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Abstract 
A method is presented for analogical reason­
ing in Automated Deduction. We focus on the 
abductive aspects of analogy and give a uni­
fied treatment for theorems and non-theorems. 
Abduction allows to deal with partial analogies 
thus strongly increasing the application field of 
the method. It also allows to detect "bad analo­
gies" in several cases. Explanatory examples as 
well as more realistic examples quantifying the 
effects of using analogy (for theorem-proving 
and for counter-example building) are given. 

1 Introduction 
Analogy is in the very heart of human reasoning, in 
particular in Mathematics. Roughly speaking, reason-
ing by analogy consists in using informations deduced 
from the solving of a given problem or set of problems 
(the source problems) for solving a new one (the tar­
get problem). In Artificial Intelligence and Automated 
Deduction, the mechanization of this approach is a cru­
cial issue (see for example [Bledsoe, 1977; Plaisted, 1981; 
Hall, 1989]). Moreover analogy is also an intrinsically 
interesting way of reasoning: discovering similitaries be­
tween existing proofs or theorems can be of highest 
importance (for instance in mathematical practice and 
teaching). As far as we know, in all the existing works in 
theorem-proving, analogy is used for finding the proof of 
a given target theorem from an existing one. This view 
of analogy is very limited since analogy can obviously be 
also useful if the target or source problems are not theo­
rems: in this case one can try to find a counter-example 
of the target conjecture by using counter-examples of 
the source non-theorems. In this paper we give an uni­
fying treatment of these two cases (theorems and non-
theorems). No assumption is made about the way these 
proofs and counter-examples are generated (any existing 
method for search for proofs or counter-examples can 
be used: (hyper)resolution or tableaux-based methods, 
connexion method, but also (finite) model builder such 
as FINDER [Slaney, 1993], SEM [Zhang and Zhang, 1995] 
or the method RAMC [Bourely et a/., 1994] looking si-

multaneously for a proof or a counter-example of a given 
formula T. 

Other approaches have been proposed to tackle the 
problem of analogy by second-order means. In [Boy de la 
Tour and Caferra, 1987], the paradigm of "propositions 
as types" is used and proofs are represented as terms. 
Higher-order functions are then applied to transform the 
base proof into the target one. In [Kolbe and Walther, 
1995], higher-order evaluation techniques are used to re­
fine the problem and ultimately have its premisses match 
with axioms of the calculus, allowing lemma speculation 
as a side effect. However, both approaches only deal 
with proofs (not counter-examples). To the best of our 
knowledge there is no other approaches allowing to deal 
with model building by analogy in first-order logic. 

To make the presentation of the method shorter, we 
assume that the problems are specified in clausal form 
and that we use a refutational approach. Therefore, 
formulae are sets of clauses, proofs are refutations and 
counter-examples are models. 

Analogy and abductive reasoning 
According to Peirce [Hartshorne et a/., ], analogy can be 
seen as an induction and an abduction followed by a de­
duction. Our approach to analogy follows directly these 
steps. It can be summarized as follows. We assume a 
knowledge base K containing theorems with their proofs 
and non-theorems associated with counter-examples. 

General iza t ion s t ep . The first step consists in a 
generalization occurring at the presentation of a new 
source formula Ts to K. Fs is transformed into a more 
general formula and stored into the knowledge base. 
This corresponds to the inductive part of analogy. 

Matching step. The second step applies when a new 
target conjecture TT is considered. It consists in trying 
to find one (or more) "analogical" formulae in K. Then 
the proof or the counter-example of the conjecture FT is 
built from the proofs/counter-examples of the formulae 
in K. This corresponds to the deductive part of analogy. 

However in most cases TT cannot be directly 
(dis)proved by using only the information in K (this is 
obviously possible only if TT is an instance of a problem 
in K). However, even if a proof or a counter-example of 
FT cannot be straightforwardly deduced from the known 
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formulae, the use of the informations stored in K wil l 
very likely provide interesting hints for finding a Droof 

lemmata generation that could be completed later by us­
ing any existing theorem prover or model builder. This 
corresponds to the abductive part of analogy: finding hy­
potheses that allows to prove or to disprove the target 
conjecture. 

