of ELP 1P,

where ELP II? is constructed from

Circum(;T; P> P?s > Pk 2),
by using Definition 3.2.

Remarks. Theorem 3.4 and Theorem 3.5 can be eas-
ily generalized for a ground formula F instead of for a
ground literal G.

Satoh and lwayama [1992] show that whether a ground
atom G is true in all stable models of a normal logic pro-
gram Il, can be decided by running their top-down query
evaluation procedure for abductive logic programs where
an abductive framework is given by (11,-4) in which A
is a set of predicate symbols called abducible predicates.
Their result is given as follows:

Suppose that a normal logic program 13 is consistent,
which means that there exists a stable model of I, and
all ground rules obtained by replacing all variables in
each rule in Il by every element of its Herbrand universe
are finite. Then it holds that,

G is true in all stable models of II

iff derive(not G,{}) fails
under the abductive framework (IL, {}).

where derive is a procedure given by them and not in its
first argument denotes the negation-as-failure operator.

Since all ground rules in ELP II” and II? constructed
by using Definition 3.1 and Definition 3.2 respectively
are finite, we can make use of their result in a slightly

extended form, and Theorem 3.4 and Theorem 3.5 can
be said in other words by the following corollaries.

Corollary 3.6 Suppose that T is consistent and
Sunction-free. For any ground hiteral G of the language
of T whose predicate aymbol ia not egquality, it holds that,

Circum(;T; P,Z)EG
iff derive(not G,{}) fa:ls
under the abductive framework (II*, {}},
where ELP II* is constructed from Circum(gT; P, Z)
by using Definition 3.1.
Corollary 3.7 Suppose that T is consistent and
function-free. For any ground literal G of the language
of T whose predicate symbol i3 not equality, it holds that,
Circum(VYI; P! > P? > ... > P, 2) G
iff derive(not G,{}) fails
under the abductive framework {11, {}).
where I conasssts of all rules of ELP IIP én Definition 3.2
plus rules, — u(t),~u(t), for every predicate u in T.

Remarks. There is Ginsberg's early work [Ginsberg,
1989] on evaluating circumscription using abduction.
But his method does not exploit the logic programming.

Example 3.8
Qur compilation can handle circumscription representing
mauitiple inheritance. Consider paraliel circumscription:

Circum(¥T; aby, aby; paci fist) (1)
where T % TUDCA U UNA, ¥ consists of the following
clauses and DCA is = Nizon:

pacifist{x) V aby (2} V —~republican(z),

—paci fist(z) V aby(z} V ~quaker(z),

republican(Nizon), quaker(Nizon).
A set Q of fixed predicates is {republican, quaker} in this
example. Hereafter we abbreviate paci fist, republican,
gquaker and Nizon to pac, rep,guak and N respectively.

After replacing a variable 2 in every clause in Z by a
ground term N in DCA, uTh({X) is obtained as follows:

pac(N) V aby { V),
~pac(N) V aby(N),
aby (N) V aby(N),
rep(N), quak(N).
According to Definition 3.1, let us construct ELP II*
from circumscription (1).
1. For minimized predicates ab;, ab; and a constant N,
=ab,(N) ~ not ab){N),
-abg(N) «~ not abz(N},
2. For fixed predicates rep, quak and a constant N,
—rep(N) — not rep(N},
rep(N) — not ~rep(N),
~quak({N) « not quak(N),
quak{N) — not ~gquak(N),

3. For all contrapositives of all clauses of uTh(Z),
aby (N}« -pac(N),
pac({N) — -uab(N),
— =pac{N), ~ab (N),
aby (N} — pac{N),
~pac(N) — —aba(N),
« pac(N), ~aby(N),
aby (N} — — aby(N),
aby(N) — = ab(N),
«~ =aby (N), ~aby(N),
rep(N) +, — -rep(N),
guak(N)} +, —gquak{N),
As a result, II* has two answer sets:
{~aby (N}, ab2(N), pac(IV), rep(N}, quak{N}},
{abi(N),~aba(N}, ~pac{N), rep(N}, quak(N}}.

Example 3.9 Let us compile the following prioritized
circumscription:

Circum({pV q,¢Vr}ip > gi7).
Since T = {pV ¢q,¢ V r}, it holds that T = pTh(Z).
Contrapositives of p V ¢ ate as follows:

-~g23p, —PpIg -pA-gD false
and those of ¢ V r are as follows:
~r2¢q =¢2r, -gA-rD false,

According to (2.1), it holds that
Circum({pV q,qVrlp>g;7)
= Circum({pVg,qVrhmer)
ACircum({pV q.qVr};q;7).
Then according to Definition 3.2, predicate symbols ac-

curring each parallel circomscription are renamed as fol-
lows:

