
Knowledge Model ing and Reusabil i ty in ExClaim

L i v i u Badea
AI Research Lab

Research Institute for Informatics
8-10 Averescu Blvd., Bucharest, Romania

e-mail: badeafiici.ro

A b s t r a c t

This paper presents ExClaim, a hybr id language
for knowledge representation and reasoning. Orig-
inally developed as an operationalization language
for the KADS knowledge based systems (KBS) de­
velopment methodology, ExClaim has a meta-level
architecture: it structures the knowledge on three
levels, namely the domain, inference and task level.
An extension of a description logic is used for imple­
menting the domain level. The inference and task
levels are general logic programs integrated wi th
the domain level by means of upward and down­
ward reflection rules which describe the automatic
domain operations performed whenever arguments
of inferences or tasks are accessed. Inferences and
tasks support non-deterministic reasoning, which
in turn requires a non-monotonic domain level.
Description logics offer a set of inference services
(some not available in other knowledge represen­
tation languages) which are extremely useful in
knowledge modeling. Such inference services in­
clude domain-level deduction, semantic consistency
verification and automatic classification of con­
cepts. We argue that such validation and verifi­
cation facilities are important in assisting a knowl­
edge engineer in developing models. These models
are reusable due to the layered architecture as well
as to the possibility of wri t ing generic inferences
using a reified membership relation.

1 I n t r o d u c t i o n
Knowledge based systems (KBS) are typically large and com­
plex software systems aiming at solving difficult problems
in knowledge-intensive domains. Knowledge engineering in
general and KBS development in particular are notoriously
difficult not only because of the sheer size of the problem
description, but also because they typically involve complex
ontologies, which are usually not easily representable in a
single knowledge representation formalism.

In order to assist the knowledge engineer in developing
KBSs, a large number of KBS development tools have been
bui l t since the eighties. Two main tendencies were followed
in the early years.

On one hand, a great number of expert system "shells"
were put forward. Systems like KEE, ART, Knowledge Craft,
Nexpert Object etc. were successfully used in building a large

number of expert systems. These "shells", however, had an
important drawback: they used a given symbol-level repre­
sentation (for instance a frame-based system augmented wi th
rules, daemons, message passing, etc.), which is usually not
appropriate for describing reusable knowledge-level models.

An alternative approach to building KBS development
tools was inspired by the tradit ional software engineering
(SE) tools. SE tools are nevertheless inappropriate as KBS
tools since the domain knowledge (the ontology) is much
more complex in the case of a KBS than in the case of a
typical software system.

The remarks above suggest the need for a knowledge-level
KBS development tool that would provide at least some of
the nice simulation facilities offered by tradit ional SE tools.
Such facilities are much harder to develop in the case of
KBSs, since, as already mentioned above, we are dealing
wi th much more complex domain knowledge. An extreme
approach would be to use ful l predicate logic as a domain
description language and to support the reasoning involved
wi th a full first order logic theorem prover. This approach can
be very inefficient in complex cases. Also, the readability of
model specifications may sometimes be quite low, especially
when dealing with complex logic formulae.

In order to support knowledge-level knowledge modeling,
a series of methodologies and specification languages have
been put forward, the most important ones being the KADS
methodology [10], K I F and Ontolingua, etc. A number of
KADS operationalization languages and environments have
been developed for supporting the KADS methodology with
executable tools: S i (ML) 2 , OMOS, MoMo, K A R L , MODEL-
K, FORK ADS [5], etc. Most of these languages are either
very expressive, formally sound but computationally ineffi­
cient (sometimes even intractable), or they have a more pro­
cedural semantics, being less expressive, but more tractable.

This paper presents a hybrid architecture aiming at inte­
grating description logics (viewed as domain description lan­
guages) and logic programming (used for representing infer­
ence and control knowledge) in a declarative knowledge mod­
eling environment. The main byproduct of this declarative
approach is the possibility of developing reusable libraries of
problem solving methods.

