
Semiring-based Constraint Logic Programming
Stefano Bistarelli, Ugo Montanari*, Francesca Rossi

University of Pisa
Computer Science Department

Corso Italia 40, 56125 Pisa, Italy
E-mail: {bista,ugo,rossi}@di.unipi.it

Abstract
We extend the Constraint Logic Programming
(CLP) formalism in order to handle semiring-
based constraint systems. This allows us to
perform in the same language both constraint
solving and optimization. In fact, constraint
systems based on semirings are able to model
both classical constraint solving and more so­
phisticated features like uncertainty, probabil­
ity, fuzzyness, and optimization. We then pro­
vide this class of languages with three equiva­
lent semantics: model-theoretic, fixpoint, and
proof-theoretic, in the style of CLP programs.

1 Introduction
Classical constraint satisfaction problems (CSPs)
[Mac92] are a very expressive and natural formalism to
specify many kinds of real-life problems. However, they
also have evident limitations, mainly when they are used
to represent real-life scenarios where the knowledge is
not completely available nor crisp. In fact, in such sit­
uations, the ability of stating whether an instantiation
of values to variables is allowed or not is not enough
or sometimes not even possible. Recently, a proposal
which extends classical CSPs in this direction has been
developed [BMR95; BMR97], which is able to model
many desired features, like fuzzyness [DFP93], proba­
bility [FL93], uncertainty, partiality [FW92], hierarchy
[BMMW89], and optimization. This framework is based
on the observation that a semiring (that is, a domain
plus two operations satisfying certain properties) is all
what is needed to describe many constraint satisfaction
schemes. In fact, the domain of the semiring provides
the levels of consistency (which can be interpreted as
cost, or degrees of preference, or probabilities, or oth­
ers), and the two operations define how to combine con­
straints together. In particular, from one of the opera­
tions we can derive a partial order < among the elements

"On leave at SRI International, Menlo Park, CA.

of the semiring which allows us to compare different el­
ements: if a < b then it means that b is better than a.
This is crucial in situations which involve some kind of
optimization. Constraint problems described according
to this framework are called SCSP (for Semiring-based
Constraint Satisfaction Problems).

Constraint logic programming (CLP) [JL87] languages
extended logic programming (LP) by replacing term
equalities with constraints and unification with con­
straint solving. Programming in CLP means choosing
a constraint system for a specific class of constraints (for
example, linear arithmetic constraints, or finite domain
constraints) and embedding it into a logic programming
engine. This approach is very flexible since one can
choose among many constraint systems without chang­
ing the overall programming language, and has shown
to be very successful in specifying and solving complex
problems in terms of constraints of various kind. How­
ever, it can handle only classical constraint solving. Thus
it is natural to try to extend the CLP formalism in order
to be able to handle also SCSP problems. We will call
such an extension SCLP (for Semiring-based CLP).

In passing from CLP to SCLP languages, we will re­
place classical constraints with the more general SCSP
constraints. By doing this, we also have to modify the
notions of interpretation, model, model intersection, and
others, since we have to take into account the semiring
operations and not the usual CLP operations. For ex­
ample, while CLP interpretations associate a truth value
(either true or false) to each ground atom, here ground
atoms must be given one of the elements of the semir­
ing. Also, while in CLP the value associated to an ex-
istentially quantified atom is the logical or among the
truth values associated to each of its instantiations, here
we have to replace the or with another operation which
refers to one of the semiring operations.

After describing the syntax of SCLP programs, we
will define three equivalent semantics for such languages:
model-theoretic, fixpoint, and operational. These se­
mantics are conservative extensions of the correspond-

352 CONSTRAINT SATISFACTION

ing ones for LP, since by choosing a particular semir­
ing (the one wi th just two elements, true and false, and
the logical and and or as the two semiring operations)
we get exactly the LP semantics. The extension is in
some cases predictable but it possesses some crucial new
features. For example, the presence of a partial order
among the semiring elements (and not a total order like
it is in the L P / C L P case, where we just have two com­
parable elements) brings some conceptual complexity in
some aspects of the semantics. In fact, in the operational
semantics there could be two refutations for a goal which
lead to different semiring elements which are not corn-
parable in the part ial order. In this case, these elements
have to be combined in order to get the solution corre­
sponding to the given goal, and their combination could
be not reachable by any derivation path in the search
tree. This means that any constructive way to get such
a solution by visiting the search tree would have to fol­
low all the incomparable paths before being able to find
the correct answer.

