
On the Use of Integer Programming Models in AI Planning 
Thomas Vossen Michael Ball 
Robert H. Smith School of Business 
and Institute for Systems Research 

University of Maryland 
College Park, MD 20742 USA 

{tvossen, mball}@rhsmith.umd.edu 

Amnon Lotem Dana Nau 
Department of Computer Science 

and Institute for Systems Research 
University of Maryland 

College Park, MD 20742 USA 
{lotem, nau}@cs.umd.edu 

Abstract 
Recent research has shown the promise of using 
propositional reasoning and search to solve Al 
planning problems. In this paper, we further 
explore this area by applying Integer Program­
ming to solve AI planning problems. The ap­
plication of Integer Programming to AI plan­
ning has a potentially significant advantage, 
as it allows quite naturally for the incorpo­
ration of numerical constraints and objectives 
into the planning domain. Moreover, the ap­
plication of Integer Programming to AI plan­
ning addresses one of the challenges in propo­
sitional reasoning posed by Kautz and Selman, 
who conjectured that the principal technique 
used to solve Integer Programs—the linear pro­
gramming (LP) relaxation—is not useful when 
applied to propositional search. 
We discuss various IP formulations for the class 
of planning problems based on STRIPS-style 
planning operators. Our main objective is to 
show that a carefully chosen IP formulation sig­
nificantly improves the "strength" of the LP re­
laxation, and that the resultant LPs are useful 
in solving the IP and the associated planning 
problems. Our results clearly show the impor­
tance of choosing the "right" representation, 
and more generally the promise of using Inte­
ger Programming techniques in the AI planning 
domain. 

1 Introduction 
Although some of the application areas addressed in the 
fields of Artificial Intelligence (AI) and Operations Re­
search (OR) are very similar (e.g., planning, scheduling), 
the techniques that are used to solve these problems are 
oftentimes substantially different. Therefore, it seems 
only natural that recent research in the interface between 
AI and OR has focused on comparing the relative mer­
its of the techniques and tools that are used in these 
areas. In this paper, we further explore the interface 
between AI and OR by applying Integer Programming 

(IP), which has a rich history in OR, to a classical AI 
problem, AI planning. 

The possibility of using OR techniques in AI plan­
ning has not received much attention so far. Bylander 
1997] uses Linear Programming as a heuristic for non-
inear planning; Bockmayr and Dimopoulos [1998] de­

scribe domain-dependent IP models for specific problem 
domains; and Kautz and Walser [1999], who use IP for­
mulations for planning problems with resources, action 
costs, and complex objective functions. However, theirs 
is the only work we know of besides ours. 

One potential advantage of using Integer Program­
ming for AI planning is that IP formulations quite natu­
rally allow the incorporation of numeric constraints and 
objectives into planning domains(for example, see Kautz 
and Walser [1999]). The use of numerical constraints and 
objectives is not addressed adequately in most existing 
AI planning systems, but it is critical in real-world plan­
ning [Nau et al, 1998]. 

One difficulty indeveloping Integer Programming for­
mulations for AI planning is that the performance of the 
resulting IP will depend critically on how AI planning 
problems are formulated as Integer Programs. The pur­
pose of this paper is therefore to develop good domain-
independent IP formulations for AI planning. In par­
ticular, we discuss various IP formulations for the class 
of action-based planning problems using STRIPS-style 
operators. Our main objective is to show that a care­
fully chosen IP formulation significantly improves the 
"strength" of the LP relaxation, so that it can provide 
useful guidance in solving the problem. 

Our IP formulations are principally derived from work 
by Kautz and Selman [1996], which showed that planning 
problems can be efficiently solved by general proposi­
tional satifiablity algorithms. As such, the use of Integer 
Programming also addresses one of the challenges posed 
in the paper "Ten Challenges in Propositional Reason­
ing and Search," by Selman et al. [1997]. Specifically, 
the challenge that we address concerns the development 
of IP models and methods for propositional reasoning. 
Selman et al. mention that the basic technique used 
to solve integer programs—that is, the Linear Program­
ming (LP) relaxation of the problem—does not appear 
to be useful for satisfiability problems, since it usually 

304 CHALLENGE PAPERS 



sets all variables (modulo unit propagation) to the value 
^ and therefore does not guide the selection of variables 
in solving the problem. 

