
Analogy and Abduction in Automated Deduction
Gilles Defourneaux and Nicolas Peltier

46 Avenue Felix Viallet
38031 Grenoble FRANCE

Tel: (+33) (0)4-76-57-46-59
Gilles.Defourneaux@imag.fr, Nicolas.Peltier@imag.fr

Abstract
A method is presented for analogical reason­
ing in Automated Deduction. We focus on the
abductive aspects of analogy and give a uni­
fied treatment for theorems and non-theorems.
Abduction allows to deal with partial analogies
thus strongly increasing the application field of
the method. It also allows to detect "bad analo­
gies" in several cases. Explanatory examples as
well as more realistic examples quantifying the
effects of using analogy (for theorem-proving
and for counter-example building) are given.

1 Introduction
Analogy is in the very heart of human reasoning, in
particular in Mathematics. Roughly speaking, reason-
ing by analogy consists in using informations deduced
from the solving of a given problem or set of problems
(the source problems) for solving a new one (the tar­
get problem). In Artificial Intelligence and Automated
Deduction, the mechanization of this approach is a cru­
cial issue (see for example [Bledsoe, 1977; Plaisted, 1981;
Hall, 1989]). Moreover analogy is also an intrinsically
interesting way of reasoning: discovering similitaries be­
tween existing proofs or theorems can be of highest
importance (for instance in mathematical practice and
teaching). As far as we know, in all the existing works in
theorem-proving, analogy is used for finding the proof of
a given target theorem from an existing one. This view
of analogy is very limited since analogy can obviously be
also useful if the target or source problems are not theo­
rems: in this case one can try to find a counter-example
of the target conjecture by using counter-examples of
the source non-theorems. In this paper we give an uni­
fying treatment of these two cases (theorems and non-
theorems). No assumption is made about the way these
proofs and counter-examples are generated (any existing
method for search for proofs or counter-examples can
be used: (hyper)resolution or tableaux-based methods,
connexion method, but also (finite) model builder such
as FINDER [Slaney, 1993], SEM [Zhang and Zhang, 1995]
or the method RAMC [Bourely et a/., 1994] looking si-

multaneously for a proof or a counter-example of a given
formula T.

Other approaches have been proposed to tackle the
problem of analogy by second-order means. In [Boy de la
Tour and Caferra, 1987], the paradigm of "propositions
as types" is used and proofs are represented as terms.
Higher-order functions are then applied to transform the
base proof into the target one. In [Kolbe and Walther,
1995], higher-order evaluation techniques are used to re­
fine the problem and ultimately have its premisses match
with axioms of the calculus, allowing lemma speculation
as a side effect. However, both approaches only deal
with proofs (not counter-examples). To the best of our
knowledge there is no other approaches allowing to deal
with model building by analogy in first-order logic.

To make the presentation of the method shorter, we
assume that the problems are specified in clausal form
and that we use a refutational approach. Therefore,
formulae are sets of clauses, proofs are refutations and
counter-examples are models.

Analogy and abductive reasoning
According to Peirce [Hartshorne et a/.,], analogy can be
seen as an induction and an abduction followed by a de­
duction. Our approach to analogy follows directly these
steps. It can be summarized as follows. We assume a
knowledge base K containing theorems with their proofs
and non-theorems associated with counter-examples.

General iza t ion s t ep . The first step consists in a
generalization occurring at the presentation of a new
source formula Ts to K. Fs is transformed into a more
general formula and stored into the knowledge base.
This corresponds to the inductive part of analogy.

Matching step. The second step applies when a new
target conjecture TT is considered. It consists in trying
to find one (or more) "analogical" formulae in K. Then
the proof or the counter-example of the conjecture FT is
built from the proofs/counter-examples of the formulae
in K. This corresponds to the deductive part of analogy.

However in most cases TT cannot be directly
(dis)proved by using only the information in K (this is
obviously possible only if TT is an instance of a problem
in K). However, even if a proof or a counter-example of
FT cannot be straightforwardly deduced from the known

216 AUTOMATED REASONING

DEFOURNEAUX & PELTIER 217

formulae, the use of the informations stored in K wil l
very likely provide interesting hints for finding a Droof

lemmata generation that could be completed later by us­
ing any existing theorem prover or model builder. This
corresponds to the abductive part of analogy: finding hy­
potheses that allows to prove or to disprove the target
conjecture.