A related approach is HCLP (Hierarchical CLP)
[BMMW89], where each constraint has a level of impor­
tance (like strong, weak, required), and these levels are
used to decide which constraints to satisfy. However, a
constraint can only be satisfied or not, and thus HCLP
is a crisp formalism. Moreover, their treatment is only
algorithmic, and they do not provide their language wi th
a fixpoint or a model-theoretic semantics.

A recent approach to multi-valued logic programming
[MPS97] uses bilattices wi th two orderings to model both
t ruth and knowledge levels. The resulting logic program­
ming semantics is just operational and fixpoint, while no
model-theoretic semantics is presented. Moreover, the
presence in our approach of just one ordering (modelling
t ruth levels) is not a restriction, since the vectoriza-
tion of several semirings is sti l l a semiring (see [BMR95;
BMR97]) and thus optimization based on multiple crite­
ria can be cast in our framework as well.

2 Semir ing-based CSPs
Here we give the basic notions about constraint solving
over semirings, introduced in [BMR95; BMR97].

D e f i n i t i o n 1 (semi r i ng) A semiring is a tuple
(A,-!-, x , 0 , 1) such that

• A is a set and 0 ,1 A ;

• +, called the additive operation, is a closed (i.e.,
a, b A implies a + b A) , commutative (i.e., a +
b = 6 + a) and associative (i.e., a + (b + c) = (a +
b) + c) operation such that o + 0 = o = 0 + a (i.e.,
0 is its unit element);

• x, called the multiplicative operation, is a closed and
associative operation such that 1 is its unit element

and a x 0 = 0 = 0 x a (i.e., 0 is its absorbing
element);

• x distributes over + (i.e., a x (6 + c) = (a x b) +
(a x c)).

D e f i n i t i o n 2 (c -semir ing) A c-semiring is a semiring
(A, +, x , 0 , 1) such that

• + is idempotent (i.e., a A implies a + a = a) ;

• x is commutative;

• 1 is the absorbing element of +. D

The following is a list of properties about c-semirings
which wi l l be used in this paper:

• Given any c-semiring S = (A, +, x , 0 , 1) , the rela­
tion over A such that 6 i fFa + 6 = 6 i s a
partial order.

• Since 0 is the unit element of the additive operation,
it is the minimum element of the ordering. Thus,
for any a A, we have 0

• Both the additive and the multiplicative operation
are monotone on the ordering

• Since 1 is also the absorbing element of the addi­
tive operation, then a 1 for all a. Thus 1 is the
maximum element of the partial ordering. This im­
plies that the x operation is intensive, that is, that
a x b a. This is important since it means that
combining more constraints leads to a worse (w.r.t.
the ordering) result.

• Given a c-semiring S = (A, +, x , 0 , 1) , and its par­
t ial order is a complete lattice1. More­
over, for any a, b A, we have a b = a + 6, where
V is the lub operation of the lattice.

• Given a c-semiring S = (A, +, x, 0 ,1) , consider the
corresponding lattice If x is idempotent,
then we have that:

1. + distributes over x;
2. x = where is the gib operation of the

lattice;
3. is a distributive lattice.

D e f i n i t i o n 3 (SCSPs) A constraint problem based on
semirings (SCSP) consists of a set of variables with a fi­
nite domain D and a set of constraints. Each constraint,
which connects a subset of the variables V, is defined by
associating an element of the semiring with each tuple of
values of D for the variables in V.

Note that the elements of the chosen semiring can
be interpreted in many ways: cost, level of preference,
certainty, probability, etc. Note also that the intuitive

Actually, for this result to hold we must assume that
there exists the sum of an infinite number of elements.

