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Abstract 
Let us consider the following problem: 
Given a (probably huge) set of sets S and 
a query set g, is there some set s S such 
that This problem occurs in at 
least four application areas: the match­
ing of a large number (usually several 
100,000s) of production rules, the pro­
cessing of queries in data bases support­
ing set-valued attributes, the identifica­
tion of inconsistent subgoals during ar­
tificial intelligence planning and the de­
tection of potential periodic chains in la­
beled tableau systems for modal logics. 
In this paper, we introduce a data struc­
ture and algorithm that allow a com­
pact representation of such a huge set of 
sets and an efficient answering of subset 
and superset queries. The algorithm has 
been used successfully in the IPP system 
and enabled this planner to win the ADL 
track of the first planning competition. 

1 Introduction 
The problem of how to effectively index and query 
sets occurs in various computer applications: 

Researchers in object oriented databases 
have among others stressed the need for richer data 
types, in particular set-valued attributes such as 
for example the set of keywords in a document, the 
set of classes a student is enrolled in, etc. Typi­
cal queries to such an enriched database require to 
determine all supersets or subsets of a given query. 
For example, given a set of classes C, to find all stu­
dents taking at least these classes the supersets of 
C need to be determined. Or as another example, 
given that a student has passed some basic courses 
C, which advanced courses become possible? The 
answer is found by retrieving all advanced courses 
whose prerequisite course set is a subset of C. 

Machine learning is highly concerned with the 
utility problem, i.e., the problem of learning new 
knowledge in such a way that the learning costs do 

not exceed the savings in the system's performance 
that are achieved through learning. A key factor 
in a good learning algorithm is to effectively match 
sets of attributes against each other, for example in 
the form of preconditions of large sets of production 
rules. In order to decide which rules apply to a 
particular situation, all precondition sets have to 
be determined that are subsets of the query set 
describing the situation. 

Art i f ic ia l intelligence planning is concerned 
with the problem of constructing a sequence of ac­
tions that achieves a set of goals given a particular 
initial state in which the plan is scheduled for ex­
ecution. Even in its simplest form, the problem is 
known to be PSPACE-complete [Bylander, 1991], 
i.e., planning algorithms are worst-case exponen­
tial and techniques to effectively prune the search 
space are mandatory. Since millions of goal sets 
are constructed when searching larger state spaces 
for a plan, it is important to know in advance when 
a goal set can never be satisfied. This is the case 
when at least one subset of the current goal set has 
previously been shown to be unsatisfiable. 

Moda l logics are often formalized using la­
beled tableau methods, where one is sometimes 
confronted with infinite branches in the tableau. 
To guarantee termination, one needs to identify 
potential periodic chains of labels [Gore, 1997]. 

In its abstract form, these and other applications 
have to deal with the following problem: Given a 
set of sets S stored in some data structure and 
a query set q, does there exist a set s S such 
that q s (or sometimes q s depending on the 
application). Though this seems to be a trivial 
problem to handle, its difficulty comes from the 
dimensions in which it occurs: 5 will quite often 
contain millions of sets and some applications re­
quire to handle a huge sequence of queries qi over 
a dynamically changing S. 

2 The UBTree Algorithm 
The key to a fast set query answering algorithm 
lies in an appropriate data structure to index a 
large number of sets of varying cardinality. 
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2.1 The UBTree D a t a s t ruc tu re 
A node (see Figure 1) N in UBTree consists of three 
components: 

• N.e : the element it represents 
• N.T : the sons, a set of other tree nodes 
• : the End-of-Path marker. 

Figure 1: Representation of a single node. 

The UBTree is now simply represented by a set T 
of such nodes and can be seen as a forest. Note that 
we are speaking about sets of tree nodes, i.e., nei­
ther the number of trees nor the number of sons 
any node can have is limited. That is where the 
UBTree got its name from: Unlimited Branching 
Tree. 
Based on this data structure, the following func­
tions will be defined below: 

• insert (set s, tree T) inserts a set s into the tree 
T. 

• lookup_first(set q, tree T) tells us whether any 
subset s q is stored in T. 

• lookup_subs(set q, tree T) determines all sub-
sets for a given query set q from T. 

• lookup_sups(set r/, tree T) determines all su-
persets for a given query set q from T. 

The only assumption on which our algorithm relies 
is the existence of a total ordering over all elements 
that can possibly occur in the sets. 

