
A New Method to Index and Query Sets
Jorg Hoffmann and Jana Koehler

Institute for Computer Science
Albert Ludwigs University

Am Flughafen 17
79110 Freiburg, Germany

hoffmann|koehler@informatik.uni-freiburg.de

Abstract
Let us consider the following problem:
Given a (probably huge) set of sets S and
a query set g, is there some set s S such
that This problem occurs in at
least four application areas: the match­
ing of a large number (usually several
100,000s) of production rules, the pro­
cessing of queries in data bases support­
ing set-valued attributes, the identifica­
tion of inconsistent subgoals during ar­
tificial intelligence planning and the de­
tection of potential periodic chains in la­
beled tableau systems for modal logics.
In this paper, we introduce a data struc­
ture and algorithm that allow a com­
pact representation of such a huge set of
sets and an efficient answering of subset
and superset queries. The algorithm has
been used successfully in the IPP system
and enabled this planner to win the ADL
track of the first planning competition.

1 Introduction
The problem of how to effectively index and query
sets occurs in various computer applications:

Researchers in object oriented databases
have among others stressed the need for richer data
types, in particular set-valued attributes such as
for example the set of keywords in a document, the
set of classes a student is enrolled in, etc. Typi­
cal queries to such an enriched database require to
determine all supersets or subsets of a given query.
For example, given a set of classes C, to find all stu­
dents taking at least these classes the supersets of
C need to be determined. Or as another example,
given that a student has passed some basic courses
C, which advanced courses become possible? The
answer is found by retrieving all advanced courses
whose prerequisite course set is a subset of C.

Machine learning is highly concerned with the
utility problem, i.e., the problem of learning new
knowledge in such a way that the learning costs do

not exceed the savings in the system's performance
that are achieved through learning. A key factor
in a good learning algorithm is to effectively match
sets of attributes against each other, for example in
the form of preconditions of large sets of production
rules. In order to decide which rules apply to a
particular situation, all precondition sets have to
be determined that are subsets of the query set
describing the situation.

Art i f ic ia l intelligence planning is concerned
with the problem of constructing a sequence of ac­
tions that achieves a set of goals given a particular
initial state in which the plan is scheduled for ex­
ecution. Even in its simplest form, the problem is
known to be PSPACE-complete [Bylander, 1991],
i.e., planning algorithms are worst-case exponen­
tial and techniques to effectively prune the search
space are mandatory. Since millions of goal sets
are constructed when searching larger state spaces
for a plan, it is important to know in advance when
a goal set can never be satisfied. This is the case
when at least one subset of the current goal set has
previously been shown to be unsatisfiable.

Moda l logics are often formalized using la­
beled tableau methods, where one is sometimes
confronted with infinite branches in the tableau.
To guarantee termination, one needs to identify
potential periodic chains of labels [Gore, 1997].

In its abstract form, these and other applications
have to deal with the following problem: Given a
set of sets S stored in some data structure and
a query set q, does there exist a set s S such
that q s (or sometimes q s depending on the
application). Though this seems to be a trivial
problem to handle, its difficulty comes from the
dimensions in which it occurs: 5 will quite often
contain millions of sets and some applications re­
quire to handle a huge sequence of queries qi over
a dynamically changing S.

2 The UBTree Algorithm
The key to a fast set query answering algorithm
lies in an appropriate data structure to index a
large number of sets of varying cardinality.

462 CONSTRAINT SATISFACTION

2.1 The UBTree D a t a s t ruc tu re
A node (see Figure 1) N in UBTree consists of three
components:

• N.e : the element it represents
• N.T : the sons, a set of other tree nodes
• : the End-of-Path marker.

Figure 1: Representation of a single node.