BISTARELLI, M O N T A N A R I , & ROSSI 353

meaning of the partial order is to state when an ele­
ment is better than another one: if a b then we mean
that b is better than a. Finally, it is interesting to notice
that classical CSPs are just SCSPs where the semiring
has just two values: true and false, and the two opera­
tions are logical and and logical or. That is, the semiring
is

3 Syntax of SCLP programs
SCLP(S,D) programs are just Constraint Logic Pro­
gramming (CLP) programs [JL87] where constraints
are handled according to the chosen semiring S =
(-4, +, x, 0,1) and variables can be assigned values over
a finite set D. As usual, a program is a set of clauses.
Each clause is then composed by a head and a body. The
head is just an atom and the body is either a collection
of atoms, or a value of the semiring. Finally, a goal is a
collection of atoms. The BNF for this syntax follows.

As an example, consider the following SCLP(S,D) pro­
gram where is
the set of non-positive integers, and D = {a,b,c}. Note
that the ordering in this semiring coincides with the

ordering over integers.

The intuitive meaning of a semiring value like -3 as­
sociated to the atom r(a) is that r(a) costs 3 units. Thus
the set contains all possible costs, and the
choice of the two operations max and + implies that
we intend to maximize the sum of the costs. This gives
us the possibility to select the atom instantiation which
gives the minimal cost overall.

4 Model-theoretic semantics
An interpretation is a function which takes a predi­
cate and an instantiation of its arguments (that is, a
ground atom), and returns an element of the semiring:

where Pn is the set of n-ary
predicates. The notion of interpretation can be used to
associate elements of the semiring also to formulas which
are more complex than ground atoms. More precisely,
we can define the function value l which takes any for­

mula appearing in a program (not a clause) and returns
an element of the semiring:

• The value associated to a non-ground atom of the
form is computed by considering the
lub of the values associated to all the ground atoms
A{x/d), where d is any domain element. That is,

Formulas
of this kind occur in SCLP languages since variables
appearing in the body of a clause but not in its head
are considered to be existentially quantified. For
example, in the special case of logic programming
the clause p(a) :- q (x , a) is just a shorthand for
the formula

• The value associated to a conjunction of atomic
formulas of the form is the product of the
values associated to A and B:

• For any semiring element a,

Note that the meaning associated to formulas by func­
tion valuej coincides with the usual logic program­
ming interpretation [Llo93] when considering the semir­
ing In fact, in this case*the o r d e r i n g i s de­
fined by false true, the lub operation of the lattice
({true, false}, is and the glb is Thus, for ex­
ample,

Thus it is enough that one of
the A(d) is assigned the value true that the value asso­
ciated to the whole formula is true. Note also
that in this special instance the lub and glb of the lat­
tice coincide with the two semiring operations, but this
is not true in general (see Section 2).

Given a clause of the form H : -B and an interpreta­
tion /, we say that the clause is satisfied in / if and only
if valuel(H) valuel(B). This is consistent with the
usual treatment of clauses in logic programming, where
a clause is considered to be satisfied if the body logically
implies the head, and by noting that logical implication
in the semiring SCSP coincides with the ordering

For example, the clause p(a) :- q(b) is satisfied in
I i f the clause p (x) :- q (x , a) is
satisfied if the clause p(a)
:- q (x , a) is satisfied if ;
the clause p (x) :- q (x , y) is satisfied if

An interpretation is a model for a program P if all
clauses of P are satisfied in /. Given a program and
all its models, one would like to identify a unique single
model as the representative one. In logic programming
this is done by considering the minimal model [Llo93],
which is obtained by intersecting all the models of the
program. This works because models in logic program­
ming are assimilable to sets of ground atoms, those with
associated value true. Here we follow the same approach,

354 CONSTRAINT SATISFACTION

It is easy to see that the operation of model intersec­
tion is associative, idempotent, and commutative. Thus
its application can be extended to more then two mod­
els. Given a set of models MS, we wil l write o(MS) as
the model obtained by intersecting all models in MS.