Our results are as follows: 
• In our experiments, IP formulations derived directly 

from SAT encodings proposed by Kautz and Selman 
[1996] performed rather poorly—but an alternative 
IP formulation that we call the "state-change for­
mulation" was competitive with BlackBox using the 
systematic Satz solver [Kautz and Selman, 1998], 
in terms of the number of nodes expanded in the 
search space. Since the brandling rule that is used 
in systematic satisfiability algorithms is an impor­
tant factor in reducing the size of the search tree, 
this indicates that the LP relaxation does guide the 
selection of variables in solving the problem. 

• Like Graphplan-based planners such as Blackbox, 
state-change formulation is guaranteed to find plans 
that have optimal values for the number of time 
steps in the plan. However, this formulation also 
takes into account the number of actions required 
by the plans (i.e., the plan length); and the number 
of actions obtained using the state-change IP for­
mulation was usually much less than the number of 
actions in the plans obtained by BlackBox. 

The organization of this paper is as follows. In Section 
2, we discuss the various IP formulations of the planning 
problem. Next, Section 3 provides experimental results 
for these formulations, and a comparison with the sys­
tematic satisfiability solver. We conclude in Section 4 
with a brief discussion of issues that arise in using IP 
techniques, and of plans for future work. 

2 Integer Programming Formulations 
The most effective current approach for solving general 
integer programs involves the use of branch and bound 
employing a linear programming (LP) relaxation. Thus, 
the key to the effectiveness of using integer programming 
to solve planning problems will lie in the effectiveness 
of the LP relaxation in improving the underlying tree 
search. The LP relaxation is typically solved at every 
node in the search tree. Search can be terminated at 
a node 1) if LP relaxation value indicates that further 
search could only uncover solutions with objective func­
tion values inferior to the best known, 2) if the LP is 
infeasible, which in turn implies the integer program is 
infeasible and 3) if the LP yields an integer solution. 
Since for planning problems, the objective function is 
only of secondary consideration, 1) will have little value. 
On the other hand 2) and 3) can be quite useful in im­
proving search performance for planning problems. In 
particular, if the initial LP solves integer then no search 
is necessary. Another role the LP relaxation plays is that 
it provides information useful in deciding which variables 
to branch on. 

A key issue in the performance of integer programming 
algorithms is the "strength" of the formulation. In gen­
eral, there can be many equivalent integer programming 

formulations for a given problem. One formulation is 
stronger than another if the feasible region of the LP re­
laxation more closely approximates the integer program 
(see [Wolsey, 1998] for more details on this concept). 
Stronger formulations are more likely to yield integer so­
lutions and produce objective function values closer to 
the values of the integer program. 

In the remainder of this section we discuss two IP for­
mulations for STRIPS-style planning problems. In order 
to express these formulations, we first introduce the fol­
lowing sets: 

• F, the set of fluents, that is, the set of all instanti­
ated predicates; 

• A, the set of actions, that is, the set of all instanti­
ated operators; 

• represents the set of fluents that hold 
initially; 

• represents the set of fluents that have to 
to hold in the goal state. 

We assume that the number of time steps in the plan, t, 
is given. Furthermore, we introduce the sets 

• represents the set of 
actions which have fluent / as a precondition; 

• represents the set of 
actions which have fluent / as an add effect; 

• represents the set of 
actions that delete fluent /. 

2.1 SATPLAN-based IP Formulat ions 
Initially, our IP formulations were motivated by the well 
known SATPLAN encodings, as discussed in [Kautz and 
Selman, 1996]. In SATPLAN, the problem of determin­
ing whether a plan exists, given a fixed number of time 
steps, is expressed as a satisfiability problem. 