1.1 Br ie f descript ion of ExClaim
ExClaim (Executable CommonKADS Language for Inte­
grated Modeling) is a knowledge modeling environment in­
tegrating description logics (used for representing domain
knowledge) and logic programming (for dealing wi th infer­
ence and control knowledge). Originally developed as an op-

KNOWLEDGE-BASED APPLICATIONS

('rat ionalization language for the; C o m m o n K A D S knowledge
based systems methodology [2], ExClaim has a meta-level ar­
chitecture which structures the knowledge corresponding to
a model on three levels, namely the domain, inference and
task level. Figure 1 presents a graphical representation of the
ExClaim architecture (which is typ ica l for the K A D S exper­
tise model) . A l though the decomposit ion of a given model in
the three knowledge levels may not be unique, it is usually
relat ively easy to map an in formal descript ion of the model
onto this three-level architecture.

The domain level encodes the domain ontology. The do­
main knowledge is main ly expressed in a description logic
(DL) which provides fair ly sophisticated inference services
(such as domain-level deduct ion, semantic consistency check­
ing, automat ic classification of concepts, knowledge st ructur­
ing and indexing).

The inference level consists of a set of p r im i t i ve problem
solving actions, whose internal funct ion ing is irrelevant f rom
the point of view of the conceptual problem solving model.
Inferences (represented graphical ly as ovals) have a set of in ­
put and ou tpu t roles (depicted in diagrams as rectangles),
which denote, roughly speaking, the arguments of the infer­
ence. (Inference roles represent a k ind of meta-level abstrac­
t ion of domain level objects (concepts, relations, etc).)

A l though the execution of inferences induces domain level
operations, inferences do not manipulate domain level objects
directly. Since they refer to domain object only indirectly
via inference roles, (par t ia l) models in which the domain-
level has been st r ipped off can be easily reused in a different
domain. Reusabil i ty is thus a key feature of K A D S expertise
models as it enables the construct ion of domain-independent
l ibraries of models.

The inference structures represent the data-f low of a given
model. The control of the various inferences is accomplished
at the task level,

2 T h e d o m a i n leve l
The ExClaim domain level is an extension of a description
logic (D L) , w i t h the concept, relation and attribute construc­
tors f rom Table 1 and the terminological and assertional ax­
ioms shown in Table 2. (The DL implementat ion used in
ExClaim is the Mote l system [6].) Unl ike most implemented

Tab le 1 : C o n c e p t / r e l a t i o n cons t ruc to r s

Tab le 2 : T e r m i n o l o g i c a l a n d asser t iona l ax ioms

logical and database systems1 , DLs use the open world as­
sumption (i t is not automat ica l ly assumed tha t all the ind i ­
viduals known at one moment are all possible indiv iduals).

The inference services provided by the DL include sat­
isf iabi l i ty (consistency) and subsumpt ion test ing, automatic
classification of concepts in a hierarchy and instance retrieval.

In a language inc lud ing concept negation, all of the*
above services make use of the knowledge base consis­
tency a lgor i thm [3]. For example, subsumpt ion test ing
subsumes(C,D) reduces to unsatisf iabi l i ty test ing of the con­
cept and (not (C) ,D) .

2.1 The doma in level extension
In order to be usable in real-life appl icat ions, our K R & R lan­
guage wi l l have to be able to describe collections of objects
(such as sets or lists of instances/tuples). However, exist ing
(implemented) DL systems usually lack constructors for sets
or lists of objects2 and we therefore have to extend the de­
scr ipt ion logic w i t h such collections of concept instances or
relat ion tuples. Th is does not affect the completeness of the
DL inferences since the terminological and assertional lev­
els of the DL are completely separated (i t is impossible to

1 which usually use a form of closed world semantics
2Some descript ion logics provide the con­

struct which denotes the concept whose extension is given by the set
of instances However, what we need is a concept
construct whose instances denote sets or lists of other instances (or
tuples).

BADEA 607

KNOWLEDGE-BASED APPLICATIONS

have a DL instance that represents a collection of other DL
instances).

This domain extension leads to a hybrid domain level in
which simple instances are represented in the DL , while col­
lections (sets or lists) are stored in the extension.

