
A Latt ice Machine Approach to Automated Casebase Design: 
Mar ry ing Lazy and Eager Learning 

Hui Wang, Werner Dubitzky, Ivo Diintsch, David Bell 
School of Information unci Software Engineering, University of Ulster 

Newtownabbey, BT 37 OQB, N.Ireland 

{H.Wang,W.Dubi tzky, I .Duentsch,DA.Bel l }©uls t .ac.uk 

Abstract 
Case-based reasoning (CBR) is concerned w i t h 
solv ing new problems by adapt ing solut ions 
tha t worked for s imi lar problems in the past. 
Years of experience in bu i ld ing and f ielding 
C B R systems have shown tha t the "rase ap­
proach" is not free f rom problems. It has been 
realized tha t the knowledge engineering effort 
required for designing many real-world ease-
bases can be proh ib i t i ve ly h igh. Based on the 
wide-spread use of databases and powerful ma­
chine learning methods, some C B R research­
ers have been invest igat ing the possibi l i ty of 
designing casebases automat ica l ly . Th is paper 
proposes a f lexible model for the automat ic dis-
covery of abstract cases f rom data.bases based 
on the Lat t ice Machine. It also proposes an 
efficient and effective a lgor i thm for ret r iev ing 
such cases. Besides the known benefits associ­
ated w i t h abstract cases, the main advantages 
of this approach are that the discovery process 
is fu l ly automated (no knowledge engineering 
costs). 

K e y w o r d s : case-based reasoning, machine learning, 
knowledge acquis i t ion, automated model ing 

1 Introduct ion 
Case-based reasoning (CBR) is concerned w i t h solving 
new problems by adapt ing solut ions that worked for sim-
i lar problems in the past. CBR research is mot ivated by 
the desire to establish cognit ive models to understand 
human th ink ing and behavior (psychology, cognit ive sci­
ence), and to bu i ld more effective, efficient, and robust 
computer systems tha t solve real-world problems (ar t i f i ­
cial intel l igence). Since the early nineties, C B R has been 
successfully applied in a wide variety of areas. However, 
w i t h almost ten years of bo th theoretical and appl ied 
experience in bu i ld ing and f ielding case-based systems, 
it has been realized that the "case approach" is not free 
f rom problems [Leake, .1990]. T w o of the more impor tan t 
issues tha t need to be addressed are out l ined below: 

• the imp lementa t ion of casebase maintenance. 

policies for revising the organizat ion of casebases 
in order to fac i l i ta te effective and efficient fu ture 
reasoning [Leake and W i l son , 1998]; and 

• the automation of the case, engineering process, tha t 
is. the automat ic generat ion of case- knowledge com­
ponents f rom exist ing in fo rmat ion (i.e., databases) 
Patterson et. al., 1998); the work presented in th is 

paper wi l l focus on this issue. 

The te rm case engineering refers to task of designing a 
casebase, that is, the processes of generat ing those com­
ponents tha t represent the appl icat ion-specif ic know­
ledge contained in a CBR system. In general, such know­
ledge structures describe the content- s t ructure of cases, 
cr i ter ia for organiz ing cases w i t h i n and ret r iev ing cases 
f rom the case l ibrary ( indexing scheme, s im i la r i t y meas­
ures), rules for adapt ing case solut ions, and case revision 
and retent ion schemes [Lenz et a/., 1998]. In add i t ion to 
determin ing the fundamenta l knowledge elements, the 
generation process also entai ls the selection or ext ract ion 
of those cases that w i l l be used to populate the in i t ia l 
casebase. 

The work presented in this paper proposes Lattice 
Machine a formal f ramework for learning f rom re­
lat ions, and its app l icat ion to au tomat ica l l y construct 
(case content descr ipt ion) and extract (case selection) 
abstract cases f rom databases. Fur thermore, an efficient 
a lgor i thm for the retr ieval of such abstract, cases is also 
proposed. 