It is well known that satisfiability problems can be 
expressed as integer linear programs, (see for instance 
[Blair et a/., 1986) or [Hooker, 1988]). Usually, this is 
done by converting the clauses in the CNF representation 
of the satisfiability problem to 0-1 linear inequalities. For 
instance, the clause 

is equivalent to the 0—1 inequality 

Our first formulation consisted of this conversion for 
the SATPLAN encodings that are based on GraphPlan 
[Blum and Furst, 1996], i.e., we allow for parallel actions 
and the propagation of fluents using the "no-op" opera­
tor. The resulting formulation is summarized as follows. 

Variables For all , we have fluent 
variables, which are defined as 

VOSSEN, BALL, LOTEM, AND NAU 305 



For all we have action variables, 
which are defined as 

We remark that the action variables include the "no-
op" maintain operators from GraphPlan for each 
time step and fact, which simply has that fact both 
as a precondition and as an add effect. "no-op" 
actions are necessary to propagate the fluent values. 

Const ra in ts The constraints are separated into differ­
ent classes, which can be outlined as follows: 

• I n i t i a l / G o a l State Const ra in ts These con­
straints set the requirements on the initial and 
final period, i.e. 

• P recond i t i on Const ra in ts Actions should 
imply their preconditions, which is expressed 
as follows. 

• Backward Cha in ing Const ra in ts Backward 
chaining is expressed as 

• Exclusiveness Const ra in ts Actions conflict 
if one deletes a precondition or add effect of the 
other. The exclusiveness of conflicting actions 
is expressed as 

for all _ , . . . , t , and all a, a! for which there 
exist such that and 
add f. 

Objec t i ve Func t i on The objective function was set to 
minimize the number of actions in the plan. It 
should be noted that in theory we could have chosen 
any objective function, since the constraints guar­
antee a feasible solution. In practice however, the 
choice of an objective function can significantly im­
pact performance. 

In addition, we made the following two modifications 
in the formulation. First of all, we used the notion of 
clique inequalities to strengthen the formulation. The 
basic idea behind this is that the inequalities 

can be replaced by 
a single inequality . This leads to a 
formulation which is not only more compact but also 
stronger, in the sense that the fractional solution 

is feasible in the first set of inequalities, but 

not in the second. It should be noted that the ability to 
detect clique inequalities is available in most of today's 
commercial solvers. 

Secondly, we did not restrict all variables to be 0-1 in­
tegers. Specifically, the integrality of the fluent variables 

was relaxed, that is, the constraints {0,1} 
were replaced by . This is possible because 
the integrality of these variables is implied by the in­
tegrality of the action variables. We remark that as a 
consequence, none of the fluent variables will be selected 
in the branch and bound tree. 

2.2 An A l te rna t i ve Formu la t ion 

We now describe an alternative formulation of the plan­
ning problem, which we shall refer to as the "state-
change formulation". The differences with respect to 
the formulation described in the previous section are 
twofold. First of all, the original fluent variables are 
"compiled away" and suitably defined "state change" 
variables are introduced instead. As we will see, this 
results in a stronger representation of the exclusion con­
straints. Secondly, we more explicitly restrict the pos­
sible propagation of fluents through "no-op"-actions, so 
as to reduce the number of equivalent feasible solutions. 

Before giving this formulation, we again first define the 
variables. The action variables are the same as before, 
i.e., 

for all Now however, the "no-op" 
actions are not included, but represented separately by 
variables , for a l l . . . , t . 

In order to express the possible state changes, we in­
troduce auxiliary variables 
which are defined logically as 

Informally, = 1 if and only if an action is exe­
cuted in period i that has / as a precondition but does 
not delete it. We note that the execution of such an ac­
tion at a given time step implicitly asserts that the value 
fluent / is propagated. Similarly, if and only 
if an action is executed in period i that has / both as a 
precondition and a delete effect. if and only if 
an action is executed in period i that has / as an add 
effect but not as a precondition. 