Peltier, 1997J. In this paper we focus mainly on the ab­
ductive part of analogical reasoning, that is to say on the
generation of lemmata. We propose a partial matching
algorithm especially devoted to finding such lemmata,
i.e. abduction wi l l be incorporated to step 2.

Abductive reasoning is the process of generating the
explanations of a given fact (see for example [Polya, 1973;
Pople, 1973; Console et a/., 1991; Hobbs et a/., 1993]).
It has deep connections with other forms of reasoning
such as model building [Inoue et a/., 1993; Console et
a/., 1991]. Aristotle calls abduction a syllogism "in which
the major is sure and the minor only probable" (see [La-
lande, 1980], page 1). More recently, it is defined by
Peirce [Peirce, 1955] as the process of finding the minor
premise from a major premise and the conclusion: for
example ''infer" A from A => B and B. Peirce clearly
points out the importance of abductive reasoning in sci­
ence (he gave as a paradigm the discovery of Kepler's
laws). From a deductive point of view, this inference is
clearly not sound. However it provides interesting infor­
mations for proving 5, since A can be considered as a
lemma, whose proof immediately yields a proof of B.

The aim of this paper is to show how to use anal­
ogy for generating such lemmata. Since our approach
deals with simultaneous search for proofs and counter-
examples, the notion of lemma is much more general
than the standard one: it can be either a conjecture
that (if it is true) is sufficient for proving B or a partial
counter-example that must be completed and extended
for finding a counter-example of B.

the negation of an atom. If p is a literal, -ip denotes
the literal with the same predicate symbol and the same
arguments than p but with different sign. A clause is a
finite set (or disjunction) of literals. First-order formulae
are built as usual over atoms by using the logical symbols

2.1 Higher order formulae

Step 2 of the method (see Introduction) needs an algo­
r i thm transforming a given set of clauses S into a more
general one. The latter is represented by second order
terms and clauses. Higher-order terms and formulae are

For any set of clauses S we denote by 5(5) the set of
ground instances of clauses in S.

218 AUTOMATED REASONING

3 An order among formulae
Before presenting our method we must clarify the notion
of generalization and give a precise definition of i t . A def­
inition of this notion was given in [Bourely et al, 1996].
We give here a new refined definition of the generaliza­
tion order that takes into account the semantic aspect
of the clauses (i.e. the set of ground clauses denoted by
the set) rather than its syntax.

The underlying ideas of this ordering are the following.
Informally, a given theorem S wi l l be said to be "more
general" than a theorem S' iff the hypotheses of S are
weaker than the one of S' or if the conclusion of S is
stronger than the ones of S'. Indeed, it is obvious that S
provides more information than 5". If sets of clauses are
considered, the set of hypotheses is the set of clauses S

An unsatisfiable set of clauses S is said to be more

wil l be said to be more general than S' iff the hypotheses
of S are stronger than the one of S' (this implies that S
is false in more interpretations than S'). Consequently a
satisfiable set of clauses S wil l be said to be more general

Please note that these two notions of generalization
are not equivalent. The following definition formalizes
this idea. Obviously finding the solutions of a matching problem

is undecidable hence we cannot hope to get a general so­
lution to this problem. In the present paper we only
give a set of rules allowing to find the solutions of some
matching problem. We do not specify here the strat­
egy guiding the application of the rules (several different
strategies can be proposed). These rules are sound: any
solution of the obtained problem is a solution of the ini­
t ial one. However they are obviously not complete.

Notice that the semantics of matching problem takes
into account the semantics of the sets of clauses rather
than their syntax. This is very important since analogy
must focus on the semantic information contained in a
theorem rather than in its statement.

In order to give a semantics to matching problems we
only have to choose the semantics of atomic formulae.

4 Matching
We call "matching" the process of finding in the knowl­
edge base the formulae analogous to a given target for­
mula. It is inductively defined as follows.

