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Abstract 
This paper presents an average-case analysis 
of the fc-nearest neighbor classifier (k-NN). Our 
analysis deals with m-of-n// concepts, and han­
dles three types of noise: relevant attribute 
noise, irrelevant attribute noise, and class noise. 
We formally compute the expected classifica­
tion accuracy of fc-NN after a certain fixed num­
ber of training instances. This accuracy is rep-
resented as a function of the domain character­
istics. Then, the predicted behavior of fc-NN 
for each type of noise is explored by using the 
accuracy function. We examine the classifica­
tion accuracy of fc-NN at various noise levels, 
and show how noise affects the accuracy of fc-
NN. We also show the relationship between the 
optimal value of k and the number of train­
ing instances in noisy domains. Our analysis is 
supported with Monte Carlo simulations. 

1 Introduction 
The fc-nearest neighbor classifier (fc-NN) is one of the 
most widely applied learning algorithms. Although fc-
NN is a powerful algorithm and has been studied by 
many researchers, it is not clear how noise affects the 
classification accuracy of fc-NN. Moreover, it is also un­
clear which value should be chosen for k to maximize 
accuracy in noisy domains. These are crucial problems 
in fc-NN applications, because there are few noise-free 
problems in practical domains. 

Variants of fc-NN have been proposed to tolerate noise 
(e.g., [Aha and Kibler, 1989]), and to choose an appropri­
ate value of k (e.g., [Creecy et al, 1992]). These propos­
als exhibit the high performance of fc-NN by empirical 
evaluations. However, the noise effects on the accuracy 
of fc-NN and on the optimal value of k still remain un­
clear. It is therefore important to understand the noise 
effects on fc-NN and the optimal k by theoretical evalu­
ations. 

There have been several theoretical analyses of fc-NN. 
The upper bound of fc-NN error rate (risk) is twice the 
optimal Bayes risk under the assumption of an infinite 
number of training instances [Cover and Hart, 1967]. 

Moreover, fc-NN risk converges to the optimal Bayes risk 
as fc approaches infinity [Cover, 1968]. For a finite set 
of training instances, the new bounds of 1-NN risk are 
given using Bayes risk [Drakopoulos, 1995]. Aha et al. 
[1991] analyze 1-NN with a similar model to PAC (Prob­
ably Approximately Correct) learning, and this analysis 
is generalized to fc-NN [Albert and Aha, 1991]. Although 
these theoretical results are important and give some in­
sights into the behavior of fc-NN, all of these studies as­
sume noise-free instances. 

An average-case analysis is a useful theoretical frame-
work to understand the behavior of learning algorithms 
[Pazzani and Sarrett, 1992]. This framework is based 
on the formal computation of the expected accuracy of 
a learning algorithm for a certain fixed class of con­
cepts. Using the result of this computation, we can ex­
plore the predicted behavior of an algorithm. There have 
been some average-case analyses of fc-NN. Langley and 
Iba [1993] analyzed 1-NN for conjunctive concepts, and 
we analyzed fc-NN for m-of-n concepts without irrele­
vant attribute [Okamoto and Satoh, 1995]. However, 
these studies assumed noise-free instances. Recently, 
we presented an average-case analysis of 1-NN for m-
of-n concepts with irrelevant attribute in noisy domains 
[Okamoto and Yugami, 1996]. This paper generalizes 
our recent study for 1-NN to fc-NN. 

In this paper, we present an average-case analysis of fc-
nearest neighbor classifier for noisy domains. Our analy­
sis handles m-of-n concepts with l irrelevant attributes, 
and deals with three types of noise: relevant attribute 
noise, irrelevant attribute noise, and class noise. First, 
we formally compute the expected classification accu­
racy (i.e., predictive accuracy) of fc-NN after N train­
ing instances are given. This accuracy is represented as 
a function of the domain characteristics: fc, N, m, n, 
/, the probabilities of occurrence for relevant and irrel­
evant attributes, and noise rates. Using the accuracy 
function, we explore the predicted behavior of fc-NN in 
noisy domains. We describe the predictive accuracy of 
fc-NN at various noise levels, and show the effects of noise 
on the accuracy of fc-NN. We also show the relationship 
between the optimal value of fc and the number of train­
ing instances in noisy domains. Our theoretical analysis 
is supported with Monte Carlo simulations. 
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2 Prob lem Descr ipt ion 
Our analysis deals wi th m-of-n// concepts defined over 
the threshold m, n relevant and I irrelevant Boolean at­
tributes [Murphy and Pazzani, 1991]. These concepts 
classify an instance as positive if and only if at least m 
out of n relevant attributes occur (i.e., take the value 1) 
in its instance. 