The logical interpretation of these variables is repre-

306 CHALLENGE PAPERS 



sented in the IP formulation by the following constraints: 3 E x p e r i m e n t a l R e s u l t s 

for all , t. The equality in the defi­
n i t ion of follows from the fact that all actions 
that have / both as a precondition and as an add effect 
are mutual ly exclusive. As a consequence these variables 
can in fact be substi tuted out, although for reasons of 
clari ty we shall not do so here. The remaining exclusive-
ness constraints can easily be expressed in terms of the 
auxil iary variables, by stat ing that is mutually 

exclusive wi th . However, 
in order to strengthen the formulation we furthermore 
assert that is mutual ly exclusive wi th and 

. Informally, this means that a fluent can only 
be propagated at a t ime step if no action that adds it is 
executed. The resulting constraints are as follows. 

x 

for all 
The backward chaining requirements can also be ex­

pressed in terms of the auxil iary variables. Since, all 
auxil iary variable that assert the precondition of a fact 
/ at a certain t ime step and 

are mutual ly exclusive, we have the following 
constraint 

The objective function is again set to minimize the 
number of actions. Also, the integrality requirement of 
the auxi l iary variables variables was again relaxed, as it 
is implied by the integrality of the action variables. 

We tested the IP formulations on a variety of planning 
problems from the Blackbox software distr ibut ion, and 
compared the results wi th those obtained by Blackbox 
using the systematic Satz solver. The integer programs 
were solved using Cplex 6.0, a widely used L P / I P solver. 
In solving the integer programs, we used all of Cplex's 
default settings, except the following: the init ial LP op­
t imum was obtained by solving the dual problem, and 
the variable selection strategy used was "pseudo-reduced 
cost". In addit ion, the solver was terminated as soon as 
a feasible integer solution was found. A l l problems were 
run on a Sun Ultra workstation. 

The results are shown in Table 1. "Nodes" represents 
the number of nodes visited in the branch and bound 
procedure, and "iterations" the number of simplex iter­
ations performed. Al l times are in seconds. It should be 
noted that, both for the IP formulations and BlackBox, 
the results shown are for the problem of finding a fea­
sible solution given the number of t ime steps (i.e., t is 
known in advance and given). 

As shown in Table 1, the state-change formulation led 
to a significant improvement in performance. Whereas 
the SATPLAN-based IP formulation solved only the 
smallest problems, the state-change formulations solved 
all, and required both fewer nodes and less computa­
t ion time. While the systematic BlackBox solver usu­
ally required less time than the state-change formula­
t ion, both BlackBox and the state-change formulation 
explored similar numbers of nodes. Moreover, the Black-
Box/Satz did not find a feasible solution to the "bw-
large.b" blocks-world problem, while the state-change 
formulation did find a solution, using only 28 nodes. 

It should be noted that the introduction of auxiliary 
variables can possibly introduce a large number of vari­
ables and constraints. However,we found that the size 
of the formulation was significantly reduced by standard 
IP preprocessing (similar to the use of Graphplan as a 
preprocessing tool in BlackBox). For example, while the 
init ial formulation of the problem "rocket.a" had 27744 
variables and 40018 constraints, preprocessing reduced 
this to 1573 variables and 3007 constraints. Similar re­
ductions in size were also obtained for the other prob-
lems. 

A further indication of the strength of respective for­
mulations can be found by examining the value of the LP 
relaxations. Since the objective function that is used is 
to minimize the number of actions in the plan, the value 
of the LP relaxation may also viewed as a lower bound 
on the number of actions required in the plan. The re­
sults for the SATPLAN-based and the state-change for­
mulation are shown in Table 2. In almost all cases, 
the state-change formulation has a much higher lower 
bound, which indicates that its formulation is indeed 
much stronger. 

In the SATPLAN and Graphplan framework, the par-
allel length, (i.e., the number of t ime steps) of plans is 
minimized. The IP formulation follows this framework, 

VOSSEN, BALL, LOTEM, AND NAU 307 



- denotes that no plan was found after 10 hours of computation time. 
* denotes that the node limit of 2500 was reached without finding a feasible integer solution. 

so it also is guaranteed to minimize the number of time 
steps. In addition, the IP formulation also explicitly uses 
minimization of the number of actions in the objective 
function. Since we set the solver to terminate as soon 
as the first feasible integer solution was found, the IP 
solutions were not guaranteed to minimize the possible 
number of actions. Stil l , we found that in most cases, the 
IP formulation found plans with a significantly smaller 
total number of actions than those obtained by Black-
Box. This is shown in Table 3. 