Given a program P and the set of all its models, its
minimal model is obtained by intersecting all models:

is a model for P }) . The model-
theoretic semantics of a program P is its minimal model,

Consider the program P described at the end of last
section. The minimal model for such a program
must assign a non-positive integer to each ground atom,
and it is the following function:

5 F ixpo in t semantics
We define now the operator which extends the one
used in logic programming [Llo93] by following the same
approach as in the previous section. The resulting op­
erator maps interpretations into interpretations, that is,

where is the set of all interpreta-
tions for P. Given an interpretation I and a ground*
atom A, assume that program P contains k clauses
defining the predicate in A. Clause i is of the form

Then

This function coincides with the usual immediate conse­
quence operator of logic programming when considering
the semiring S C S P .

Consider now an ordering among interpretations
which respects the semiring ordering.

De f i n i t i on 6 (pa r t i a l o rder of in te rp re ta t ions)
Given a program P and the set of all its interpreta­
tions ISp, we define the structure where for any

for any ground
atom A.

It is easy to see that is a complete partial or­
der, whose greatest lower bound coincides with the glb
operation (suitable extended to interpretations). It is
also possible to prove that function is monotone and
continuous over the complete partial order

By using these properties, classical results on partial
orders [Tar55] allow us to conclude that

• has a least fixpoint, which coincides
with

• the least fixpoint of can be obtained by comput­
ing This means starting the application of

from the bottom of the partial order of interpre­
tations, called and then repeatedly applying
until a fixpoint.

Consider again the program at the end of Section 3.
We recall that in this specific case the semiring is S =

Thus
function Tp is:

In this semiring the bottom interpretation I0 is the in­
terpretation which maps each semiring element into itself
and each ground atom into the bottom of the lattice asso­
ciated to the semiring, that is, Note that we slightly
abused the notation since interpretations are functions
whose domain contains only ground atoms (see Section
4), while here we also included semiring elements. This
simplifies the definition of Jo; however, it is possible to
obtain the same result with a more complex definition of

which satisfies the definition of interpretation. Given
we obtain I\ by applying function Tp above. For ex­

ample, = —3. Instead, and
The following table gives

the value associated by the interpretations Ii wi th each
ground atom. Some of the atoms are not listed because

BISTARELLI, MONTANARI , & ROSSI 355

each interpretation I i gives them value Al l inter­
pretation Ii w i th i > 4 coincide with J4, thus .[4 is the
fixpoint of TP.

6 Proof-theoretic semantics
We wil l define here a proof-theoretic semantics based on
a resolution rule, just like in CLP [JL87]. However, we
need first to rewrite the program into a form which is
more suitable to our semantics.

First, we rewrite each clause so that the head is an
atom whose arguments are only variables. This means
that we must explicitely specify the substitution that was
writ ten in the head, by inserting it in the body. That
is, given a clause : -B we transform it into

Thus bodies now have the following form:
We recall that B can be either a collection of atoms or
a value of the semiring. To give a uniform representa­
tion to bodies, we can define them as triples containing
a collection of atoms (possibly empty), a substitution,
and a value of the semiring (possibly, 1). Thus bod­
ies are now of the form If we have a
body belonging to the syntactic category B\ of the form

If instead we have where
C is a collection of atoms, we get Thus clauses
have now the form Init ial goals need
to be transformed as well: given a goal
where C is a collection of ground atoms, we get the goal

The reason why we write the empty
substitution and the value 1 of the semiring is that both
these elements are the unit elements w.r.t. the opera­
tions we want to perform on them, that is, composition
of substitution and constraint combination.

In summary, given a SCLP(S,D) program, we get a
program in an intermediate language, whose syntax is
as follows:

Consider again the example at the end of Section 3.
The transformed program is then

Once we have transformed the given SCLP program
into a program in the syntax just given, we can apply the
following semantic rule. This rule defines the transitions
of a nondeterministic transition system whose states are
goals (according to the syntactic category G1).

