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Abstract 
The case* based reasoning process depends on 
multiple overlapping knowledge sources, each 
of which provides an opportunity for learn­
ing. Exploiting these opportunities requires 
not only determining the learning mechanisms 
to use for each individual knowledge source, 
but also how the different learning mecha­
nisms interact and their combined utility. This 
paper presents a case study examining the 
relative contributions and costs involved in 
learning processes for three different knowl­
edge sources—cases, case adaptation knowl­
edge, and similarity information—in a case-
based planner. It demonstrates the importance 
of interactions between different learning pro­
cesses and identifies a promising method for in­
tegrating multiple learning methods to improve 
case-based reasoning. 

1 Introduction 
The case-based reasoning (CBR) process solves new 
problems by retrieving records of problem solving for 
similar prior problems and adapting their solutions to 
fit new needs. Learning by acquiring new cases is an in­
tegral part of this process: each problem-solving episode 
itself provides a new case to save for future reuse. How­
ever, learning-new cases is only one of many ways to 
learn within the CBR framework. CBR systems rely 
on at least four types of knowledge: the case base, in­
dexing scheme, similarity criteria, and case adaptation 
knowledge. Each of these types of knowledge provides an 
opportunity for learning. Consequently, a multistrategy 
learning approach [Michalski and Tecuci, 1994] that im­
proves multiple types of knowledge is promising for im­
proving case-based reasoning. Because the information 
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content of the different types of knowledge in a CBR sys­
tem may overlap [Richter, 1995], learning that augments 
one type of knowledge can even help overcome deficien­
cies in the others. For example, learning new cases might 
reduce the need for case adaptation knowledge, by en­
abling the system to start from more relevant cases; con­
versely, learning new case adaptation knowledge might 
enable a system to solve a wider range of problems with 
its existing cases. 

Developing the requisite learning methods for each 
knowledge type requires addressing questions about the 
learning mechanisms to use, how to integrate them, and 
the overall utility of adding them to the CBR process. 
A simple approach is to develop learning strategies for 
each knowledge type individually and then add them 
all to the CBR system. Learning methods exist, for 
example, for refining indexing criteria (see [Kolodner, 
1993] for an overview); learning methods have also been 
applied to case adaptation knowledge [Hanney, 1997; 
Sycara, 1988]; and some CBR systems already combine 
multiple forms of learning [Hammond, 1989]. 

However, simply combining methods may not achieve 
the desired overall benefits, even if each method is ef­
fective individually. For example, Leake, Kinley, and 
Wilson [1996] describe tests in which case learning, 
and learning about case adaptation, each independently 
made solution generation much more effective, but when 
case learning was added to adaptation learning, the 
addition yielded minimal improvement over adaptation 
learning alone. One possible explanation would be that 
in these tests, adaptation learning alone was almost suffi­
cient for optimal performance, leaving little room for im­
provement. However, tests described in this paper show 
that adding learning for another knowledge source can 
actually degrade performance: when the system learned 
both new cases and new adaptations, it was unable to re­
trieve the cases it needed in order to take full advantage 
of the learned adaptations. This interaction raises ques­
tions about how a CBR system can best exploit learning 
for each of its multiple knowledge sources. 
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This paper presents a case study examining the rela­
tionship of case learning, learning to refine case adap­
tation, and learning to refine similarity judgments in a 
case-based planning system. It considers two sets of is­
sues: the requirements for each of the individual learning 
methods to be effective, and the requirements for realiz­
ing their full potential for improving overall system per­
formance. It demonstrates the tight coupling of knowl­
edge sources for CBR and shows that linking similarity 
assessment to learned adaptation knowledge can yield 
important benefits for exploiting both case and adapta­
tion learning. 

2 Motivations and Issues 
This study grew out of research on learning to refine 
case adaptation. Case adaptation remains the least 
understood part of case-based reasoning, and experts 
agree that the state of the art in case adaptation is 
inadequate for automatic case adaptation to be in­
cluded in fielded applications of CBR [Barletta, 1994; 
Mark et al., 1996]. One possible way to alleviate this 
problem is to develop new methods for automatic learn­
ing of case adaptation knowledge. The DIAL system, our 
testbed case-based planner, uses a hybrid approach to 
learning adaptations [Leake et al., 1996], building initial 
adaptations by reasoning from scratch and then reusing 
adaptations by case-based reasoning. Learning of adap­
tation cases takes place in tandem with learning of plan 
cases to be reused by the normal case-based planning 
process [Hammond, 1989]. 