2.2 T h e insert Func t ion 
To insert a set s into a forest T, the insert function 
(Figure 2) creates a path starting in T correspond­
ing to that set. In principle, this path is just a se­
ries of connected tree nodes corresponding to the 
ordered elements of s. 
Definit ion 1 Let be an or­
dered set, T be a forest. 
A path in T corresponding to s is a non-empty 
tuple of tree nodes such that 

When the insert function is called, T is initial­
ized with the root nodes of the forest. The func­
tion then tries to look up the elements of s one af­
ter the other (remember that the sets get ordered 

before they are inserted) and, doing this, follows 
paths that have been created by other, previously 
inserted sets. If there is no corresponding node for 
some element ei in the set T of nodes (implying 
that no set starting with has been in­
serted before), it creates a new path at that point, 
i.e., a new son is added to the current node N. Fi­
nally, the last node (the one that represents ) 
is marked as the end of a path. Note that we as­
sume s to be non-empty, i.e., 0, otherwise 
there would be no element and, consequently, 
no node N to represent it.1 

Figure 2: insert(.s,T) 

Figure 3 shows how a forest T with two trees 
evolves when the 4 (already ordered) sets S0 = 

and #3 = are inserted one after the other. 

Figure 3: Iterative insertion of 4 sets 

2.3 The lookup Funct ions 
We now show how the set of sets S stored in a 
forest T can be used to answer questions about 
the query set q. 

Let us begin with the lookup-first function, which 
decides if there is any set s S in T with s q. 
The function simply tries to reach a node TV in the 

'We make this assumption just for simplification, 
the UBTree algorithm can easily be extended to deal 
with possibly empty sets. 
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tree that is marked as the end of a path, using the 
elements in q as "money" to pay its travel costs. 
This is to say, given a set of tree nodes T and a 
set q = it finds all nodes N T 
corresponding to an element If any such 
TV is marked as the end of a path, lookup-first suc­
ceeds in finding a subset to the query set. Oth­
erwise, the ongoing search is a recursive instance 
with the set of sons, N.T, and the remaining el­
ements as parameters.2 See Fig­
ure 4 for a formal description of the lookup-first 
function. 

M all nodes N T that match an element 
while M is non-empty do 

choose a node N M 
if N is the end of a path then succeed endif 

else: c a l l search on next tree 
and remaining elements ♦ / 
lookup.first(?V.T, 

endwhile 
a l l elements have fa i l ed * / 

fai l 

Figure 4: lookup „first(c/,T) 

The function is initially called on the (previously 
ordered) query set q and the forest T. It is impor­
tant to notice and crucial to the performance of 
UBTree that, in using the "money" method, large 
fractions of the search space can be excluded: for 
a query set of length pos­
sible subsets need to be considered. Half of them 
(those that contain lie in the tree rooted in the 
node corresponding to qo- If there is no such node, 
the search space is immediately reduced to  

Note that the function is non-deterministic with 
respect to which matching node N M is chosen 
first. A possible heuristic could store in each node 
the distance to the next end-of-path node. The 
node with the least distance could then be tried 
first. This distance information can also be used, 
and in fact is used in our implementation to cut 
unnecessary branches out of the search tree. If the 
distance stored in a search node N is greater than 
the number of elements we have left at that stage 
of search, we can back up (i.e., fail) right away. 
In this case the query set does not contain enough 
elements to reach an end-of-path marker. 

The lookup-subs function, as given in Figure 5, 
works in a very similar way. Instead of termi­
nating after identifying one end-of-path marker, 
i.e., the first matching subset, it has to work its way 
through all nodes it can reach. Again, the function 
uses the "money" method, i.e., passes only those 

2 No nodes representing any of the elements in 
can exist in a subtree starting in ei due 

to the total ordering of the elements. 

nodes for which it has matching elements in the 
query. Every time it finds a node that is the end 
of a path, it adds the path ending in this node to 
a global answer set Q. The function is initially 
called with the ordered query set q and the for­
est T as parameters, the answer set is initialized 
with the empty set Q Upon termination of 
lookup-subs, Q contains all sets s S with s q. 

Figure 5: lookup-Subs(g,T) 

Finally, we show how to retrieve all supersets s 
from T. This can be done by finding all 

paths in T that comprise the path corresponding 
to q as a (possibly disconnected) subpath. The 
lookup-Sups algorithm is shown in Figure 6. Again, 
the answer set is initialized with and the 
function is called with the ordered query set q and 
the forest T as input parameters. 