If the current goal contains an atom which unifies wi th
the head of a clause, then we can replace that atom wi th
the body of the considered clause, performing a step sim­
ilar to the resolution step in CLP. The main difference

356 CONSTRAINT SATISFACTION

here is that we must update the th i rd element of the
goal, that is, the semiring value associated to the goal:
if before the transition this value is a and the transition
uses a clause whose body has value a1, then the value
associated to the new goal is a x a1. The reason for us­
ing the x operation of the semiring is that this is exactly
the operation used when accumulating constraints in the
SCSP framework.

A derivation is a finite or infinite sequence of applica-
tions of the above rule. A refutation is a finite derivation
whose final goal is of the form

Let us now consider the set

which contains all pairs representing all refutations for
the given program. Notice that we can forget about the
derivation 9 accumulated during the refutations, since
we assumed to always start wi th a ground goal. Thus
only refers to variables introduced during the derivation.

Now we are ready to define function which, given
a ground atom, returns a value of the semiring. More
formally, function where AT is the set
of ground atoms and A is the semiring set, is defined as
follows: Notice that, if the
set of all ai such that is in S is empty,
returns the unit element for +, that is, 0.

For example, by considering the goal
we get two refutations, one represented by the pair

and the other one by Thus

T h e o r e m 9 (m o d e l and opera t iona l semantics)
Given a SCLP(S,D) program P, we have that
OSP.

P r o o f (sketch): The statement can be proved by induc­
tion on the length n of the refutations, and considering
at step n the set and
such that there is no refutation of length greater than n
for (C,a)}. The proof is similar to that used in [Llo93]
for logic programming, although we have to generalize
because of the presence of semiring values.

For lack of space and sake of readability, in this paper
we treated only the case of goals consisting of a ground
atom. However, our results can be extended also to the
general case of non-atomic and/or non-ground goals.

7 Future work
We are now studying how to efficiently implement our
framework. Techniques related to heuristically guided

search can be useful to cut some paths in the search
tree. However, when the partial order is not total, we
may have to consider more than one path at a time,
as noted in the previous section. Other techniques that
we axe investigating are based on dynamic programming
[BMR97] or on other methods to efficiently compute the
solutions in a bottom-up way.

References
[BMMW89] A. Borning, M. Maher, A. Martindale, and

M. Wilson. Constraint hierarchies and logic
programming. In Martell i M. Levi G., edi­
tor, Proc. 6th International Conference on
Logic Programming. M I T Press, 1989.

[BMR95] S. Bistarelli, U. Montanari, and F. Rossi.
Constraint Solving over Semirings. In Proc.
IJCAI95. Morgan Kaufman, 1995.

[BMR97] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based Constraint Solving and Op­
timization. Journal of the ACM, 1997. To
appear.

[DFP93] D. Dubois, H. Faxgier, and H. Prade. The
calculus of fuzzy restrictions as a basis for
flexible constraint satisfaction. In Proc.
IEEE International Conference on Fuzzy
Systems. IEEE, 1993.

[FL93] H. Fargier and J. Lang. Uncertainty in con­
straint satisfaction problems: a probabilis­
tic approach. In Proc. European Conference
on Symbolic and Qualitative Approaches to
Reasoning and Uncertainty (ECSQARU).
Springer-Verlag, LNCS 747, 1993.

[FW92] E. C. Freuder and R. J. Wallace. Par­
t ial constraint satisfaction. AI Journal, 58,
1992.

[JL87] J. Jaffar and J.L. Lassez. Constraint logic
programming. In Proc. POPL. AC M, 1987.

[Llo93] J. W. Lloyd. Foundations of Logic Program­
ming. Springer Verlag, 1993.

[Mac92] A.K. Mackworth. Constraint satisfaction.
In Stuart C. Shapiro, editor, Encyclope­
dia of AI (second edition), volume 1, pages
285-293. John Wiley & Sons, 1992.

[MPS97] Bamshad Mobasher, Don Pigozzi, and
Giora Slutzki. Multi-valued logic program­
ming semantics: An algebraic approach.
Theoretical Computer Science, 1997. to ap­
pear.

[Tar55] A. Tarski. A lattice-theoretical fixpoint the­
orem and its applications. Pacific Journal
of Mathematics, 5:285-309, 1955.

BISTARELLI, MONTANARI , & ROSSI 357