The remainder of the paper is organized as fol lows. 
Section 2 briefly discusses the role of abstract cases in 
CBR. Section .3 introduces the def ini t ions and nota t iona l 
conventions, fol lowed in Section 4 by a formal descript ion 
of Lat t ice Machine, the p ivo ta l par t of the work in this 
paper. Sections 5 and 0 present efficient a lgor i thms for 
ex t ract ing abstract cases and ret r iev ing cases, based on 
the theoret ical results in La t t i ce Machine. Exper imenta l 
results are reported in Section 7. Section 8 concludes the 
paper. 

2 Abstract Cases in CBR 
Trad i t iona l CBR systems retr ieve, reuse, and retain 
cases in a representation reflecting concrete problem-
solving episodes. Recently, researchers have investigated 
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the role and use of abstract cases, e.g., [Bergmann and 
W i l k e , 1996]. Abs t rac t cases represent cases at a higher 
level of abstract ion. T h r o u g h abstract cases, the CBR 
process can be supported in several ways [Bergmann and 
W i l ke , 1996]; those ways per t inent to the discussion in 
th is paper are ou t l ined below: 

• Abst rac t cases can reduce the complexi ty of a case-
base by subs t i tu t ing sets of concrete cases and 
thereby s igni f icant ly reducing the size of the case-
base. A drast ical ly reduced caseba.se can improve 
retr ieval efficiency, reduce maintenance costs, and 
e l iminate or al leviate the notor ious swamping prob-

5l lem [Smyth and Keane, 1995 

• Cases at higher levels of abstract ion can serve as 
prototypes for indexing larger sets of more detai led 
cases. Th is can have profound effects on reducing 
retr ieval t imes, maintenance costs, and it can pro­
mote a better user understanding of the easebase 
content, and fac i l i ta te explanat ions for the system's 
reasoning process. 

In most s i tuat ions, abstract eases are not readily avail­
able, they must be generated - manual ly or automat ic­
al ly f rom concrete cases. To manual ly construct ab-
stract cases w i l l require a very high knowledge engineer­
ing effort for most appl icat ions. Whereas an automat ic 
generation procedure requires general domain knowledge 
about ways of mapp ing concrete cases onto higher levels 
of abstract ion. 

The abstract case construct proposed in this paper is 
based on the concept of hypertuples. Hypertuples, i.e., 
abstract cases, are au tomat ica l l y generated through a 
so-called domain lat t ice, which is impl ied in a problem 
domain . The ext ract ion and retrieval of abstract cases 
are achieved in domain lattice using the Lat t ice Machine. 

3 Defini t ions and notat ion 
To present our f indings concisely and w i t h i n the given 
page l i m i t , we briefly introduce some notat ional conven­
t ions and def ini t ions tha t are used throughout the paper. 

3.1 Decision systems 
An information system is a tuple I T--
where U — is a nonempty f ini te set and 
Ω — is a nonemptv finite; set of mappings 

1 
We interpret U as a set of objects and as a set 

of a t t r ibutes or features, each of which assigns to an 
object a i ts value under the respective a t t r ibu te . Let 

For we 
V. Each I is called a tuple, and the collection of al l 
tuples is denoted by D. Thus, for each , there is 
at least one such tha t 

A decision system V is a pair ( J , d), where 2 is an 
in fo rmat ion system as above, and d : — 

is an onto mapp ing , called a labeling of D; 
the value d(t) is called the label of t. 

The mapp ing d induces a pa r t i t i on of D w i t h the 
classes , where 

In th is paper we consider a dataset represented as a 
decision system D, which can be regarded as an initial 
easebase consisting of concrete cases. Then D is the set 
of (descriptions of) concrete cases, d is the case so lut ion, 
and V is the set of al l possible concrete cases in a prob­
lem domain . Therefore each D is associated w i t h a 
solut ion in the form of a class label d{t). 

3.2 Order and lattices 
Let be a par t ia l l y ordered set and . We 

let, . I f no confusion can 
arise1, we shall ident i fy singleton sets w i th the element 
they contain. 

Let L be a, lat t ice, par t ia l l y ordered by For x, y 
the least upper bound (or sum) is w r i t t en by x + y and 
the greatest lower bounel (or product ) by 

, its least upper bound and greatest lower bound are 
denoted by l ub (A ) and g lb (A) respectively. An element 
a A is called maximal in A, if for a l l x 
impl ies x = a. 