Unlike previous case-based approaches to case adap­
tation (e.g., [Sycara, 1988]), DIAL'S method reuses 
adaptations by derivational analogy [Carbonell, 1986; 
Veloso, 1994], replaying the derivations of previous adap­
tations to generate analogous adaptations, rather than 
transforming the solutions to prior adaptation prob­
lems. When the rationale for a problem-solving pro-
cess is available, derivational approaches can increase 
problem-solving efficiency for the broad class of prob­
lems with similar derivations [Veloso, 1994]. In addition 
to recording and replaying the traces of adaptations done 
from scratch, DIAL also stores traces of user-performed 
adaptations for problems it cannot adapt, increasing the 
range of adaptation problems it can solve. 

Both case learning and adaptation learning would be 
expected to reduce the effort expended on case adap­
tation. Case learning should increase the range of plans 
available as the starting point for reasoning, reducing the 
need to reason from distant plans requiring more adap­
tation. Adaptation learning should increase the avail-
ability of relevant adaptation knowledge, reducing the 
amount of effort required for each adaptation. Prior tests 
showed that as expected, the learning methods, used in­
dividually, each produced a marked improvement in the 

speed of case adaptation. Surprisingly, however, adding 
case learning to adaptation learning (the method that' 
performed best individually) produced only small addi­
tional speedup when compared with the best of the in­
dividual learning methods (adaptation learning) [Leake 
et al., 1996]. 

We hypothesized that the problem might be caused by 
a mismatch between the system's similarity assessment 
criteria and the system's changing case adaptation abil­
ities. To facilitate adaptation, similarity criteria should 
reflect adaptability [Birnbaum et al., 1991; Leake, 1992a; 
Smyth and Keane, 1996]. Thus when new adaptations 
are learned, similarity criteria should be modified to re­
flect changed adaptation abilities, in order to select the 
cases that will be easiest to adapt. However, early ver­
sions of DIAL—like most other CBR systems—relied on 
static similarity criteria. As a result, when it learned 
both new plan cases and new adaptations, the new plan 
cases it selected as most similar might be more difficult 
to adapt than plans that appeared less similar, but that 
involved problems it had learned how to adapt. 

To link similarity assessment directly to adaptation 
knowledge, we developed a simple similarity assessment 
method called RCR (for Re-application costs and rele­
vance) [Leake et al., 1996]. RCR estimates the cost of 
performing adaptations by using simple case-based rea­
soning about the costs of previous adaptations. Such a 
method makes learning to refine similarity a natural side-
effect of adaptation learning, but also has two potential 
drawbacks: either generating inaccurate similarity judg­
ments (if the costs of the previous adaptations retrieved 
turn out to be poor predictors), or imposing excessive 
computational overhead, because of embedding another 
case-based reasoning process within the main CBR cycle. 
Consequently, we asked four questions: 

1. Whether the linkage between similarity and adapta­
tion knowledge provided by RCR similarity assess­
ment can markedly decrease case adaptation effort 
when case learning and adaptation learning are used 
together. 

2. How the overall planning efficiency of DIAL is af­
fected by RCR and adaptation learning. 

3. How the total planning cost breaks down into costs 
of RCR similarity assessment versus case adapta­
tion. 

4. How adaptation learning and case learning affect 
the range of problems that the system can solve. 

After a synopsis of the learning methods investigated 
and how they are applied, this paper examines these 
four issues. It briefly addresses the first issue, which is 
considered in depth in Leake, Kinley, & Wilson [1997], 
and focuses primarily on the remaining three. 

LEAKE, KINLEY & WILSON 247 



3 Task domain and basic processing 
sequence 

DIAL's task domain is disaster response planning: the 
strategic planning used to guide damage assessment, 
evacuations, etc., in response to natural and man-made 
disasters such as earthquakes and chemical spills. Hu­
man disaster response planners appear to depend heavily 
on prior experiences when they address new problem sit­
uations [Rosenthal et a/., 1989], making it a natural task 
domain for case-based reasoning. For example, when 
generating a response plan to bring help to an isolated 
area, a previously-generated plan for another isolated 
area may provide helpful information for planning emer­
gency transportation. 