Our analysis handles three types of noise. Each type of 
noise is independently introduced by the following com­
mon definition. Relevant (irrelevant, resp.) attr ibute 
noise flips an arbitrary relevant (irrelevant, resp.) at­
tribute value in each instance wi th a certain probability 

Class noise replaces the class label for each 
instance wi th its negation with a certain probability 

We investigate a k-nearest neighbor classifier using 
hamming distance (i.e., the number of attributes on 
which two instances differ) as a distance measure. For 
the distribution over the instance space, our analysis as­
sumes every relevant and irrelevant attribute indepen­
dently occurs wi th a certain probability p and q. Each 
training instance is independently drawn from the in­
stance space. After the effects of each type of noise, 
all training instances are stored into memory to allow 
for duplication. When a test instance is given, A;-NN 
classifies the test instance into a majority class (posi­
tive or negative) among its k nearest training instances. 
If the number of positive instances equals that of nega­
tive instances among its k nearest neighbors, then k-NN 
randomly determines the class of the test instance (this 
situation can occur only when k is an even number). 

3 Predictive Accuracy 

We formally compute the predictive accuracy of k-NN 
for m-of-n// target concepts after TV training instances 
are given. The predictive accuracy is represented as a 
function of the domain characteristics: k, N, m, n, /, p, 

However, to avoid complicated nota­
t ion, we wi l l not explicitly express these characteristics 
as parameters of the accuracy function wi th the excep­
tion of k. 

We compute the predictive accuracy in the case where 
each type of noise affects only training instances. Af­
ter this computation, we also give the accuracy function 
in the case where noise affects both test and training 
instances. 

To compute the predictive accuracy, we use a set of 
instances in which x relevant attributes and y irrelevant 
attributes simultaneously occur (we denote this set wi th 
I(x,y)). Let be the probability that an arbi­
trary noise-free instance belongs to I (x ,y ) . This proba­
bil i ty is given by 

Under our assumptions given in Section 2, k-NN has the 
same expected probability of correct classification for an 
arbitrary test instance in I{x,y). Hence, we can repre­
sent the predictive accuracy of k-NN after N training 
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Figure 1: The predictive accuracy of fc-NN against the value of fc for a 3-of-5/2 concept. The lines and the error 
bars represent the theoretical results and the empirical results of Monte Carlo simulations. Each circle denotes the 
accuracy for the optimal fc at the corresponding noise level. The number of training instances is fixed at 32. 

When fc-NN selects exactly (A: - a) out of b training in­
stances wi th distance d from t(x,y), these (k - a) train­
ing instances comprise exactly w out of v instances with 
the positive class label and exactly (fc - a - w) out of 
(6 - v) instances with the negative class label. Hence, 

is given by 

We have computed the predictive accuracy of fc-NN in 
the case where each type of noise affects only the training 
instances. When noise affects test instances, the appear­
ance probability for an arbitrary test instance with the 
positive (negative, resp.) class label in I(x,y) is Pp(x,y) 
(Pn(x,y/), resp.). Hence, when noise affects both test and 
training instances, the predictive accuracy of fc-NN after 
TV training instances can be represented as 

4 P r e d i c t e d B e h a v i o r 
Using the accuracy function described in Section 3, 

we explore the predicted behavior of fc-NN. Although 
the accuracy function was obtained for both noise-free 
and noisy test instances, our exploration deals with only 
noise-free test instances for lack of space. Moreover, we 
investigate the effects of each individual noise type on 
fc-NN. 

For irrelevant attribute noise, we can formally prove 
the following claim from the accuracy function (the proof 
is omitted here due to space limitations). 

C l a i m 1 
If the probability of occurrence for irrelevant attribute is 

1/2, then the predictive accuracy of k-NN for m-of-n/l 
concepts is entirely independent of the noise rate for ir­
relevant attributes. 

From this claim, we can expect that irrelevant attr ibute 
noise does not greatly affect the classification accuracy of 
fc-NN, nor the optimal value of fc. Therefore, the follow­
ing discussions focus on the effects of relevant attr ibute 
noise and class noise. Throughout our exploration, we 
set the probabilities of occurrence for both relevant and 
irrelevant attributes to 1/2. 

In addition to the theoretical results from the accuracy 
function, we give the results of Monte Carlo simulations 
to confirm our analysis. For each case, 500 training sets 
are randomly generated in accordance wi th each noise 
rate, then the data is collected as the classification ac­
curacy measured over the entire space of noise-free in­
stances. For each case, we report a 95% confidence in­
terval for the mean accuracy of 500 data items. In the 
following figures, the error bar indicates this confidence 
interval. 