Peltier, 1997J. In this paper we focus mainly on the ab­
ductive part of analogical reasoning, that is to say on the 
generation of lemmata. We propose a partial matching 
algorithm especially devoted to finding such lemmata, 
i.e. abduction wi l l be incorporated to step 2. 

Abductive reasoning is the process of generating the 
explanations of a given fact (see for example [Polya, 1973; 
Pople, 1973; Console et a/., 1991; Hobbs et a/., 1993]). 
It has deep connections with other forms of reasoning 
such as model building [Inoue et a/., 1993; Console et 
a/., 1991]. Aristotle calls abduction a syllogism "in which 
the major is sure and the minor only probable" (see [La-
lande, 1980], page 1). More recently, it is defined by 
Peirce [Peirce, 1955] as the process of finding the minor 
premise from a major premise and the conclusion: for 
example ''infer" A from A => B and B. Peirce clearly 
points out the importance of abductive reasoning in sci­
ence (he gave as a paradigm the discovery of Kepler's 
laws). From a deductive point of view, this inference is 
clearly not sound. However it provides interesting infor­
mations for proving 5, since A can be considered as a 
lemma, whose proof immediately yields a proof of B. 

The aim of this paper is to show how to use anal­
ogy for generating such lemmata. Since our approach 
deals with simultaneous search for proofs and counter-
examples, the notion of lemma is much more general 
than the standard one: it can be either a conjecture 
that (if it is true) is sufficient for proving B or a partial 
counter-example that must be completed and extended 
for finding a counter-example of B. 

the negation of an atom. If p is a literal, -ip denotes 
the literal with the same predicate symbol and the same 
arguments than p but with different sign. A clause is a 
finite set (or disjunction) of literals. First-order formulae 
are built as usual over atoms by using the logical symbols 

2.1 Higher order formulae 

Step 2 of the method (see Introduction) needs an algo­
r i thm transforming a given set of clauses S into a more 
general one. The latter is represented by second order 
terms and clauses. Higher-order terms and formulae are 

For any set of clauses S we denote by 5(5) the set of 
ground instances of clauses in S. 



218 AUTOMATED REASONING 

3 An order among formulae 
Before presenting our method we must clarify the notion 
of generalization and give a precise definition of i t . A def­
inition of this notion was given in [Bourely et al, 1996]. 
We give here a new refined definition of the generaliza­
tion order that takes into account the semantic aspect 
of the clauses (i.e. the set of ground clauses denoted by 
the set) rather than its syntax. 

The underlying ideas of this ordering are the following. 
Informally, a given theorem S wi l l be said to be "more 
general" than a theorem S' iff the hypotheses of S are 
weaker than the one of S' or if the conclusion of S is 
stronger than the ones of S'. Indeed, it is obvious that S 
provides more information than 5". If sets of clauses are 
considered, the set of hypotheses is the set of clauses S 

An unsatisfiable set of clauses S is said to be more 

wil l be said to be more general than S' iff the hypotheses 
of S are stronger than the one of S' (this implies that S 
is false in more interpretations than S'). Consequently a 
satisfiable set of clauses S wil l be said to be more general 

Please note that these two notions of generalization 
are not equivalent. The following definition formalizes 
this idea. Obviously finding the solutions of a matching problem 

is undecidable hence we cannot hope to get a general so­
lution to this problem. In the present paper we only 
give a set of rules allowing to find the solutions of some 
matching problem. We do not specify here the strat­
egy guiding the application of the rules (several different 
strategies can be proposed). These rules are sound: any 
solution of the obtained problem is a solution of the ini­
t ial one. However they are obviously not complete. 