_ we say that. B covers A or A is covered 
by B, wr i t ten as if for each there is some 
A C B such tha t __ . 

The4 sublattice of £ generated f rom , w r i t t en by 
such that, t - l u b ( X ) } . 

The greatest elememt in |A/] is l u b ( M ) . If M is f in i te, 
M] is also f in i te. 

A com 
found in 

1Note can be finite or infinite. For the latter ease? the 
domain lattice is infinite. However we are only interested in 
the finite sublattice generated from a finite casebase. 

4 The Lat t ice Machine 
This section introduces the La t t i ce Machine, a construct 
which faci l i tates the discovery of abstract ea.ses f rom a 
given dataset. The discussion should also make apparent 
how the Lattice Machine' is l inked to machine learning 
concepts. 

4.1 Domain lattice 
We have found tha t , given a dataset expressed as a de­
cision system, an elegant mathemat ica l structure ( lat­
tice*) is impl ied. Th is structure makes it possible to in-
vestigate C B R , machine learning, as well the relat ionship 
between the two f rom an algebraic, perspective. In the 
sequel, we shall use D as described above as a generic 
decision system representing a dataset. 

Let . T h e n i s a vector 
where4 are sets of values 2. The elements of L 
are called hypertuples; the elements t of C w i t h = 
1 for al l are called simple tuples. Any set of 
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hypertuples is called a hyperrelation 3. Note tha t V is a 
set of all s imple tuples for a given problem domain , and 
D is the set of s imple tuples described in the dataset V. 

C is a lat t ice under the order ing 

(1) 

w i t h the sum and product operations, and the max ima l 
element (i.e., 1) given by 

(2) 
(3) 
(4) 

C is called domain lattice for V. 
There is a natura l embedding of D in to £ by assigning 

and we shall ident i fy D w i t h the image of this embed-
d ing. Then 

In the context of C B R , simple tuples are concrete cases 
whereas hypertuples are abstract cases since hypertuples 
cover mu l t ip le simple tuples hence they are "abstrac­
t ions" of simple tuples. 

Table 1(a) is a dataset (decision system) consisting 
of three simple tuples, where = 
{0 , 1} , and d is the label ing. Table 1(b) and (c) are sets 
of hypertuples, which are the least and greatest E-scts 
respectively for the dataset, to be defined later. 

Table 1: (a) A set of simple tuples in a decision system, 
(b) A set of hypertuples as the least E-set. (c) A set of 
hypertuples as the greatest E-set. 

3The concept of hyperrelation has been used before in e.g. 
[Orlowska, 1985; Wang et a/., 1998]. 

4.2 Equ i labe l ledness and genera l i za t i on 
A dataset imposes a label ing d of D on the domain lat­
t ice C. Thus al l elements in D are labeled, and those 
in are unlabeled. Th i s label ing can be gener­
alized to elements in the la t t ice which cover D. Th is 
general izat ion must, be consistent w i t h d in the sense 
tha t the generalized label ing must be the same as d for 
t D. Th is renders only those generalizations accept­
able which generalize d to equilabeled elements. I n tu ­
i t ively, an equilabeled element is t C wh ich covers 
at least one labeled element and al l labeled elements 
covered by t have the same label. 

Figure 1: A runn ing example. 

For an i l lus t ra t ive example, consider the d iagram in 
Figure 1, which depicts a smal l par t of a. domain latt ice. 
The bo t tom elements ( th in- l ined circles) in the d iagram 
represent s imple tuples. A l l other elements (bold- l ined 
circles) represent hypertuples. The or ig ina l label ing d is 
defined only for the elements { H , / , J , A', A / } . Here, B 
is equilabeled as H and I are al l labeled posit ive by d 
while G is unlabel led. In fact, al l elements in Figure 1 
are equilabeled except A,G and L: A covers elements 
w i t h different labels whereas G and L cover no labeled 
element. 