4 . 1 A c c u r a c y a g a i n s t V a l u e o f k 
First, we report the predicted behavior of fc-NN against 
the value of fc at several levels of noise, as shown in Fig­
ure 1. In this figure, the number of training instances 
is fixed at 32, and the target is a 3-of-5/2 concept. The 
lines indicate the theoretical results from the accuracy 
function, and the error bars represent the empirical re­
sults of Monte Carlo simulations. The theoretical results 
agree well wi th the empirical ones for both relevant at­
tribute noise and class noise. 

Figure 1 shows that the predictive accuracy of fc-NN 
markedly drops off for each noise level when fc is an even 
number. This negative influence of an even number for fc 
on the accuracy is caused by a random determination of 
class when a tie occurs. This negative influence suggests 
that a choice of even number for fc is undesirable when 
applying fc-NN. 

OKAMOTO & YUGAMI 241 



Figure 2: The effects of noise on the predictive accuracy of k-NN. Each curve for k-NN indicates the accuracy of 
k-NN wi th the optimal value of A;. The number of training instances is fixed at 32. 

In Figure 1, each circle represents the predictive ac­
curacy for the optimal value of k at the corresponding 
noise level. For each odd number for k, the accuracy of 
k-NN for a 0% noise level has two peaks. One appears 
at k = 1, while the other appears at the optimal value 
of k. In contrast, the accuracy for a 10% noise level and 
a 20% level have one peak at the corresponding optimal 
k. This is because the peak at k = 1 disappears due to 
the effect of noise. 

4.2 Effects of Noise on t he Accuracy 
We further investigate the effects of noise on the pre­
dictive accuracy of k-NN, as shown in Figure 2. In this 
figure, the number of training instances is fixed at 32, 
and all curves come from the theoretical results. Each 
curve for k-NN represents the predictive accuracy of k-
NN wi th the optimal value of k at each noise level. 

Figure 2(a) shows the effects of relevant attr ibute noise 
on the predictive accuracies of 1-NN and the optimal k-
NN. When the noise level is 0%, the accuracy of 1-NN is 
comparable to that for the optimal k-NN, for both 1-of-
5/2 and 3-of-5/2 concepts. However, the predictive accu­
racy of 1-NN almost linearly decreases wi th an increase 
in the noise level. For a 50% noise level, the accuracy 
of 1-NN equals that of a random prediction algorithm 
which predicts the same class as that for a randomly se­
lected training instance. These observations suggest that 
1-NN is strongly sensitive to relevant attribute noise. In 
contrast, the predictive accuracy of the optimal k-NN 
exhibits slower degradation. For the disjunctive concept 
( l-of-5/2 concept), the accuracy of the optimal k-NN is 
not greatly changed as the noise level increases. 

Figure 2(b) shows the effects of class noise on the pre-
dictive accuracies of 1-NN and the optimal k-NN. For 
the 3-of-5/2 concept, both 1-NN and the optimal k-NN 
exhibit similar behavior to the corresponding tests wi th 
relevant attribute noise. However, the effects of class 
noise on the accuracy differ entirely from ones of rel­
evant attr ibute noise for the disjunctive concept. The 
predictive accuracy of 1-NN linearly decreases to 0.5. In 
contrast, the optimal k-NN's accuracy does not substan­

tially change unti l about a 30% noise level, whereafter it 
rapidly decreases to 50%. 

These observations show that the predictive accuracy 
of 1-NN is strongly affected by both relevant attr ibute 
noise and class noise. Also, they suggest that we can 
restrain the degradation in the predictive accuracy of k-
NN caused by an increase in noise level by optimizing 
the value of k. 

4.3 O p t i m a l Va lue of k 

Finally, we give the relationship between the optimal 
value of k and the number of training instances in noisy 
domains, as shown in Figure 3. In this figure, the optimal 
value of k comes from the theoretical results, and the 
target is a 3-of-5/2 concept. In the following discussions, 
we use N to refer to the number of training instances. 

For a 0% noise level, the optimal value of k remains 
k = 1 unti l N = 28. There is a rapid increase in the opti­
mal k at N = 32, and then the optimal k almost linearly 
increases wi th an increase of N. This rapid increase is 
caused by the change of the peak given the highest ac­
curacy from k = 1 to another (as mentioned in Section 
4.1, k-NN's predictive accuracy has two peaks). 

For each level (5%, 10%, and 30%) for both relevant 
attr ibute noise and class noise, the optimal value of k 
is changed from k = 1 to another at small N. This 
observation can be explained by the strong sensitivity 
of the accuracy of 1-NN to both relevant attr ibute noise 
and class noise (as mentioned in Section 4.2). That is, 
the peak at k = 1 disappears due to the effect of noise, 
even though N is a small number. After changing from 
k = 1 to another, the optimal value of k almost linearly 
increases wi th an increase of N. 