DIAL generates disaster response plans for disasters 
reported in simple (1-2 line) news stories. The sys­
tem includes a simple schema-based story understanding 
component that processes conceptual representations of 
news stories describing the initial events in a disaster, 
and a retrieval component that selects a prior response 
plan expected to be easily adaptable to the new disaster. 
Problems in the retrieved plan are detected by a sim­
ple evaluator for candidate response plans (based on the 
problem-detection process described in [Leake, 1992b], 
and supplemented by inputs from a human user). 

When problems are found, a description of the prob­
lem in a pre-defined problem vocabulary is provided to 
the adaptation component. That component can either 
build up adaptations from scratch or by case-based rea­
soning starting from previous adaptations. During adap­
tation, DIAL learns by storing traces of its case adapta­
tion process and of the memory search process used to 
find needed information. For example, if it performs a 
substitution to replace an unavailable object (e.g., sup­
plies were previously delivered by the Red Cross but 
there is no Red Cross in the country where the new dis­
aster occured), the stored memory search trace records 
the path it followed to find a substitution (e.g., mov­
ing from a memory node for Red Cross to the memory 
node for its abstraction of relief organizations, and then 
moving to specifications of that node). More complete 
descriptions of the system axe available in [Leake et a/., 
1996], 

4 Types of learning 
Response plan case learning: DIAL begins its pro­
cessing supplied with a small library of hand-coded dis­
aster response plans, using a representation analogous to 
that used by CHEF [Hammond, 1989]. When new disas­
ters are encountered, these response plan cases are reap-
plied by transformational analogy, changing components 
as needed to fit new constraints. The results are then 
stored for future reuse, adding to the case library. Be­

cause this process is a standard part of case-based plan­
ning systems, we will not discuss it further. When DIAL 
is unable to generate a suitable plan autonomously, its 
plan library can be augmented by user-generated plans, 
increasing the range of problems the system can solve 
autonomously, as described in the following paragraphs. 

Adaptation case learning: As described in [Leake 
et al, 1996], DIAL'S initial case adaptation knowledge 
is a small set of abstract transformation rules and a li­
brary of domain-independent "weak methods" for mem­
ory search (e.g., the "local search" strategy to find re­
lated concepts by considering nearby nodes in memory). 
When presented with a new adaptation problem, DIAL 
first selects a transformation rule to apply and then per­
forms memory search to find the information needed to 
operationalize the transformation rule and apply it to the 
problem at hand (for example, if a substitution transfor­
mation is selected, to find what to substitute). Once 
a successful adaptation has been generated, the system 
saves a trace of the steps used in solving the adapta­
tion problem for future reuse. In this way, the sys­
tem learns specific adaptation procedures starting from 
domain-independent adaptation methods when no spe­
cific knowledge is available. Adaptation cases may them­
selves be "adapted" in a simple way: If the derivation 
does not identify a solution, "local search" considers al­
ternatives near the one suggested by the derivation, ter­
minating its search after reaching a user-defined limit on 
the number of nodes visited. When the process termi­
nates without finding an adaptation, the user can guide 
the system through the adaptation process to generate 
the new plan. Both the new adaptation and the resulting 
plan are stored for future use. 

DIAL'S adaptation cases have two basic parts: in­
dexing information and adaptation information. The 
indexing information includes a representation of the 
type of problem to adapt and information about the 
response plan for which the adaptation case was gen­
erated. The problem description information is simi­
lar in spirit to the problem vocabularies used to guide 
adaptation in other CBR systems (e.g., [Leake, 1992b]), 
and serves as an index to guide retrieval of adapta­
tion cases to use for new adaptation problems. The 
problem vocabulary divides problems according to cate-
gories such as UNAVAILABLE-FILLER and LACK-
OF-ACCESS. Each problem type is associated with a 
structure to be filled by a fixed range of descriptive in­
formation (e.g., the particular role, filler, and attempted 
action involved). To streamline access to relevant adap­
tation cases, stored adaptation cases are organized in 
memory by the types of problems they address. 

The adaptation information packages a transforma­
tion type (e.g., substitute, add, delete) and a pointer 
to a memory search case containing the memory search 
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steps used to find the information needed to apply the 
transformation. The memory search steps are described 
in terms of a vocabulary of standard memory operations, 
such as extracting a role-filler or moving up the abstrac­
tion hierarchy in memory. 