The internal representation of a so-called domain store el­
ement is the following:

A domain-level concept or (binary) relation can have an
associated DL description, represented as

DL ^description

Here C and R stand for domain level concept/relation names,
while DL-C and DLJl. represent their associated DL descrip­
tions.

3 The inference level
Inferences are primit ive problem solving actions which per­
form elementary problem solving operations (i.e. operations
whose internal functioning is irrelevant from the point of view
of the conceptual model).

Inferences operate on inference roles3, which can be either
inputs or outputs. Inference roles represent a kind of meta-
level abstraction of domain level objects (concepts, relations,
etc). In order to enhance the flexibility of the mapping be­
tween inference roles and domain level objects, the following
types of inference role domain links have been introduced:

• simple (the role refers a single DL instance)

• set (the role refers a single domain level instance repre­
senting a set of DL instances)

• list (the role refers a single domain level instance repre­
senting a list of DL instances).

Domain links are represented in ExClaim as:

domainJink

Input roles implement the upward reflection rules of the
meta-level architecture, i.e. they are responsible, broadly
speaking, for retrieving domain level instances. More pre­
cisely, input roles can perform the following types of domain
operations:

• retrieve (retrieve an instance of the domain level object
linked to the input role, but do not remove the instance
afterwards)

• noretrieve (no instances are retrieved from the domain,
as if no domain operation was performed; the value of
the role is set in the call of the inference rather than
retrieved from the domain)

• delete (retrieves a domain level instance and subse­
quently removes i t ; the domain level description logic
must provide facilities for knowledge revision in order
to support this operation).

3 l n KADS, the arguments of inferences are called roles.

Figure 2: Role mapping types

Output roles implement the downward reflection rules of
the meta-level architecture since they are responsible mainly
for storing object instances in the domain level. More pre­
cisely, output roles can perform the following types of domain
operations:

• store ("instances" of the given output role are asserted
in the domain)

• nostore (the "instances" of the output role are not re­
flected in the domain; instead, their value is passed to
the caller of the inference).

Inferences perform automatic domain operations on their
input /output roles. Since no direct domain reference is made
in inferences (or tasks), these levels of the model are domain-
independent and thus reusable (the code of the inference
can remain exactly the same even after changing the domain
level).

The automatic domain operations in inferences can be re­
garded as a more evolved form of parameter passing in an
inference call. For instance, the operation types "noretrieve"
and "nostore" perform no actual domain operations and rely
on the explicit parameter passing mechanism in the call of the
inference. On the other hand, the operation types "delete"
and "store" perform domain operations and should be back-
trackable if we intend to provide a non-deterministic com­
putation model. This in tu rn requires the non-monotonicity
of the domain level and the existence of knowledge revision
facilities in the corresponding description logic.

The backtrackability of domain operations requires that
whenever the inference (that performed the corresponding
domain operation) fails, the state of the domain store and
the description logic is restored to the state before the call of
the failing inference. The same happens when new solutions
are sought for by backtracking.

In order to further enhance the flexibility of the inference
level primitives, two types of role mappings have been pro­
vided (see also Figure 2):

• simple (refers to a single domain store element associ­
ated wi th the inference role)

• set (refers to the set of all simple domain store elements
associated wi th the inference role)

The ExClaim representation of role mappings and the as­
sociated role operations is:

role ..mapping

Note that a "simple" role operation involves a single* do­
main store element of the form:

doinain^store

i r respective of the domain link type, which can be: simple, set or
list.

From the conceptual point of view, inferences are primit ive
problem solving actions and their internal structure as well as
their functioning need not be further detailed. However, if we
are aiming at an operational system, the knowledge engineer
would have to provide the "code" of the inference in order to
be able to execute the model.

In ExClaim, inferences are normal logic programs, i.e. sets
of clauses of the form (we are using a Prolog syntax):

i n f e r e n c e . n a m e ([i n p u t . r o l e . i = V a l u e . i , . . .] ,
[o u t p u t . r o l e . j = V a l u e . j , . . .]) : -

in ference.body.