The UBTree is now simply represented by a set T
of such nodes and can be seen as a forest. Note that
we are speaking about sets of tree nodes, i.e., nei­
ther the number of trees nor the number of sons
any node can have is limited. That is where the
UBTree got its name from: Unlimited Branching
Tree.
Based on this data structure, the following func­
tions will be defined below:

• insert (set s, tree T) inserts a set s into the tree
T.

• lookup_first(set q, tree T) tells us whether any
subset s q is stored in T.

• lookup_subs(set q, tree T) determines all sub-
sets for a given query set q from T.

• lookup_sups(set r/, tree T) determines all su-
persets for a given query set q from T.

The only assumption on which our algorithm relies
is the existence of a total ordering over all elements
that can possibly occur in the sets.

2.2 T h e insert Func t ion
To insert a set s into a forest T, the insert function
(Figure 2) creates a path starting in T correspond­
ing to that set. In principle, this path is just a se­
ries of connected tree nodes corresponding to the
ordered elements of s.
Definit ion 1 Let be an or­
dered set, T be a forest.
A path in T corresponding to s is a non-empty
tuple of tree nodes such that

When the insert function is called, T is initial­
ized with the root nodes of the forest. The func­
tion then tries to look up the elements of s one af­
ter the other (remember that the sets get ordered

before they are inserted) and, doing this, follows
paths that have been created by other, previously
inserted sets. If there is no corresponding node for
some element ei in the set T of nodes (implying
that no set starting with has been in­
serted before), it creates a new path at that point,
i.e., a new son is added to the current node N. Fi­
nally, the last node (the one that represents)
is marked as the end of a path. Note that we as­
sume s to be non-empty, i.e., 0, otherwise
there would be no element and, consequently,
no node N to represent it.1

Figure 2: insert(.s,T)

Figure 3 shows how a forest T with two trees
evolves when the 4 (already ordered) sets S0 =

and #3 = are inserted one after the other.

Figure 3: Iterative insertion of 4 sets

2.3 The lookup Funct ions
We now show how the set of sets S stored in a
forest T can be used to answer questions about
the query set q.

Let us begin with the lookup-first function, which
decides if there is any set s S in T with s q.
The function simply tries to reach a node TV in the

'We make this assumption just for simplification,
the UBTree algorithm can easily be extended to deal
with possibly empty sets.

H O F F M A N N AND KOEHLER 463

tree that is marked as the end of a path, using the
elements in q as "money" to pay its travel costs.
This is to say, given a set of tree nodes T and a
set q = it finds all nodes N T
corresponding to an element If any such
TV is marked as the end of a path, lookup-first suc­
ceeds in finding a subset to the query set. Oth­
erwise, the ongoing search is a recursive instance
with the set of sons, N.T, and the remaining el­
ements as parameters.2 See Fig­
ure 4 for a formal description of the lookup-first
function.

M all nodes N T that match an element
while M is non-empty do

choose a node N M
if N is the end of a path then succeed endif

else: c a l l search on next tree
and remaining elements ♦ /
lookup.first(?V.T,

endwhile
a l l elements have fa i l ed * /

fai l

Figure 4: lookup „first(c/,T)

The function is initially called on the (previously
ordered) query set q and the forest T. It is impor­
tant to notice and crucial to the performance of
UBTree that, in using the "money" method, large
fractions of the search space can be excluded: for
a query set of length pos­
sible subsets need to be considered. Half of them
(those that contain lie in the tree rooted in the
node corresponding to qo- If there is no such node,
the search space is immediately reduced to

Note that the function is non-deterministic with
respect to which matching node N M is chosen
first. A possible heuristic could store in each node
the distance to the next end-of-path node. The
node with the least distance could then be tried
first. This distance information can also be used,
and in fact is used in our implementation to cut
unnecessary branches out of the search tree. If the
distance stored in a search node N is greater than
the number of elements we have left at that stage
of search, we can back up (i.e., fail) right away.
In this case the query set does not contain enough
elements to reach an end-of-path marker.