The adaptation information is used both to guide fu­
ture adaptations and to estimate their cost. Once an 
adaptation case has been retrieved, the cost of mem­
ory search dominates all other costs involved in adap­
tation. Consequently, the cost can be approximated by 
the memory search cost involved in replaying the stored 
memory search trace. 

Similarity learning: The RCR similarity assess­
ment method predicts the cost of adapting a problem in 
a case-based way, using learned adaptation knowledge. 
Given a new disaster situation and a candidate response 
plan with applicability problems, RCR first retrieves the 
adaptation cases most relevant to the current problem 
types, one for each problem to adapt, using the problem 
description as an index into the library of adaptation 
cases. It next estimates the cost to re-apply each of the 
adaptation cases retrieved, based on the length of its 
adaptation derivation. 

Ideally, in similar future contexts, replaying the 
derivation will lead to an analogous result that applies to 
the new context, so that the length of the stored deriva-
tion suggests the re-application cost. However, differ­
ences between the old and new problems may prevent the 
prior derivation from being directly applicable, increas­
ing the cost of adaptation. Consequently, the estimated 
cost is multiplied by a "dissimilarity" factor based in a 
simple way on the semantic similarity of old and new sit­
uations. To calculate the dissimilarity factor DIAL sim­
ply sums semantic distances between role-fillers in the 
problem descriptions, according to its memory hierarchy. 
The benefits of RCR compared to alternative methods 
are discussed in Leake, Kinley, and Wilson [1997]. 

Note that because RCR focuses on the difficulty of 
adapting problems, a response plan that requires several 
simple adaptations could be chosen over a response plan 
that requires a single difficult adaptation. Because this 
similarity learning method focuses on finding the cases 
that are easiest to adapt (those with the least impor­
tant differences), it differs from learning methods such 
as Prodigy/Analogy's [Veloso, 1994] "foot-print" simi­
larity metric that are aimed at learning situations with 
the most relevant similarities. RCR is in the spirit of 
Smyth and Keane's [1996] adaptation-guided retrieval, 
but learns about the difficulty of adaptations from expe­
rience rather than using static criteria to estimate adap­
tation cost. 

Thus DIAL'S learning mechanisms include response 
plan learning, by CBR/transformational analogy; adap­
tation learning, by CBR/derivational analogy applied to 

traces of internal processing or user adaptations; and 
similarity learning, by CBR/transformational analogy-
applied to previous adaptations. The combination of 
methods allows different lessons to be drawn from a sin­
gle episode and reapplied independently in new contexts. 

5 Effects of Individual and Combined 
Learning Strategies 

To answer the questions listed in section 2, we performed 
a series of tests. These tests compared DIAL'S perfor­
mance under five conditions: No learning of either cases 
or adaptations (NL); case learning, of plan cases only— 
the standard learning of case-based planners (CL); adap­
tation learning, in which only adaptation cases are stored 
(AL); learning of both response plan cases and adap­
tation cases (AL+CL); and learning of both response 
plan cases and adaptation cases, using the RCR method 
to base similarity assessment during plan retrieval on 
learned adaptation cases (AL+CL+RCR). Each condi­
tion except the last used traditional semantic similarity 
for case retrieval, with ties broken by a simple count of 
the number of problems in a plan case requiring adapta­
tion. 

The initial memory for the trials included nodes for 
1264 concepts and an initial case library containing 5 
response plans for earthquake, air quality, flood, and 
fire disasters. During testing, DIAL processed concep­
tual representations of 18 news stories (7 floods, 5 earth­
quakes, 4 forest fires, and 2 industrial air quality prob­
lems). Generating response plans for these disasters re­
quired generating 119 adaptations, each of which was 
stored as a new adaptation case. These experiments ex­
tended the trials reported in [Leake et a/., 1996], which 
processed 5 stories, resulting in 30 adaptation cases. 

Test runs were divided into two sets. Processing of 
the first third of the adaptation problems was treated as 
a learning phase to build up initial knowledge sources, 
and statistics were gathered on the remaining two thirds 
of the adaptations. 

Effects of linking similarity and adaptation 
knowledge on adaptation efficiency: The measure 
used for adaptation efficiency was memory search effort, 
calculated by two machine-independent measures: the 
number of memory nodes visited, and the number of 
primitive memory search operations performed. Figure 1 
shows that both case learning and adaptation learning 
individually provide large efficiency increases over no 
learning (as expected), while adaptation efficiency with 
AL+CL provides smaller gains over adaptation learning 
alone. The results for the first four cases are consistent 
with those of [Leake et a/., 1996]. 