The heads of such clauses have two arguments representing
the lists of input and output role bindings. A role binding is
a term of the form role_name = RoleValue (RoleValue can
be a variable or a (partial ly) instantiated Prolog term). The
order of the role bindings in the binding lists is irrelevant.

An inference body can contain calls to other inferences
or tasks, but this is not recommended as a good modeling
approach (since inferences should be thought of as primit ive
executable objects).

In ExClaim, inferences are executed using the following
primit ive:

exec_inference(inference_name,
[i n p u t . r o l e . i = I n p u t V a l u e . i , . . .] ,
[o u t p u t . r o l e . j = OutputValue. j , . . .]) .

which perforins the following operations:

• unify the input arguments of the inference with those of
the call

• perform domain operations for the input roles (nore-
trieve, retrieve, delete)

• execute the inference body

• unify the output arguments of the inference with those
of the call

• perform domain operations for the output roles (nostore,
store).

A l l the above steps of exec_inf erence are backtrackable. As
already mentioned, backtracking to a domain operation may
involve domain level knowledge revision too.

4 The task level
The task level embodies the control knowledge of a model.
Tasks do not perform domain operations since they are
viewed as composite executable objects (only the primit ive
executable objects, i.e. the inferences, are allowed to perform
domain operations).

Since no domain operations are associated to task roles,
tasks are, from an operational point of view, like inferences
with "noretrieve" input roles and "nostore" output roles.

One and the same role can be an inference role and a task
role at the same time. (For example, the input role of a
composite task can also be the input role of a component
inference or subtask. The actual domain operations are per­
formed when the inference is executed.)

Parameter passing in tasks is done explicit ly in the call of
the task. From the programmer's point of view, tasks have
the same syntax as inferences:

t a s k . n a m e ([i n p u t . r o l e . i = I n p u t V a l u e . i , . . .] ,
[o u t p u t . r o l e . i = OutputValue_j , . . .]) : -

task.body.

Task bodies can, of course, contain calls to other inferences
and subtasks. Executing a task w i th

exec. task(task.name,
[i n p u t . r o l e _ i = I n p u t V a l u e . i , . . .] ,
[o u t p u t . r o l e . j = Ou tpu tVa lue . j , . . .])

amounts to

• unifying the input arguments of the task wi th those of
the call

• executing the body

• unifying the output arguments of the task wi th those of
the call.

Al l the above execution steps of exec. task are backtraekable.

5 A simple example
A very simple example of a resource allocation problem wil l
be used to illustrate the facilities of ExClaim. In a university
department there is a set of classes to be taught by a set
of lecturers. Classes can be either courses or seminars (but
not both), while lecturers are either professors or assistants
(but not both). Let us further assume that assistants are
allowed to teach only seminars and that the list of classes
familiar to (known by) the various lecturers is also given. Of
course, a lecturer can teach a given class only if he knows
it. Also, we require that each class should be taught by a
lecturer and that a lecturer cannot teach more than one class
(of course, there may be lecturers that don't teach any class
at all). The goal of the problem is to find an assignment of
lecturers (resources) to classes (requests) such that all the
above constraints are verified.

The most straightforward conceptualization of this prob­
lem involves defining the following concepts and relations:

defconcept(lecturer, o r (p ro f , ass is tan t)) .
defpriraeconcept(prof, l e c t u r e r) .
defprimeconcept(assistant, a l l (teaches, seminar)).
d i s j o i n t ([p ro f , ass i s t an t]) .
defconcept(class, or(course, seminar)).
defprimeconcept(course, c lass) .
defprimeconcept(seminar, c lass) .
d i s j o i n t ([cou rse , seminar]) .
defprimerelat ion(knows).
defpr imerelat ion(teaches).

The relations teaches and knows l ink a lecturer wi th the
course he teaches or knows respectively.

Given the relation knows, one must find the relation
teaches subject to all the problem constraints. Some of these
constraints are easily expressible in the description logic (like
the ones presented above). Other constraints may not be
expressible in the DL and we may have to take them into
account at the inference level. For instance, the constraint
mentioning that "a lecturer can teach a given class only if he
knows i t " cannot be represented in the DL unless the par­
ticular DL we are using allows the famous role-value map
constructor:

equal(subset(teaches, knows), t op) .