Figure 6: lookup-Sups(g,T) 

At each stage of the search, lookup-sups does the 
following: First, it searches all trees that start with 
an element preceding the first element in the query 
set; these are trees that can possibly contain nodes 
for the whole set. If there is a node that di­
rectly corresponds to the first element in the (pos­
sibly already reduced) query set, the query set gets 
further reduced by this element. Now the function 
only needs to find matching nodes for the remain­
ing elements. If there are no such elements left, the 
search has succeeded, i.e., every end-of-path node 
that can be reached from N will yield a superset to 
the query. Otherwise, search needs to be continued 
with the reduced query set and the appropriate set 
of nodes. 
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3 Theoretical Properties of UBTree 
We state the soundness and completeness of the 
lookup -first function in the following theorem. 
Theorem 1 Let T be a forest UBTree that has 
been constructed by iteratively inserting all sets 
s S. The lookup -first function, as defined in 
Section 2, succeeds on a query set q and T if and 
only if there exists a set s S with s q. 

A similar theorem stating the soundness and 
completeness of the lookup-subs and lookup_sups 
functions can be proven. 

To analyze the runtime behavior of the 
lookup-subs and lookup-first functions, let us re­
examine the algorithm in Figure 5 from a differ-
ent perspective. At each stage, the function tries 
to find a node TV in T that matches the first el­
ement e0 of q. If this node is found, there is a 
new recursive instance, with N.T and as 
parameters; afterwards, the function works on T 
and If on the other hand, no node in T 
matches eo, the function simply skips and con­
tinues with Prom these observations, we 
get the following recursive formula for the num­
ber of search nodes that are visited by lookup_subs 
(which is an upper limit to the number of nodes 
visited by lookup-first): 

Here, denotes the probability that the node 
N matching e0 is in T, and E{i), consequently, de­
notes the expected number of visited search nodes 
with i elements to go. Obviously, = PN. It 
is easily proven that the recursion results in: 

(1) 

The probability at each stage of the search 
is equal to the probability that there is a set s € 
S which starts with the elements that would be 
represented on a path to TV. It is an open question, 
how an upper limit for can be determined. In 
the worst-case, when all nodes TV are present in 
the tree, we get = 1 and E(n) = search 
nodes for a query set of size n.3 

3It should be noticed, that, when matching rules or 
determining unsatisfiable goals in planning, the query 
sets are small while is very large. Thus, searching 

nodes is still much better than checking sets for 
inclusion. 

The number of nodes visited by the lookup-sups 
function is only dominated by the total number of 
nodes that are in the forest. Let denote the 
maximal element with respect to the total order­
ing, i.e., for all TVymg to find 
all supersets of the query set lookup-sups 
has to search the whole structure. Consequently, 
we determine an upper bound for the total number 
of nodes in the tree. 

Theorem 2 Let T be a forest in which exactly the 
sets have been iteratively inserted. If the 
total number of distinct elements in all of the sets 

is P, then the total number of nodes in T is 
at most  

The worst case occurs if and only if all sets con­
taining are contained in S. 

4 Empirical Evaluation 
To demonstrate the effectiveness of the approach, 
we discuss examples taken from the use of UBTree 
in the IPP planning system [Koehler et al., 1997]. 
Following [Hellerstein et al., 1997], the workload 
for UBTree is determined by the following factors: 

• the domain, which is the set of all possible 
sets, i.e., given P logical atoms to characterize 
states, the domain comprises sets, 

• an instance of the domain is the finite subset 
that is currently stored in J1, 

• the set of queries, which is the set of goals that 
are constructed during planning. 

Note that the workload is dynamic. Starting 
with an empty UBTree structure T] a generated 
goal set is added if no plan was found by the plan­
ning system, i.e., T is monotonically growing con­
taining sets at the end. 

Since it is extremely difficult to make distribu­
tion assumptions for instances and query sets in a 
planning system, we use the following parameters 
to characterize the size of a UBTree: 

• P : the total number of distinct logical atoms 
in S. 

• the number of all 
stored sets. 

• the total number of nodes in the forest 

• t h e storage cost, which would 
be equal to 1 in a trivial data structure simply 
representing all sets separately. 

• the total number of queries that have 
been answered during the process. 

Figure 7 shows the parameters for forests of in­
creasing size in two different planning domains (the 
blocksworld shown in the upper part and the brief-
case world shown in the lower part of the table). 
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The larger UBTree grows (reflected by increasing 
and and the smaller P is, the better values 

are obtained for the storage cost. 

linear; sometimes, as in the case of Figure 9, possi­
bly exponential, but to a small degree(as indicated 
by equation 1). 

p S T C Q 
71 4846 55035 0.69 8778 
96 56398 584015 0.61 112337 

115 324628 3042203 0.55 669127 
33 1618 4370 0.36 5291 
46 22044 59743 0.29 61909 
46 92971 210666 0.23 243175 
61 1058930 2007326 0.16 24369798 

Figure 7: Typical sizes of UBTree. 