The fifth result, for AL+CL+RCR, suggests the po­
tential benefits of directly linking similarity judgments 
to learned adaptation knowledge. The tests do not, 
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Figure 2: Overall processing costs. 

however, address another crucial question: whether the 
combination of A L + C L + R C R improves overall planning 
performance. RCR similarity assessment involves re-
trieving adaptation cases applicable to all the problems 
in a set of candidate cases, possibly imposing consider­
able overhead on the retrieval/similarity assessment pro­
cess. This led us to examine the overall efficiency of 
generating response plans, measured by execution time. 

Overa l l P l a n n i n g Ef f ic iency and Cost Break­
d o w n : Figure 2, i l lustrating execution time in CPU sec­
onds, shows that A L + C L + R C R in fact provided some 
improvement over the other conditions in terms of over­
all planning time. The light bands at the top of the 
bars show the portion of the execution time for the 
retrieval/similarity assessment process. Interestingly, 
although A L + C L decreased the machine-independent 
measures of adaptation effort compared to AL (as shown 
by figure 1), it resulted in a noticeably worse total exe­
cution time than AL. This is partially due to increased 
retrieval time of retrieving from growing sets of plan 
and adaptation cases. However, it also appears that the 
machine-independent measures do not completely cap-
ture the factors affecting adaptation time. 

Effects on the Range o f P rob lems the Sys tem 
C a n Solve: DIAL's init ial domain theory is incomplete, 
but its ability to store and reuse user-provided solutions 
(both disaster response plans and adaptations) enables 
it to augment its knowledge. Consequently, its learning 
affects not only efficiency, but also the range of prob­
lems that it can solve. Figure 3 shows the percentage 

Figure 3: Failure rates for the adaptation process. 

of the tr ial problems the system is unable to solve au­
tonomously after the learning phase on the test set of 
problems. The combination of case learning and adapta­
tion learning performed better than either method alone, 
and the improved case selection of A L + C L + R C R in­
creased the proportion of problems that the system could 
solve compared to A L + C L based on static semantic sim­
ilarity criteria. However, these differences are small and 
possibly insignificant. 

6 Lessons and Direct ions 
These results suggest the importance of adjusting simi­
larity criteria—and hence the selection of learned cases— 
to keep pace with adaptation learning. By enabling more 
effective use of two types of learned knowledge, integrat­
ing different types of learning improved both the speed 
of processing and the range of problems that D I A L could 
solve. These pilot experiments raise many issues for fu­
ture study: the relative importance of adaptation and 
case learning in different domains, the learning curve for 
each type of knowledge, the ut i l i ty of case-based sim­
ilarity assessment methods (like RCR) as the number 
of adaptation cases increases, whether it is possible to 
partially alleviate the ut i l i ty problem by retaining only 
a subset of the many adaptation cases that are gener­
ated, and the tradeoffs and ut i l i ty of alternative methods 
for retrieving and applying adaptation knowledge during 
case selection. However, the results support the poten­
t ial value, of coordinating different types of learning in 
CBR and the need for further investigation. 
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7 Conclusion 
Case-based reasoning exploits multiple knowledge 
sources. Consequently, it provides an opportunity for 
multistrategy learning to refine each of those knowledge 
sources. Our studies of multistrategy learning in the 
case-based planner DIAL provide—to our knowledge— 
the first empirical demonstrations of the complementary 
roles that can be played by these multiple learning pro­
cesses. However, they also show that the learning strate­
gies must be coordinated to realize their potential bene­
fit. Similarity criteria for selecting cases must change as 
adaptation knowledge is learned; neither coverage of the 
case library, nor case adaptation abilities, can be judged 
in isolation from the other knowledge sources. Likewise, 
in developing a combined method, how one type of learn­
ing affects the efficiency of one component of the CBR 
process is secondary to the efficiency effects of the learn­
ing on the CBR process as a whole. The close coupling of 
multiple processes and knowledge sources in CBR com­
plicates the application of learning to each one, but also 
provides a new motivation for combined learning: Com­
bined learning can enable a CBR system to better exploit 
the relationships between multiple types of knowledge. 
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