The lookup-subs function, as given in Figure 5,
works in a very similar way. Instead of termi­
nating after identifying one end-of-path marker,
i.e., the first matching subset, it has to work its way
through all nodes it can reach. Again, the function
uses the "money" method, i.e., passes only those

2 No nodes representing any of the elements in
can exist in a subtree starting in ei due

to the total ordering of the elements.

nodes for which it has matching elements in the
query. Every time it finds a node that is the end
of a path, it adds the path ending in this node to
a global answer set Q. The function is initially
called with the ordered query set q and the for­
est T as parameters, the answer set is initialized
with the empty set Q Upon termination of
lookup-subs, Q contains all sets s S with s q.

Figure 5: lookup-Subs(g,T)

Finally, we show how to retrieve all supersets s
from T. This can be done by finding all

paths in T that comprise the path corresponding
to q as a (possibly disconnected) subpath. The
lookup-Sups algorithm is shown in Figure 6. Again,
the answer set is initialized with and the
function is called with the ordered query set q and
the forest T as input parameters.

Figure 6: lookup-Sups(g,T)

At each stage of the search, lookup-sups does the
following: First, it searches all trees that start with
an element preceding the first element in the query
set; these are trees that can possibly contain nodes
for the whole set. If there is a node that di­
rectly corresponds to the first element in the (pos­
sibly already reduced) query set, the query set gets
further reduced by this element. Now the function
only needs to find matching nodes for the remain­
ing elements. If there are no such elements left, the
search has succeeded, i.e., every end-of-path node
that can be reached from N will yield a superset to
the query. Otherwise, search needs to be continued
with the reduced query set and the appropriate set
of nodes.

CONSTRAINT SATISFACTION

3 Theoretical Properties of UBTree
We state the soundness and completeness of the
lookup -first function in the following theorem.
Theorem 1 Let T be a forest UBTree that has
been constructed by iteratively inserting all sets
s S. The lookup -first function, as defined in
Section 2, succeeds on a query set q and T if and
only if there exists a set s S with s q.

A similar theorem stating the soundness and
completeness of the lookup-subs and lookup_sups
functions can be proven.

To analyze the runtime behavior of the
lookup-subs and lookup-first functions, let us re­
examine the algorithm in Figure 5 from a differ-
ent perspective. At each stage, the function tries
to find a node TV in T that matches the first el­
ement e0 of q. If this node is found, there is a
new recursive instance, with N.T and as
parameters; afterwards, the function works on T
and If on the other hand, no node in T
matches eo, the function simply skips and con­
tinues with Prom these observations, we
get the following recursive formula for the num­
ber of search nodes that are visited by lookup_subs
(which is an upper limit to the number of nodes
visited by lookup-first):

Here, denotes the probability that the node
N matching e0 is in T, and E{i), consequently, de­
notes the expected number of visited search nodes
with i elements to go. Obviously, = PN. It
is easily proven that the recursion results in:

(1)

The probability at each stage of the search
is equal to the probability that there is a set s €
S which starts with the elements that would be
represented on a path to TV. It is an open question,
how an upper limit for can be determined. In
the worst-case, when all nodes TV are present in
the tree, we get = 1 and E(n) = search
nodes for a query set of size n.3

3It should be noticed, that, when matching rules or
determining unsatisfiable goals in planning, the query
sets are small while is very large. Thus, searching

nodes is still much better than checking sets for
inclusion.

The number of nodes visited by the lookup-sups
function is only dominated by the total number of
nodes that are in the forest. Let denote the
maximal element with respect to the total order­
ing, i.e., for all TVymg to find
all supersets of the query set lookup-sups
has to search the whole structure. Consequently,
we determine an upper bound for the total number
of nodes in the tree.

Theorem 2 Let T be a forest in which exactly the
sets have been iteratively inserted. If the
total number of distinct elements in all of the sets

is P, then the total number of nodes in T is
at most

The worst case occurs if and only if all sets con­
taining are contained in S.