Formal ly , we call an element equilabeled w i t h 
respect to . In other 
words, r is equilabeled if | r intersects D, and every 
element in th is intersection is labeled for some 
Recall tha t K is the number of classes. In th is case, we 
say that r G-belongs to . We denote the set of al l 
equilabeled elements G-belonging to and let 
be the set of a l l equi labeled elements. Note tha t , 
and tha t ,. __ , , , impl ies 

We w i l l now extend d over al l of £ by set t ing 

Now E, along w i t h the extended label ing, can be re­
garded as a casebase of abstract cases (hypertuples). 
Th is is clearly too large. Since the elements in £ are 
par t ia l l y ordered - some are covered by some others 
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we need only look at those which are not covered by any; 
they are maximal Our wish to find maximal elements 
in some context leads to the following notions. 
De f . 4 . 1 . A (generalization) context (for learning) is a 
set P such that . We let 

E ( P ) is called the E set for P, and t C is said to be 
in context P if t M ( P ) . 

We observe the following lemma 4: 
L e m m a 4.2 . implies ) and 
E(A) . E ( B ) . 

This lemma implies E ( D ) E ( P ) E ( V ) for D 
P V. We then call E ( D ) least E-set and E ( V ) greatest 
E-set, which are denoted by E and E respectively. It is 
not hard to see that E is the set of all maximal elements 
in 8. 

Consider Figure 1 again. E ( { P , • • • ,K,M}) — 
{ C , M / } , a n d E ( { G , - - - , M } ) = { B , C , D . M } . 

4 .3 I n t e r p r e t a t i o n o f a d o m a i n l a t t i c e 
Given a hypertuple t in a. context P (i.e., t M ( P ) ) , 
we need a calculus to get the remaining hypertuples in 
the same context (see Theorem 4.1 below). We therefore 
need to interpret the domain lattice in a suitable way. 

Formally, let t = be a hypertuple, wi th 
. We think of t as an (undetermin-

istic) description of some object a in the following way: 

In short we have 
Each e1,. stands as a hypertuple on its own, which is 

interpreted as ; and 
is interpreted as glb(e j , ek). 

Consider a hypertuple t — . The relative 
complement or, simply, R-complement of t w i th respect 
to the greatest element in 
and is interpreted as 

Given a hyperrelation R = , where ti = 
, we wish to calculate its R-complement R 

in such a way that and . For this 
purpose we interpret R as to V.... V tn. Using the propos-
it ional calculus we can calculate the R-complement. of R 
as follows. Let : for 

. If follows 
Clearly the calculation of R-complement is exponential, 
which makes this not practical for large R. 

The above R-complement calculus can be generalized 
as follows. 
If t h then the R-cornplement of t w i th respect to 
h, denoted by is calculated similarly except that 

4Due to lack of space, we omit all proofs throughout the 
paper. 

L e m m a 4.3 . For R C C, 
1. 
2. 

S. Let is the 
set of all maximal elements in W. 

The first two properties guarantee that R is exclus­
ively complementary to R w i th respect to the maximal 
element of the domain lattice. For an example, consider 
Table 1(a). The table is interpreted as , 
is interpreted as = 

Then , which clearly covers 
and u2, as well as an unseen tuple (b, 1). 

The th i rd property says that R is the set of maximal 
elements not covered by R. Consider Figure 1. Let R = 

4 . 4 H y p o t h e s i s s p a c e a n d casebase 
Given a dataset we wish to have a hypothesis to replace 
the entire dataset. The hypothesis should not only cover 
the dataset but also generalize i t . As discussed earlier, a 
dataset V imposes a labeling on the underlying domain 
lattice. The labeling can then be generalized to elements 
in M ( P ) for a given context P. However we do not 
need to use the whole M ( P ) as the hypothesis; a proper 
subset of it wi l l suffice. Then a hypothesis is just a set 
of hypertuples, each of which is more informative than 
the simple tuples in the original dataset. Therefore, it 
is possible to consider a casebase as a hypothesis for a 
dataset. In this section we wi l l introduce and justi fy 
some concepts through which we can precisely describe 
what kind of hypothesis we are aiming for. 