However, since role-value maps (together wi th relation com­
position and concept conjunction) induce the undecidability
of the DL inference services [9], they are usually not pro­
vided in implemented DL systems wi th complete algorithms.
Therefore, we wil l have to encode this constraint at the higher
levels of the model (inference and/or task level).

BADEA 609

On the other hand, the constraints that each class should
be taught by a lecturer and that a lecturer cannot teach more
than one class could easily be represented in existing DLs as:

defpr imeconcept (c lass , e x i s t s (i n v (t e a c h e s) , l e c t u r e r))
de fp r imeconcep t (lec tu re r , a t m o s t d , teaches)) .

In fact, if all the problem constraints could be represented
in the description logic, we could use the DL inference ser­
vices to solve our problem without additional support from
the inference or task level (DL inference services are usually
reducible to the knowledge base consistency test, which typ­
ically works by constructing models of the K B . The model
constructed while proving the KB consistency can then be
used to extract the solution of the problem).

However, not all constraints are expressible in a given DL ,
so that the additional levels are really necessary. Also, we
may wish to exert a tighter control on the problem solving
process and thus inference and task levels are again needed
(relying entirely on the description logic inference services
may turn out to be too expensive from a computational point
of view).

Last, if we are trying to develop reusable models, hav­
ing separate domain, inference and task levels turns out to
be again very useful. For instance, stripping off the domain
level from our simple allocation example leads to a reusable
problem-solving model for general resource allocation prob­
lems (lecturers are abstracted as resources, while classes are
viewed as requests). We could also reuse the domain model
in a different problem involving lecturers and classes.

After having completely described the domain level of our
simple model, we proceed to the construction of the inference
level. An extremely simple non-deterministic approach wil l
be followed.

Assume that a partial assignment (of the teaches relation)
has been constructed up to this point and that we are cur­
rently attempting to extend this partial assignment with a
new tuple for teaches chosen from the tuples of knows and
l inking a class that has not already been assigned and a lec­
turer who is stil l free (teaches no other class). The corre­
sponding inference structure is depicted in Figure 3. Note
that we have used generic (abstract) names for the inference
roles denoting lecturers, classes and the relations teaches and
knows. Classes are regarded as requests, whereas lecturers
are the resources to be allocated to these requests. The tu­
ples of teaches are thought of as assignments, whereas the
tuples of knows are just candidate_assignments.

The inference ge t . reques t chooses a request that
has not been assigned yet. This chosen_request is
passed on to assignoresource, which tries to retrieve a
candidate-assignment for this request. If it succeeds, the
assignment is stored in the domain level. The whole process
is repeated (at the task level) unt i l there are no more unas-
signed requests (case in which it terminates wi th success) or
unti l a failure occurs (case in which the system automati­
cally backtracks to a previous state). Backtracking involves
not only the inference and task levels, but also the domain
level since the DL has to be restored to its previous state
(before the call).

Inference and task bodies are extremely simple since we
are heavily relying on the automatic domain operations per­
formed by inferences. We are also relying on the powerful
description logic inference mechanisms (mainly when doing
domain store retrieval but also when checking for global con­
sistency after a solution has been found).

F igure 3: The non-determin is t ic inference s t ructure for
the lecturer a l locat ion prob lem

Note that the problem-solving process involves computa­
tions (deduction) at two different levels: (1) at the domain
level (DL deduction) and (2) at the inference and task levels
(execution of inferences and tasks).

This observation shows that not only the description of
the problem, but also the problem-solving process itself is
distributed at different levels. We feel that this separation of
computations (performed while solving the problem) is ex­
tremely useful and natural, leading to a higher reusability of
the models. For instance, a change in the domain model does
not require modifications at the inference or task levels. Let
us illustrate this wi th an example.