4 Empirical Evaluation
To demonstrate the effectiveness of the approach,
we discuss examples taken from the use of UBTree
in the IPP planning system [Koehler et al., 1997].
Following [Hellerstein et al., 1997], the workload
for UBTree is determined by the following factors:

• the domain, which is the set of all possible
sets, i.e., given P logical atoms to characterize
states, the domain comprises sets,

• an instance of the domain is the finite subset
that is currently stored in J1,

• the set of queries, which is the set of goals that
are constructed during planning.

Note that the workload is dynamic. Starting
with an empty UBTree structure T] a generated
goal set is added if no plan was found by the plan­
ning system, i.e., T is monotonically growing con­
taining sets at the end.

Since it is extremely difficult to make distribu­
tion assumptions for instances and query sets in a
planning system, we use the following parameters
to characterize the size of a UBTree:

• P : the total number of distinct logical atoms
in S.

• the number of all
stored sets.

• the total number of nodes in the forest

• t h e storage cost, which would
be equal to 1 in a trivial data structure simply
representing all sets separately.

• the total number of queries that have
been answered during the process.

Figure 7 shows the parameters for forests of in­
creasing size in two different planning domains (the
blocksworld shown in the upper part and the brief-
case world shown in the lower part of the table).

HOFFMANN AND KOEHLER 465

The larger UBTree grows (reflected by increasing
and and the smaller P is, the better values

are obtained for the storage cost.

linear; sometimes, as in the case of Figure 9, possi­
bly exponential, but to a small degree(as indicated
by equation 1).

p S T C Q
71 4846 55035 0.69 8778
96 56398 584015 0.61 112337

115 324628 3042203 0.55 669127
33 1618 4370 0.36 5291
46 22044 59743 0.29 61909
46 92971 210666 0.23 243175
61 1058930 2007326 0.16 24369798

Figure 7: Typical sizes of UBTree.

Figures 8, 9,10, and 11 illustrate the runtime be­
havior of the query functions reflected in the num­
ber of searched nodes for a given query-set size |g|
and \S\. Note that \S\ is shown on a logarithmic
scale in all figures.

Figure 9: The average number of visited search
nodes as a function of query-set size |q| and in­
stance size \S\ (shown on a logarithmic scale) for
the lookup-first function averaged over all, i.e., suc­
ceeding and failing, queries.

Figure 8: The average number of visited search
nodes as a function of query-set size \q\ and in­
stance size (shown on a logarithmic scale) for
the lookup first function in the positive case where
the query succeeds.

Figure 8 indicates that the lookup-first func­
tion needs significantly less search time on queries
where it can retrieve a subset than on those where
it must fail. In fact, the average runtime behavior
in the positive case was linear in the size of the
query set and completely independent of the in­
stance size throughout all our experiments. The
function never visited more than an average of
\q\ * 2.5 search nodes on positive queries. In the
general case, the behavior tends to be logarith­
mic in the instance size. The behavior with re­
spect to the query-set size varied in different do­
mains: sometimes clearly polynomial, even sub-

A behavior as shown in Figure 10 is typical for
the lookup-subs function: clearly logarithmic in \S\
and probably exponential, to a small degree, in the
query set size.

Figure 10: Number of search nodes for lookup_subs,
averaged over all queries.

Figure 11 shows a typical picture for looku_sups
that we found in all investigated domains. It turns
out that the performance of this function decreases
for small query sets. This happens because small
sets are likely to have more supersets than big
ones. The behavior with respect to the instance
size tends to be linear. Note that again, S is shown
on a logarithmic scale and that the scale is dif­
ferent here.

CONSTRAINT SATISFACTION

Figure 11: Number of search nodes for lookup jsups,
averaged over all queries.