4 Conclusions 
Although Selman et al. [1997] reported difficulty in mak­
ing effective use of IP techniques for propositional rea­
soning in general, our results suggest that IP techniques 
may potentially work well for AI planning problems, for 
the following reasons. 

• First, the IP formulation has the potential to do 

efficient planning. In our results, the number of 
nodes expanded in the search space was typically 
small, and comparable to a systematic satisfiablity 
solver. This indicates that the LP relaxation gave 
significant guidance in the selection of variables in 
solving planning problems. 

• Second, IP models may provide a natural means 
of incorporating numeric constraints and objec­
tives into the planning formulation. This capability 
would be important in many application domains, 
but it is not available in most existing approaches 
to AI planning. It should be noted, however, that 
the way in which numeric constraints will be repre­
sented may have a significant influence on the per­
formance, much in the same way as we saw with 
the various IP formulations. Therefore, the devel­
opment of strong IP representations that capture 
common numeric constraints that arise in the plan­
ning domain is an issue for further research. 

We would like to emphasize that so far our main concern 
has been the development of different IP formulations, 
rather than improving the efficiency of the LP relaxation 
itself. While we believe that the state-change formula­
tion is reasonably strong, solving the LP relation at each 
node is stil l sometimes computationally expensive. One 

308 CHALLENGE PAPERS 



of the main reasons for this, we believe, is the degener­
acy of the LP relaxation (a condition that can cause the 
LP solver to execute many non-productive iterations). 
Therefore, we are currently also investigating techniques 
to resolve this degeneracy, as well as further strength­
ening of the IP formulation. In particular, we want to 
investigate the use of constraint and column generation 
techniques. 

References 
[Blair et a/., 1986] Blair, C.E., Jeroslow, R.G., and J.K. 

Lowe. 1986. Some results and experiments in program­
ming techniques for propositional reasoning. Comput­
ers and Operations Research 13:633-645. 

[BockMayr and Dimopoulos, 1998] Alexander 
Bockmayr and Yanis Dimopoulos. 1998. Mixed Integer 
Programming Models for Planning Problems. CP'98 
Workshop on Constraint Problem Reformulation. 

[Bylander, 1997] T. Bylander. 1997. A Linear Program­
ming Heuristic for Optimal Planning. Proc. AAAI-97. 

[Blum and Furst, 1997] A. L. Blum and M. L. Furst. 
1997. Fast Planning Through Planning Graph Analy­
sis. Artificial Intelligence, 90(l-2):281-300. 

[Hooker, 1988] J. N. Hooker. 1988. A quantitative ap­
proach to logical inference. Decision Support Systems 
4:45-69. 

(Kautz et al, 1996] Henry Kautz, David McAllester, 
and Bart Selman. 1996. Encoding plans in proposi­
tional logic. Proc. KR-96. 

[Kautz and Selman, 1996] Henry Kautz and Bart Sel­
man. 1996. Pushing the envelope: Planning, propo­
sitional logic, and stochastic search. Proc. AAAI-96. 

[Kautz and Selman, 1998] Henry Kautz and Bart Sel­
man. 1998. BLACKBOX: A New Approach to the 
Application of Theorem Proving to Problem Solving. 
Working notes of the Workshop on Planning as Com­
binatorial Search, held in conjunction with A1PS-98, 
Pittsburgh, PA, 1998. 

[Kautz and Walser, 1999] Henry Kautz and Joachim P. 
Walser. 1999. State-space Planning by Integer Opti­
mization. Proc. AAAI-99. 

[Nau et al, 1998] D. S. Nau, S. J. Smith and Kutluhan 
Erol. 1998. Control strategies in HTN planning: the­
ory versus practice. In AAAI-98/IAAI-98 Proceedings, 
1127-1133, 1998. 

[Selman et al, 1997] B. Selman, H. Kautz, and D. 
McAllester. 1997. Ten challenges in propositional 
reasoning and search. In Proc. Fifteenth Interna­
tional Joint Conf. Artificial Intelligence (IJCAI-97), 
Nagoya, Japan. 

[Wolsey, 1998] L. Wolsey, Integer Programming, 1998, 
John Wiley, New York. 