Note that, by Lemma 4.2, M ( D ) M ( P ) M ( V ) 
for D P V. Therefore H M ( P ) H M ( V ) . 
Then we have 
De f . 4.4. A hypothesis for D is a // M( V) such that 
D H. We use G E N ( D ) to denote the set of all hypo­
theses for D 

Similarly, we define a hypothesis for Note that for 
a hypothesis H for D, is a hypothesis for 
Conversely, if . is a hypothesis for for each 

then is a hypothesis for D. 
Since M ( P ) contains only equilabeled elements, H is 

consistent w i th the dataset. Since D H, H covers all 
simple tuples in the dataset. 
De f . 4.5. Let and be two hypotheses for D. 
Then is m o r e genera l t h a n Hk if and only if 

( s t r i c t l y ) m o r e genera l t h a n H k , wr i t ten 
, if and only if 

A hypothesis // for D is maximally general if and only 
if H GEN(D) and there is no Hf G E N ( D ) such that 
H H'. We denote by G the set of all maximal ly 
general hypotheses for D. In [Mitchell, 1997] G is called 
the general boundary for D. 

The following lemma establishes the equivalence 
between G and the greatest E-set (E). 
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Lemma 4.6. G = {E}. 
Th is lemma says tha t , a l though there are many pos­

sible hypotheses for a given dataset, there is only one 
max ima l l y general hypothesis the greatest E-set. Th is 
hypothesis is consistent w i t h the dataset but has the 
max ima l coverage of unseen simple tuples (because it 
has the max ima l context V ) . General boundary is a 
well established concept in the field of concept learn­
ing, and it has been used as an induct ive bias in some 
concept learning a lgor i thms [Mi tchel l , 1997]. The equi­
valence of the greatest E-set and the general boundary 
enables us to use the same induct ive bias in automat ic 
casebase design. Therefore our object ive is to find the 
greatest E-set for a dataset. Our casebase design and 
retrieval are bo th associated w i t h the greatest E-set. 

However, as shown in [Haussler, 1988], the size of the 
general boundary can grow exponent ial ly in the number 
of t ra in ing examples. In the context of domain lat t ice, 
calculat ing the greatest E-set needs V, which is not ex­
p l ic i t l y available; instead it has to be calculated f rom D 
using the R-complement calculus discussed above. Th is 
involves calculat ing D, which has been shown exponen­
t ia l in | D | . I t is then not pract ical to d i rect ly use the 
greatest E-set. as the casebase. The fo l lowing theorem 
guarantees tha t we can use a much smaller hypothesis 
as the casebase, but we can s t i l l use the general boundary 
as induct ive bias. In effect it establishes the relat ionship 
between the casebase and the greatest E-set. 

T h e o r e m 4 . 1 . Let H be hypothesis for V, as 
defined in l)ef. and 

h, such that, t , and q is equilabeled, or unknown). 
Then 

This theorem says tha t if a case (simple tuple) t is 
covered by E, then there must be h such tha t h or 

w i t h g being ci ther equilabeled or 
unknown. Note that is the R-complement of h 
wi th respect to h+t,, which is the set of al l elements 
covered by h _t but not covered by h. The C A S E R E -

TRIEVE a lgor i thm in Section 6 exploi ts this theorem to 
retrieve cases to classify new cases. 

Theorem 4.1 says tha t any hypothesis can be used 
as a. caseba.se that serves as an intermediary between 
a new case and the greatest E-set. Classif icat ion of a 
new case can then be made based on its relat ionship to 
the greatest E-set, which employs the general boundary 
induct ive bias. 

5 Case extract ion 
As indicated in Theorem 4 . 1 , an expected casebase 
can be any hypothesis as defined in Def. 4.4. The 
simplest one is the dataset itself. However, checking 
whether the condit ions are satisfied requires comput ing 
R-complemcnts of the tuples. It is usual ly the case tha t 
datasets are large hence the computa t ion cost is h igh. 
Therefore we need an a lgor i thm to efficiently find a hy­
pothesis, other than the dataset itself, satisfying the con­

di t ions. The least E-set seems ideal since it is the E-set 
in the m i n i m a l context ( D ) . However calculat ing the 
least E-set is computa t iona l l y expensive. The fo l lowing 
a lgo r i t hm, C A S E E X T R A C T , finds, given the m i n i m a l con­
text D, the set o f elements in M ( D ) which have disjoint 
coverage of D. 

Given and as defined above. 