These observations from Figure 3 show that the opti­
mal value of k almost linearly increases wi th an increase 
of N after the optimal k is changed from k = 1 to an­
other, regardless of the noise level for both relevant at­
tr ibute noise and class noise. That is, the optimal value 
of k strongly depends upon the number of training in­
stances in noisy domains. 
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Figure 3: The optimal value of k against the number of training instances for a 3-of-5/2 concept. 

5 Conclusion 
In this paper, we presented an average-case analysis of 
the fc-nearest neighbor classifier (k-NN) for m-of-n/l tar­
get concepts in noisy domains. Our analysis dealt wi th 
three types of noise: relevant attribute noise, irrelevant 
attr ibute noise, and class noise. 

We formally defined the predictive accuracy of k-NN 
as a function of the domain characteristics. Using the 
accuracy function, we explored the predicted behavior 
of k-NN for each type of noise. The predictive accuracy 
of k-NN was given at various levels of noise, then the 
noise effects on k-NN's accuracy were shown. We also 
show that the optimal value of k almost linearly increases 
wi th an increase in the number of training instances in 
noisy domains. Our analysis was supported wi th Monte 
Carlo simulations. 

In the future, we wil l extend the framework of average-
case analysis to relax many restrictions such as Boolean 
attributes, a fixed class of target concepts, and a fixed 
distribution over the instance space. Using the extended 
framework, we would like to analyze learning algorithms 
to give more useful insights into their practical applica­
tions. 

R e f e r e n c e s 
[Aha and Kibler, 1989] Aha, D. and Kibler, D. Noise-

Tolerant Instance-Based Learning Algorithms. In Pro-
ceedings of IJCAI-89, pages 794-799. Morgan Kauf-
mann. 

[Aha et al, 1991] Aha, D., Kibler, D., and Albert, M. 
Instance-Based Learning Algorithms. Machine Learn­
ing, 6:37-66. 

[Albert and Aha, 1991] Albert, M. and Aha, D. Anal­
yses of Instance-Based Learning Algorithms. In 
Proceedings of AAAI-91, pages 553-558. A A A I 
Press/MIT Press. 

[Cover and Hart, 1967] Cover, T. and Hart, P. Nearest 
Neighbor Pattern Classification. IEEE Transactions 
on Information Theory, 13(l):21-27. 

[Cover, 1968] Cover, T. Estimation by the Nearest 
Neighbor Rule. IEEE Transactions on Information 
Theory, 14(1):50~55. 

[Creecy et al, 1992] Creecy, H., Masand, M., Smith, J. , 
and Waltz, D. Trading Mips and Memory for Knowl­
edge Engineering. Communications of the ACM, 
35(8):48-63. 

[Drakopoulos, 1995] Drakopoulos, J. Bounds on the 
Classification Error of the Nearest Neighbor Rule. 
In Proceedings of ICML-95, pages 203-208. Morgan 
Kaufmann. 

[Langley and Iba, 1993] Langley, P. and Iba, W. 
Average-Case Analysis of a Nearest Neighbor Algo­
r i thm. In Proceedings of IJCAI-93, pages 889-894. 
Morgan Kaufmann. 

[Murphy and Pazzani, 1991] Murphy, P. and Pazzani, 
M. ID2-of-3: Constructive Induction of M-of-N Con­
cepts for Discriminators in Decision Trees. In Proceed­
ings of IWML-91, pages 183-187. Morgan Kaufmann. 

[Okamoto and Satoh, 1995] Okamoto, S. and Satoh, K. 
An Average-Case Analysis of k-Nearest Neighbor 
Classifier. In Proceedings of ICCBR-95 (Veloso, M. 
and Aamodt, A. Eds., LNAI, 1010), pages 243-264. 
Springer-Verlag. 

[Okamoto and Yugami, 1996] Okamoto, S. and Yugami, 
N. Theoretical Analysis of the Nearest Neighbor Clas­
sifier in Noisy Domains. In Proceedings of ICML-96, 
pages 355-363. Morgan Kaufmann. 

[Pazzani and Sarrett, 1992] Pazzani, M. and Sarrett, 
W. A Framework for Average Case Analysis of Con­
junctive Learning Algorithms. Machine Learning, 
9:349-372. 

[Rachlin et al, 1994] Rachlin, J., Kasif, S., Salzberg, 
S., and Aha, D. Toward a Better Understanding of 
Memory-Based Reasoning Systems. In Proceedings of 
ICML-94, pages 242-250. Morgan Kaufmann. 

OKAMOTO & YUGAMI 243 