Consider a problem instance in which there are only two
lecturers (l1 and /2), two classes (a course c\ and another
class c2) and in which and fa know both c1 and c2-

If we are not told whether or are professors or as­
sistants, the system wil l return two alternative allocations,
namely and

However, if we now specify that is an assistant, only the
second assignment wil l be retained as a consistent one, since
an assistant cannot teach a course

6 Generic inferences and rei f icat ion
For achieving reusability of the models we need to open
the possibility of wr i t ing generic inferences, i.e. inferences
parametrized by the types of their arguments, which wil l be
known only at runtime.

Consider, for example, the following situation. If we
want to describe the staff of some research institute, we
may want to introduce concepts like director, secretary, re­
searcher and instances like Tom, Joan, Mary, Peter, Fred
etc: Torn director, Joan secretary, Mary secretary,
Peter researcher, Fred researcher. Note that the
concepts director, secretary and researcher represent po­
sitions in the research insti tute. They are therefore not
only concepts, but also instances of the (meta-level) con­
cept position: director position, secretary position,
researcher position.

The meta-level concept position should not be confused

610 KNOWLEDGE-BASED APPLICATIONS

w i t h the concept employee, which is a super-concept of
director, secretary and researcher director employee,
secretary employee, researcher employee.

Now suppose we would l ike to wr i te separate inferences for
ret r iev ing directors, secretaries and researchers. This would
amount to w r i t i ng three separate pieces of code tha t are ex­
tremely similar. For instance, the inference for retr ieving
secretaries would be described by

c h o o s e _ s e c r e t a r y ([c a n d i d a t e * Cand] , [chosen .cand ida te = Cand]) .

I f we would like to avoid w r i t i ng three separate pieces of
code, we would have to wr i te a generic inference tha t would
be parametr ized by the position of the person we'd like to
choose. Th is can be accomplished by using an input role,
called type, l inked to the concept position and which is sup­
posed to specify the posi t ion of the person to be chosen.

d o m a i n _ l i n k (c a n d i d a t e , s i m p l e , concep t , employee) .
ro le_mapp ing(gener i c_choose , c a n d i d a t e , s i m p l e , r e t r i e v e) .
d o m a i n _ l i n k (t y p e , s i m p l e , concep t , p o s i t i o n) ,
r o l e . m a p p i n g (g e n e r i c . c h o o s e , t y p e , s i m p l e , r e t r i e v e) .
d o m a i n _ l i n k (i n , s i m p l e , r e l a t i o n , i n) .
ro le_mapp ing(gener i c_choose , i n , s i m p l e , r e t r i e v e) .
doma in_ l i nk (chosen_cand ide t« , s i m p l e , concept , employee) .
ro le_mapp ing(gener ic_chooBe, chosen .cand ida te , s i m p l e , n o s t o r e) .

gene r i c_choose ([cand ida te = Cand, i n = [Cand,Type] ,
type « Type, [chosen .cand ida te = Cand]) .

Note tha t we are making use of the bu i l t - in relat ion in
(in l inks an instance X w i t h a concept C whenever A' is an
instance of C). It is usually enough to have a single role
called in (and l inked to the predefined relat ion in) since all
inferences tha t need to refer to it can do so. Of course, in
can be used as inpu t and output role at the same t ime. 0

Whenever the role in is used as an input (ou tpu t) role, it
retrieves (stores) tuples of the form [X, C] wh i th X C.

The predefined relat ion in allows therefore a k ind of rneta-
level (generic) inferences which are sometimes very impor tan t
for wr i t i ng domain- independent and reusable models.6 Th is
is achieved by abstract ing not only the arguments of infer­
ences, but also their "types11. (More theoretical details on
reif ieation can be found in [1].)