• Initialization: 
• Repeat u n t i l X is empty : 

Th is a lgor i thm b i -par t i t ions X in to a set of elements the 
sum of which is an equilabeled element, and a new X 
consisting of the rest of the elements. The new X is 
s imi lar ly b i -par t i t ioned un t i l X becomes empty. Th is 
process leads to a b inary tree, the depth of which is a 
measure of the t ime complex i ty of the a lgo r i thm. In the 
worst case the t ime complex i ty for bu i ld ing the casebase 
for class i s i n the order o f . Therefore the 
worst case complex i ty for bu i ld ing the whole casebase is 

, where K is the number of classes. 
Consider Figure 1. C A S E E X T R A C T gives the hy­

pothesis which has dis jo int coverage of the 
labeled elements. 

6 Case retr ieval 
The retrieval of relevant cases f rom the casebase is argu-
ably the most impo r tan t process in CBR. In this section 
we discuss how to retr ieve cases f rom a casebase to clas­
sify new instances. Hav ing a casebase II as discovered 
by the C A S E E X T R A C T a l go r i t hm, we can associate a new 
instance / V w i t h a case h II by checking whether t 
is covered by E th rough h. Then t is regarded as being 
in the same class as h. The C A S E R E T R I E V E a lgor i thm 
is as fol lows. 

• Sort the elements in H in decreasing order of |A'| 
for h H and h = l u b ( X ) , which results in If — 

w i t h ho hav ing the largest coverage of 
D elements. 

• t is classified by the first, h, in the sorted // such 
tha t the condi t ions in Theorem 4.1 are satisfied. 

• If there is no such I. 

The t ime complex i ty of this a lgor i thm is dominated by 
calculat ing the R-complement of h H, as needed in 
Theorem 4 . 1 . Th is is in the order of O ( T ) , where T is 
the number of a t t r ibu tes . In the worst case we need to 
do so for all h i, in H, i — (),••■ , n. Therefore the overall 
t ime complex i ty of the a lgo r i thm is in the worst 
case. 

To i l lust rate the CASERETRIEVE a lgo r i t hm, consider 
Figure 1. The casebase is now , as discovered 
by C A S E E X T R A C T . Consider a new case G. The sum of 
G and E is B, wh ich is equi labeled. Then E is retrieved 
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and G is labeled as posit ive. Clear ly G B, hence 
G E. 

7 Exper iment 
C A S E E X T R A C T and C A S E R E T R I E V E are implemented in 
our C B R system, called L M . We compared LM w i t h 
C4.5 vising publ ic datasets. The datasets are described 
in Table 2. Datasets in the upper hal f are f rom UC 
I rv ine Machine Learn ing Reposi tory; and those in the 
lower half are collections of documents which are used 
as benchmark for text m in ing study [Cohen and Hi rsh, 
1998]. The results are shown in Table 3. 

Table 3: Predic t ion accuracy of 04.5 and LM 

8 Summary and conclusion 
The paper proposed a promis ing model for au tomat ing 
the design of CBR. systems. Revolv ing around the no­
t i on of hypertuples (abstract cases), the proposed model 
presents a successful a t tempt at combin ing powerful 
eager techniques f rom machine learning w i t h the flex­
ible "defer-processing" phi losophy characteristic for lazy 
methods [Aha, 1997]. On the basis of concise formal 
argument and empir ical evaluat ion, i t has been demon­
strated that, the Lat t ice Machine approach consti tutes 
an effective; and efficient mechanism to discover abstract 
cases in a given dataset. Abst rac t cases have been shown 
to be an effective a l ternat ive to representing the know­
ledge held in CBR. systems [Bergmann and Wi l ke , 1996]. 

They can provide answers to issues such as casebase 
complexi ty, maintenance costs, retr ieval efficiency, and 
user acceptance. In add i t ion to the discovery of abstract 
cases, an a lgor i thm was presented, which employs the 
general boundary induct ive bias and ensures tha t the 
retr ieval of relevant abstract cases is w i t h i n the l im i t s of 
reasonable t ime constraints. The ma in con t r ibu t ion of 
th is work lies in the La t t i ce Machine's ab i l i t y to discover 
abstract cases w i t h i n a given dataset without requi r ing 
d i f t icu l t - to-obta in domain knowledge. 
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