DEFOURNEAUX & PELTIER 219

Matching problems transformation rules
Clausal transformation rules

Higher-order unification rules
The following rules are simply the standard higher-

order unification rules (see [Huet, 1975]).

Im i ta t ion

Project ion

Replacement

Next example illustrates the application of these trans­
formation rules.

5 Lemma generation
In this section we identify a class of matching problems
from which the solutions can be obtained automatically
and we show how the proof (resp. the counter-example)
of the target theorem can be automatically bui l t from
the one of the source (non-) theorem. In most cases, anal­
ogy wil l not directly give a proof (counter-example) of
the target formula from the source formula. Our method
can cope with this case by generating lemmata that have
to be proved in order to complete the proof/counter-
example of the target theorem. This is done by per­
forming a partial resolution of matching problems. We
do not solve the problem completely, but only partially.
Formulae that cannot be matched correspond to addi­
tional hypotheses that must be proven in order to com­
plete the proof or the counter-example. The derivation
can then be completed in two different ways. Either by
proving the lemma using a theorem-prover or by a re-
cursive call of the matching method (unsatisfiable case).
Or by showing that the lemmata are compatible wi th the
target set, i. e. that the adding of those lemmata to the
set preserves satisfiability of the set (satisfiable case).

220 AUTOMATED REASONING

We note matching the system composed by the uni ­
fication and matching rules, the usual transforma­
tion rules for equational problems (see for exam-
ple [Comon and Lescanne, 1989; Lugiez, 1995]) and the
lemma generation rules.

6 Examples
In this section we give two more realistic examples.

Example 5 (Unsatisfiable set of clauses) Let
us consider the problems SYN310-1 and SYN312-1 of
TPTP [Suttner and Sutcliffe, 1996].

This example suggests that reasoning by analogy can
enhance significantly the power of theorem-provers. In­
deed the total amount of time required to prove the lem-
mata is 0.55 s and the time required to prove the whole
theorem without using analogy is 536.3Is. Please note
that the proofs of the lemmata does not require any user-
interaction. However the matching process is not yet
implemented, hence must be done by hand.
Example 6 (Satisfiable set of clauses) Let Ss be
the following satisfiable set of clauses (adapted from
[Church, 1940]).

Ss is very easy (it can be proven in 0.17 seconds by
O T T E R 3.0 [McCune, 1995] with "automatic" mode).
ST is more difficult (O T T E R takes 536.31 s to prove it
tn automatic mode). We assume that a proof of Ss is
known and we try to build automatically a proof of ST
by analogy with the one of Ss.

7 Discussion and perspectives
We have presented a calculus for the discovery and han­
d l i ng of analogy between sets of clauses. It is able in par­
t i cu lar to handle partial analogy between statements by
generat ing lemmata. Our work is the first step toward a
system for s imul taneous search for refutat ions and m o d ­
els using analogy and abduct ive reasoning. M a i n lines
of fu tu re research are:

• Define strategies or heuristics for our calculus
matching and s tudy thei r propert ies (te rm ina t ion ,
efficiency, completeness for some classes of problems
etc.) .

• Ex tend th is approach to f i rst-order formulae (not in
clausal f o r m) . In par t icu lar we have to give a new
def in i t ion of the general izat ion order.

A compara t ive analysis w i t h the l emmata produced by
other techniques such as [Kolbe and Wal ther , 1995] w i l l
be per formed in the fu tu re . We are current ly work ing on
the imp lemen ta t i on of the calculus and on the def in i t ion
of the knowledge base.

Acknowledgements
We thank Ricardo Caferra and the anonymous referees
for their per t inent and precise comments.

References
[Bledsoe, 1977] W. W. Bledsoe. Non-resolution theorem

proving. Artificial Intelligence, 9:1-35, 1977.

[Bourely et al, 1994] Ch. Bourely, R. Caferra, and
N. Peltier. A method for building models automatically.
Experiments w i th an extension of Otter. In Proceedings of
CADE-12, pages 72-86. Springer, 1994. L N A I 814.