7 Related approaches and conclusions
The fol lowing advantages of the approach presented in this
paper can be ment ioned:
• the meta-level architecture of the system enables the de­
velopment of reusable domain- independent problem solving
models (PSMs) and of appl icat ion- independent ontologies.
• the possibi l i ty of developing domain- independent exe­
cutable l ibraries of PSMs, as in [2].
• suppor t ing the process of K B S val idat ion by using the infer­
ence services offered by the domain-level language: semantic

5 I t can be an input for some inferences and an ou tpu t role for others.
6 B y using a generic inference in our example, we don ' t have to wr i te

any more separate inferences for each type of posit ion (director, secre­
tary or researcher). Not only is it cumbersome to have three identical
pieces of code, bu t these pieces of code would depend on the domain
level (the types of posit ions - director, secretary and researcher are
domain-dependent; we cannot change the domain level, for example
by in t roducing a new posi t ion, wi thout having to modi fy the inference
level too, since we would have to add a new inference for the new po­
si t ion type. On the other hand, if we are using the generic inference
above, we would only have to change the domain l ink of the role type).

consistency checking, domain level deduct ion automat ic con­
cept classification, knowledge s t ruc tur ing and indexing. Most
K B S development tools do not provide all of these inference
services. Also, most of the exist ing tools provide symbol-level
inference services, as opposed to ExClaim, in which knowl­
edge is represented at the knowledge-level (due to its clean
integrat ion of the domain-level descript ion logic w i th the in ­
ference and task-level logic programs).
• the descript ion logic used at the domain level can be re­
garded as a reasonable compromise between expressiveness,
readabi l i ty of formulas and run t ime efficiency.
• ExClaim provides non-determinist ic inference and task lev­
els, which rely on a non-monotonic domain level. The lack of
non-determinism in a K B S is, in our opin ion, an impor tan t
drawback, since algor i thms in KBSs (as opposed to t rad i ­
t ional software engineering environments) are complex and
usually non-determinist ic.
• ExClaim provides the reified membership relat ion in which
can be used to wr i te generic inferences. These inferences
increase the domain-independence and reusabi l i ty of models.

Several previous works have dealt w i t h hyb r id representa­
t ion languages combining descript ion logics w i t h logic pro­
gramming, for example AL- log 4], C A R I N [8], F-logic [7].
However, none of these systems allows the K B S developer to
specify reusable models, as in ExClaim.

The main goal of this research is the creation of domain-
independent executable l ibraries of problem solving models.

Acknowledgments
The research presented in this paper has been par t ly sup­
por ted by the European Commun i t y project P E K A D S
(CP93-7599). I am indebted to Doina Til ivea for developing
the graphical user interface of ExClaim, to Jan Wielemaker
for support on using the X P C E environment [l1] as well as to
Ul l r ich Hustadt and Renate Schmidt for pe rm i t t i ng the use
of the Motel terminological system [6] in this research.

References
| l] Badea L i v i u . Reifying Concepts m Description Logics. Proc.

IJCAI -97 , 142-147.'

[2] Breuker J . , Van de Velde J. CommonKA DS Library for Expertise
Modelling. Reusable Problem Solving Components. IOS 1994.

[3] Buchheit M., Donin i P .M. , Schaerf A. Decidable Reasoning in
Terminological Knowledge Representation Systems. J. of AI Re­
search 1 (1993), 109-138.

[4] Donini P., Lenzerini M. , Nard i D., Schaerf A. A hybrid system
integrating datalog and concept languages. L N A I 549, 1991.

[5] Pensel I) . , van Harmelen F., A comparison of languages which
operationalize and formalize KADS models of expertise. Report
280, Universi tat Kar lsruhe, September 1993.

[6] Hustadt U., Nonnengart A. , Schmidt R., T i m m .J. Motel User
Manual. Max Planck Ins t i tu te Report MPI-I-92-236, Sept. 1994.

[7] Ki fer M., Lausen G., Wu J. Logical foundations of object-
oriented and frame-based languages. .J. of the A C M , May 1995.

[8] Levy A., Rousset M.O. CARIN: a representation language inte­
grating rules and description logics. Proc. ECAP96.

[9] Schmidt-SchauB M. Subsumption in KL-ONE is undecidable.
Proceedings KR-89, pp. 421-431.

[lO] Schreiber G., Wie l inga B., Breuker J. KADS: A Principled
Approach to Knowledge-Based System Development. Academic
Press, 1993.

[l l] Wielemaker J . , Anjcwierden A. Programming in PCE/Prolog.
Universi ty of Amsterdam, 1992.

BADEA 611