5 Related Work
In order to deal with set queries in planning, a
partial subset test that only considers sets of size
|q| - 1 to a given query set of size \q\ has been
developed in [Blum and Furst, 1997]. Obviously,
this can be done in linear time, but such a test
must be inherently incomplete. With UBTree, a
complete test is available that runs in almost linear
time in practice despite its exponential worst-case
behavior.

For databases, RD trees [Hellerstein and Pfeffer,
1994] have been proposed as an effective means
in answering superset queries, but they are very
limited in handling subset queries. In contrast to
UBTree where a set is spread over several nodes,
an RD tree is organized such that the leaf nodes
contain the sets and non-leaf nodes contain super­
sets (of different size) of their children nodes to
effectively guide search. To handle subset queries,
inverted RD trees are used which are equivalent to
RD trees on the complements of the base sets. Two
serious problems occur in this approach. First, a
non-leaf node needs to be recomputed if a new set
is inserted into one of its leaf-children. Second,
even if only small sets are stored in the leaves,
their complements and their supersets in the cor­
responding parent nodes grow impractically large.
UBTree avoids both problems.

An optimized implementation of the RETE pat-
tern matching algorithm [Forgy, 1982] to handle
large numbers of production rules is described in
[Doorenbos, 1994]. The indexing structure for pre­
conditions of rules is similar to UBTree, but the
way how the elements of the query set match the
stored sets in the indexing structure is quite dif­
ferent because the preconditions can contain vari­
ables, while UBTree deals with sets of ground
atoms only. Thus, the problem of null activations,
where rule nodes are activated though not all of
their preconditions are satisfied by the current in­
put, can occur in RETE, but not in UBTree, which

would index all ground instances of pattern match­
ing rules instead.

6 Conclusion
Depending on the particular requirements of an
application, UBTree can be further optimized. For
example, if one is only interested in keeping mini­
mal sets, all non-minimal sets can be pruned from
the tree. Furthermore, if all sets s S are con­
structed from a finite and fixed domain of ele­
ments, an implicit bitmap representation of the
sets can further reduce memory consumption and
query times.

As we saw in Section 4, the worst-case behav­
ior of the algorithms, especially of the lookupjsups
function, depends on the ordering of the elements.
In application areas where one has information
about the likelihood of appearance of the elements
in any set s, it should be possible to generate a
total ordering that minimizes the number of tree
nodes. One simply orders elements with high like­
lihood of appearance before those with low values.
Thereby, both storage and search costs can be re­
duced.

References
[Blum and Furst, 1997] A. Bl urn and M. Furst.

Fast planning through planning graph analysis.
Artificial Intelligence, 90(l-2):279-298, 1997.

[Bylander, 1991] T. Bylander. Complexity results
for planning. In IJCA1-91, pages 274-279. Mor­
gan Kaufmann, San Francisco, CA, 1991.

[Doorenbos, 1994] R. Doorenbos. Combining left
and right unlinking for matching a large number
of learned rules. In AAAI-94, pages 451-458.
Morgan Kaufmann, San Francisco, CA, 1994.

[Forgy, 1982] C. Forgy. Rete: A fast algorithm for
the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

[Gore, 1997] R. Gore. Tableau methods for modal
and temporal logics. Technical report, Aus­
tralian National University, 1997.

[Hellerstein and Pfeffer, 1994] J. Hellerstein and
A. Pfeffer. The RD-Tree: An index structure for
sets. Technical Report 1252, University of Wis­
consin Computer Sciences Department, 1994.

[Hellerstein et a/., 1997] J. Hellerstein, C. Pa-
padimitriou, and E. Koutsoupias. On the anal­
ysis of indexing schemes. In PODS-97, pages
249-256. ACM, 1997.

[Koehler et a/., 1997] J. Koehler, B. Nebel,
J. Hoffmann, and Y. Dimopoulos. Extending
planning graphs to an ADL subset. In ECP-97,
volume 1348 of LNAI, pages 273-285. Springer,
1997.

HOFFMANN AND KOEHLER