[Bourely et al, 1996] C. Bourely, G. Defourneaux, and
N. Peltier. Building proofs or counterexamples by anal­
ogy in a resolution framework. In Proceedings of JELIA
96, LNIA 1126, pages 34-49. Springer, L N A I , 1996.

[Boy de la Tour and Caferra, 1987] T h . Boy de la Tour and
R Caferra. Proof analogy in interactive theorem proving:
A method to express and use it via second order pattern
matching. In Proceedings of AAAl 81, pages 95-99. Mor­
gan Kaufmann, 1987.

[Church, 1940] A. Church. A formulation of the simple the­
ory of types. Journal of Symbolie Logic, 5(l):56-68, 1940.

[Comon and Lescanne, 1989] H. Comon and P. Lescanne.
Equational problems and disunification. Journal of Sym-
bolic Computation, 7:371-475, 1989.

[Console et al., 1991] L. Console, D. Theseider Dupre, and
P. Torasso. On the Relationship between Abduction and
Deduction. Journal of Logic and Computation, 1(5):661-
690, 1991.

[Defourneaux and Peltier, 1997] G. De­
fourneaux and N. Peltier. Partial matching for analogy
discovery in proofs and counter-examples. In Springer, ed­
itor, Proceedings of CADE 14, 1997.

[Hall, 1989] R.P. Hall. Computational approaches to analog­
ical reasoning: A comparative analysis. Artificial Intelli­
gence, pages 39-120, 1989.

[Hartshorne et al,] Hartshorne, Weiss, and Burks. Collected
Papers of C.S. Peirce (1930-1958). Harward U. Press.

[Hobbs et al, 1993] J. Hobbs, M. Stickel, D. Appelt, and
P. Mart in . Interpretation as abduction. Artificial Intel­
ligence, 63:69-142, 1993.

[Huet, 1975] G. Huet. A unification algorithm for typed A-
calculus. Theorical Computer Science, 1:27-57, 1975.

[Inoue et al, 1993] K. Inane, Y. Ohta, R. Hasegawa, and
M. Nakashima. Bottom-up abduction by model genera­
tion. In Proc. IJCAI-93, volume 1, pages 102-108, Morgan
Kaufmann, 1993.

[Kolbe and Walther, 1995] Th . Kolbe and Ch. Walther.
Second-order matching modulo evaluation - A technique
for reusing proofs. In Chris S. Mellish, editor, Proceedings
of IJCAI 95, pages 190 195. I J C A I , Morgan Kaufmann,
1995.

[Lalande, 1980] A. Lalande. Vocabulaire technique et Cri­
tique de la Philosophic. Presses Universitaires de France,
1980.

[Lugiez, 1995] D. Lugiez. Positive and negative results for
higher-order disunification. Journal of Symbolic Computa­
tion, 1995.

[McCune, 1995] W. McCune. Otter 3.0 Reference Manual
and Guide. Argonne National Laboratory, August 1995.
Revision A.

[Peirce, 1955] C.S. Peirce. Philosophical Writings of
PEIRCE, chapter Abduction and induction, pages 150-
156. Dover Books, 1955.

[Plaisted, 1981] D.A. Plaisted. Theorem proving wi th ab­
straction. Artificial Intelligence, 16:47-108, 1981.

[Polya, 1973] G. Polya. How to Solve It, a New Aspect of
Mathematical Method. Princeton University Press. Second
Edit ion, 1973.

[Pople, 1973] H. Pople. On the Mechanization of Abductive
Logic. In Proc. of the IJCAAI 73, pages 147-152, 1973.

[Slaney, 1993] J. Slaney. SCOTT: a model-guided theorem
prover. In Proceedings IJCAI-93, volume 1, pages 109-
114. Morgan Kaufmann, 1993.

[Suttner and SutclifTe, 1996] Ch. Suttner and G.SutclifTe.
The T P T P problem library. Technical report, TU
Munchen / James Cook University, 1996. V-1.2.1.

[Zhang and Zhang, 1995] J. Zhang and H. Zhang. SEM: a
system for enumerating models. In Proc. IJCAI-95, vol­
ume 1, pages 298-303. Morgan Kaufmann, 1995.

DEFOURNEAUX & PELTIER 221