Notice that the semantics of matching problem takes 
into account the semantics of the sets of clauses rather 
than their syntax. This is very important since analogy 
must focus on the semantic information contained in a 
theorem rather than in its statement. 

In order to give a semantics to matching problems we 
only have to choose the semantics of atomic formulae. 

4 Matching 
We call "matching" the process of finding in the knowl­
edge base the formulae analogous to a given target for­
mula. It is inductively defined as follows. 
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Matching problems transformation rules 
Clausal transformation rules 

Higher-order unification rules 
The following rules are simply the standard higher-

order unification rules (see [Huet, 1975]). 

Im i ta t ion 

Project ion 

Replacement 

Next example illustrates the application of these trans­
formation rules. 

5 Lemma generation 
In this section we identify a class of matching problems 
from which the solutions can be obtained automatically 
and we show how the proof (resp. the counter-example) 
of the target theorem can be automatically bui l t from 
the one of the source (non-) theorem. In most cases, anal­
ogy wil l not directly give a proof (counter-example) of 
the target formula from the source formula. Our method 
can cope with this case by generating lemmata that have 
to be proved in order to complete the proof/counter-
example of the target theorem. This is done by per­
forming a partial resolution of matching problems. We 
do not solve the problem completely, but only partially. 
Formulae that cannot be matched correspond to addi­
tional hypotheses that must be proven in order to com­
plete the proof or the counter-example. The derivation 
can then be completed in two different ways. Either by 
proving the lemma using a theorem-prover or by a re-
cursive call of the matching method (unsatisfiable case). 
Or by showing that the lemmata are compatible wi th the 
target set, i. e. that the adding of those lemmata to the 
set preserves satisfiability of the set (satisfiable case). 
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We note matching the system composed by the uni ­
fication and matching rules, the usual transforma­
tion rules for equational problems (see for exam-
ple [Comon and Lescanne, 1989; Lugiez, 1995]) and the 
lemma generation rules. 

6 Examples 
In this section we give two more realistic examples. 

Example 5 (Unsatisfiable set of clauses) Let 
us consider the problems SYN310-1 and SYN312-1 of 
TPTP [Suttner and Sutcliffe, 1996]. 

This example suggests that reasoning by analogy can 
enhance significantly the power of theorem-provers. In­
deed the total amount of time required to prove the lem-
mata is 0.55 s and the time required to prove the whole 
theorem without using analogy is 536.3Is. Please note 
that the proofs of the lemmata does not require any user-
interaction. However the matching process is not yet 
implemented, hence must be done by hand. 
Example 6 (Satisfiable set of clauses) Let Ss be 
the following satisfiable set of clauses (adapted from 
[Church, 1940]). 

Ss is very easy (it can be proven in 0.17 seconds by 
O T T E R 3.0 [McCune, 1995] with "automatic" mode). 
ST is more difficult ( O T T E R takes 536.31 s to prove it 
tn automatic mode). We assume that a proof of Ss is 
known and we try to build automatically a proof of ST 
by analogy with the one of Ss. 



7 Discussion and perspectives 
We have presented a calculus for the discovery and han­
d l i ng of analogy between sets of clauses. It is able in par­
t i cu lar to handle partial analogy between statements by 
generat ing lemmata. Our work is the first step toward a 
system for s imul taneous search for refutat ions and m o d ­
els using analogy and abduct ive reasoning. M a i n lines 
of fu tu re research are: 

• Define strategies or heuristics for our calculus 
matching and s tudy thei r propert ies ( te rm ina t ion , 
efficiency, completeness for some classes of problems 
etc.) . 

• Ex tend th is approach to f i rst-order formulae (not in 
clausal f o r m ) . In par t icu lar we have to give a new 
def in i t ion of the general izat ion order. 

A compara t ive analysis w i t h the l emmata produced by 
other techniques such as [Kolbe and Wal ther , 1995] w i l l 
be per formed in the fu tu re . We are current ly work ing on 
the imp lemen ta t i on of the calculus and on the def in i t ion 
of the knowledge base. 
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