Circum({pl V q1,¢1 V r1};pl; ¢1,r1), {(2)
Circum({p2 V ¢2,92 V r2};¢2; r2). (3)
Therefore ELPs {II?);, (II*); constructed from (2) and
(3) respectively as well as II., are obtained as follows:
(I1*) : ~pl «— not pl,
pl ~ gl
~ =pl,—gl,
gle— =rl,

gl «— = pl,

rl+~— -gql,
— "ﬂql""rr‘l,

(I1*)z : —¢2 — not ¢2,
=p2 — not p2,

P2 +— not —p2,

pP2e— g2, g2« -p2
"""st"!ﬂ,
g2 — =12 r2 — g2,

— qz‘ﬁ 1‘2,

WAKAKI & SATOH 185

O,: pepl, pe pl
g 4ql, ¢+ 92
re rl, T~ r2,
“pe opl, pe op2,
g« =gql, g — g2,
= = =], =r — —rl,

ELP IT? has the only one answer set:
{-p.q.-p1, 41,92, q2},
where II° %/ (%), U (1*), UL,

Thus according to Theorem 3.5, we can conclude that

Circum{{pV g, gVr}lip>gr) E-p
Circum({pVa,eVrlip>gr) Eq,
but neither r nor —=r is provable from this prioritized
circumscription.

In the following, we give an extension of Sakama
and Inoue's first method [1995]. According to their
method, parallel circumscription is translated into a
general disjunctive program (GDP) whose semantics is
given by stable models. Alternatively, they also show the
translation of parallel circumscription into an Extended
disjunctive program (EDP) whose semantics is given
by the answer sets, which just corresponds to the stable
models of the translated GDP. Each of their methods
is applicable to a class of parallel circumscription, but
not to prioritized circumscription. Our target language
ELP has the expressive power of classical negation -,
which enables us to compute prioritized circumscription
as is shown in Theorem 3.5. Since the classical nega-
tion is also available to EDP, we can make use of our
method to extend their alternative method whose target
language is EDP, so that it may become applicable to a
class of prioritized circumscription as follows.

Definition 3.10 [Sakama and Inoue, 1995]
Given parallel circumscription Ciresm(vyT; P; Z), EDP
II* is constructed as follows, where DCA and UNA are
incorporated in a first order theory T since only ite Her-
brand models are considered, and p1,....P¢ 215+« s Zms
and ¢i,..., ¢, are used to denote atoms from P,Z and
() respectively.
1. For any clause in T of the form:
V.. VoV V.. Vi Ve V.. Vg V=pea V...
Vop, Vs Ve Vo Vg V.. Vg,
II* has the rule:
4 | . lzmhh I . IQn = Pl v sPadmaly o1 20 fn+ 1y
o -an"'OfPl,---,"'OtPf-
2. For every clause in uTh(E) of the form:
nv..VvpvqVv.. Vga.Vagua V.. Vg,

II® has the rule:
il lpddar]. . lan = gnity- -0 Gu

186 AUTOMATED REASONING

3. For any atom p, z, ¢, II* has the rule:
-p — notp,
9| ~ge.

Remarks. It is shown in [Sakama and Inoue, 1995]
that there is a 1-1 correspondence between the models
of parallel circumscription and the answer sets of the

transiated EDP H*.

Definition 3.11
Given prioritized circumscription:
Circum(Y T(P'...P* 2,Q); P > P* > ... > P4 2),
EDP I1? is constructed in the following two steps:
1. This is the same as the first step given by Defini-
tion 3.2.
2. EDP I1? consists of all rules from (II%);...., (II*);
and II, where
(a) each (II*); is an extended disjunctive program
(EDP) which is constructed from the ith re-

named parallel circumscription (3.1) according
to Definition 3.10.

{b) II, is the same set given by Definition 3.2.

2| 5 e,

Then the relationship between prioritized circumscrip-
tion and the translated EDP I1? age given as follows.

Theorem 3.12 Lei F be a ground formula of the lan-
guage of T and equality does not occur as a predicate
symbol in F. Then, it holds that, for any F,
Circum(;T;Pl >P'>...>P%2)EF
if F is true in all answer sets of EDP I18.
where EDP I1? is constructed from

Circum{YT; P! > P? > ... > P*, Z),
by using Definilion 9.11.

Example 3.13

Consider prioritized circumscription given in Exam-
ple 3.9. We apply Theorem 3.12 instead of Theorem 3.5
to it. Then according to Definition 3.11, the translated
EDPs (I1*); and {II"); are as follows:

Since P = {pl}, Z = {g1,r1}, @ = ¢ in the renamed
circumscription: Circum({pl V ql,ql vV r1};pl;ql,r1),
(M : gl — notpl,

ql| ri,

—pl « neot pl,
gl 1 ~,
Since P = {q2}, Z = {r2}, @ = {p?} in the renamed
circumscription: Circum({p2V q2,q2V r2};42;72).

(I1%)2 :

rl] =rl ~—.

P2 — not g2,
12 — not ¢2,
22| g2 +,

—¢2 ~ not g2,

r2| <r2 —, p2| -p2 ~.

I1, is obtained as the same one shown in Example 3.9.
As a result, EDP I1” has the following two answer sets:

{qps g.7,opl,ql, rl, —p2, 921 "2}’
‘["P, 47, -pl, 4'1. =rl, -'qu 92, _'72}5

where I1° consists of all rules in the above (II*);, (II*);
and II,. Both —p and g are true in all of these answer
sets, but s0 is neither r nor =~r. Notice that this is the
same evaluation result as the one in Example 3.9.