Figures 8, 9,10, and 11 illustrate the runtime be­
havior of the query functions reflected in the num­
ber of searched nodes for a given query-set size |g| 
and \S\. Note that \S\ is shown on a logarithmic 
scale in all figures. 

Figure 9: The average number of visited search 
nodes as a function of query-set size |q| and in­
stance size \S\ (shown on a logarithmic scale) for 
the lookup-first function averaged over all, i.e., suc­
ceeding and failing, queries. 

Figure 8: The average number of visited search 
nodes as a function of query-set size \q\ and in­
stance size (shown on a logarithmic scale) for 
the lookup first function in the positive case where 
the query succeeds. 

Figure 8 indicates that the lookup-first func­
tion needs significantly less search time on queries 
where it can retrieve a subset than on those where 
it must fail. In fact, the average runtime behavior 
in the positive case was linear in the size of the 
query set and completely independent of the in­
stance size throughout all our experiments. The 
function never visited more than an average of 
\q\ * 2.5 search nodes on positive queries. In the 
general case, the behavior tends to be logarith­
mic in the instance size. The behavior with re­
spect to the query-set size varied in different do­
mains: sometimes clearly polynomial, even sub-

A behavior as shown in Figure 10 is typical for 
the lookup-subs function: clearly logarithmic in \S\ 
and probably exponential, to a small degree, in the 
query set size. 

Figure 10: Number of search nodes for lookup_subs, 
averaged over all queries. 

Figure 11 shows a typical picture for looku_sups 
that we found in all investigated domains. It turns 
out that the performance of this function decreases 
for small query sets. This happens because small 
sets are likely to have more supersets than big 
ones. The behavior with respect to the instance 
size tends to be linear. Note that again, S is shown 
on a logarithmic scale and that the scale is dif­
ferent here. 
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Figure 11: Number of search nodes for lookup jsups, 
averaged over all queries. 

5 Related Work 
In order to deal with set queries in planning, a 
partial subset test that only considers sets of size 
|q| - 1 to a given query set of size \q\ has been 
developed in [Blum and Furst, 1997]. Obviously, 
this can be done in linear time, but such a test 
must be inherently incomplete. With UBTree, a 
complete test is available that runs in almost linear 
time in practice despite its exponential worst-case 
behavior. 

For databases, RD trees [Hellerstein and Pfeffer, 
1994] have been proposed as an effective means 
in answering superset queries, but they are very 
limited in handling subset queries. In contrast to 
UBTree where a set is spread over several nodes, 
an RD tree is organized such that the leaf nodes 
contain the sets and non-leaf nodes contain super­
sets (of different size) of their children nodes to 
effectively guide search. To handle subset queries, 
inverted RD trees are used which are equivalent to 
RD trees on the complements of the base sets. Two 
serious problems occur in this approach. First, a 
non-leaf node needs to be recomputed if a new set 
is inserted into one of its leaf-children. Second, 
even if only small sets are stored in the leaves, 
their complements and their supersets in the cor­
responding parent nodes grow impractically large. 
UBTree avoids both problems. 

An optimized implementation of the RETE pat-
tern matching algorithm [Forgy, 1982] to handle 
large numbers of production rules is described in 
[Doorenbos, 1994]. The indexing structure for pre­
conditions of rules is similar to UBTree, but the 
way how the elements of the query set match the 
stored sets in the indexing structure is quite dif­
ferent because the preconditions can contain vari­
ables, while UBTree deals with sets of ground 
atoms only. Thus, the problem of null activations, 
where rule nodes are activated though not all of 
their preconditions are satisfied by the current in­
put, can occur in RETE, but not in UBTree, which 

would index all ground instances of pattern match­
ing rules instead. 

6 Conclusion 
Depending on the particular requirements of an 
application, UBTree can be further optimized. For 
example, if one is only interested in keeping mini­
mal sets, all non-minimal sets can be pruned from 
the tree. Furthermore, if all sets s S are con­
structed from a finite and fixed domain of ele­
ments, an implicit bitmap representation of the 
sets can further reduce memory consumption and 
query times. 

As we saw in Section 4, the worst-case behav­
ior of the algorithms, especially of the lookupjsups 
function, depends on the ordering of the elements. 
In application areas where one has information 
about the likelihood of appearance of the elements 
in any set s, it should be possible to generate a 
total ordering that minimizes the number of tree 
nodes. One simply orders elements with high like­
lihood of appearance before those with low values. 
Thereby, both storage and search costs can be re­
duced. 
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