4 Related Works and Conclusion

In this paper, we present a method of compiling circum-
scription into extended logic programs which is widely
applicable to parallel circumscription as well as priori-
tized circumscription. Our method always enables us to
compute any circumscription whose theory includes both
DCA and UNA by compiling it into ELP Il, which can
be evaluated by using the existing logic programming in-
terpreter such as Satoh and Iwayama's top-down query
evaluation procedure for abductive logic programming.

In the following, we compare our method with related
researches from the viewpoints of the applicable class as
well as the computational efficiency and feasibility.

* Gelfond and Lifschitz's method [1988a] as well as
our previous method [Wakaki and Satoh, 1995] are
the most efficient since they are as efficient as the
evaluation of a stratified logic program. But their
applicable classes are limited within a class of cir-
cumscription which has a unique model as men-
tioned in the introduction of this paper.

* In Sakama and Inoue's first method [1995], paral-
lel circumscription is translated into a general dis-
junctive program (GDP). This method is applica-
ble to a wide class of parallel circumscription, but
inapplicable to prioritized circumscription though
a class of GDP has the expressive power of the
positive occurrences of negation as failure [inoue
and Sakama, 1994]. The most important difference
between their GDP and our ELP is whether classical
negation — is available or not. Theorem 3.12 shows
that our approach exploiting classical negation can
also give an extension of their alternative method
whose target language is EDP, so that it may be-
come applicable to prioritized circumscription.

* In Sakama and Inoue's second method [1996], par-
allel circumscription as well as prioritized circum-
scription is translated into prioritized logic pro-
grams proposed by them whose declarative meaning
is given by preferred answer sets defined by them.
Their method, however, is immature for the purpose
of the automation of circumscription since their pri-
oritized logic program is not feasible because their
method gives only the semantic aspects, but proce-
dural issues for the query evaluation are left as their
future works.

Our future work is to implement our method proposed
in this paper.

References

[de Kleer and Konolige, 1989] de Kleer, J. and Kono-.
lige, K. Eliminating the Fixed Predicates from a Cir-
cumscription. Artificial Intelligence 39, pages 391-
398, 1989.

[Etherington, 1987] David W. Etherington. Relating
Default Logic and Circumscription. Proc. IJCAI-87,
pages 489-494, 1987.

[Gelfond and Lifschitz, 1988a] Gelfond, M. and Lifs-
chitz, V. Compiling Circumscriptive Theories into
Logic Programs. Proc. AAA1-88, pages 455-459. Ex-
tended version in: Proc. 2nd Int. Workshop on Non-
monotonic Reasoning, LNAI| 346, pages 74-99, 1988.

[Gelfond and Lifschitz, 1988b] Gelfond, M. and Lifs-
chitz, V. The Stable Model Semantics for Logic Pro-
gramming. Proc. LP'88, pages 1070-1080, 1988.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz,
V. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing 9,
pages 365-385, 1991.

[Ginsberg, 1989] Matthew L. Ginsberg, A Circumscrip-
tive Theorem Prover, Artificial Intelligence 39, pages
209-230, 1989.

[Inoue, 1992] Inoue, K. Linear Resolution for Conse-
quence Finding, Artificial Intelligence 56, pages 301-
353, 1992.

[inoue and Sakama, 1994] Inoue, K. and Sakama, C. On
Positive Occurrences of Negation as Failure. Proc.
KR'94, pages 293-304, 1994.

[Lifschitz, 1985] Lifschitz, V. Computing Circumscrip-
tion. Proc. IJCAI-85, pages 121-127, 1985.

[McCarthy, 1980] McCarthy, J. Circumscription - a
Form of Non-monotonic Reasoning. Artificial Intelli-
gence 13, pages 27-39, 1980.

[Przymusinski, 1987] Przymusinski, T. On the Declar-
ative Semantics of Deductive Databases and Logic
Programs, in Foundations of Deductive Databases
and Logic Programming (J. Minker, Ed.), Morgan
Kaufmann, pages 193-216, 1987.

[Reiter, 1980] Reiter, R. A Logic for default reasoning.
Artificial Intelligence 13, pages 81-132, 1980.

[Sakama and Inoue, 1995] Sakama, C. and Inoue, K.
Embedding Circumscriptive Theories in General Dis-
junctive Programs. Proc. 3rd International Confer-
ence on Logic Programming and Nonmonotonic Rea-
soning, 1995, LNAI 928, pages 344-357, Springer.

[Sakama and Inoue, 1996] Sakama, C. and Inoue, K.
Representing Priorities in Logic Programs. Proc.
Joint International Conference and Symposium on
Logic Programming, pages 82-96, 1996.

[Satoh and Iwayama, 1992] Satoh, K. and Iwayama, N.
A Query Evaluation Method for Abductive Logic
Programming. Proc. Joint International Conference
and Symposium on Logic Programming, pages 671-
685, 1992.

[Wakaki and Satoh, 1995] Wakaki, T and Satoh, K.
Computing Prioritized Circumscription by Logic
Programming. Proc. 12th International Conference
on Logic Programming, pages 283-297, 1995.

WAKAKI & SATOH 187

