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A b s t r a c t 

This paper presents ExClaim, a hybr id language 
for knowledge representation and reasoning. Orig-
inally developed as an operationalization language 
for the KADS knowledge based systems (KBS) de­
velopment methodology, ExClaim has a meta-level 
architecture: it structures the knowledge on three 
levels, namely the domain, inference and task level. 
An extension of a description logic is used for imple­
menting the domain level. The inference and task 
levels are general logic programs integrated wi th 
the domain level by means of upward and down­
ward reflection rules which describe the automatic 
domain operations performed whenever arguments 
of inferences or tasks are accessed. Inferences and 
tasks support non-deterministic reasoning, which 
in turn requires a non-monotonic domain level. 
Description logics offer a set of inference services 
(some not available in other knowledge represen­
tation languages) which are extremely useful in 
knowledge modeling. Such inference services in­
clude domain-level deduction, semantic consistency 
verification and automatic classification of con­
cepts. We argue that such validation and verifi­
cation facilities are important in assisting a knowl­
edge engineer in developing models. These models 
are reusable due to the layered architecture as well 
as to the possibility of wri t ing generic inferences 
using a reified membership relation. 

1 I n t r o d u c t i o n 
Knowledge based systems (KBS) are typically large and com­
plex software systems aiming at solving difficult problems 
in knowledge-intensive domains. Knowledge engineering in 
general and KBS development in particular are notoriously 
difficult not only because of the sheer size of the problem 
description, but also because they typically involve complex 
ontologies, which are usually not easily representable in a 
single knowledge representation formalism. 

In order to assist the knowledge engineer in developing 
KBSs, a large number of KBS development tools have been 
bui l t since the eighties. Two main tendencies were followed 
in the early years. 

On one hand, a great number of expert system "shells" 
were put forward. Systems like KEE, ART, Knowledge Craft, 
Nexpert Object etc. were successfully used in building a large 

number of expert systems. These "shells", however, had an 
important drawback: they used a given symbol-level repre­
sentation (for instance a frame-based system augmented wi th 
rules, daemons, message passing, etc.), which is usually not 
appropriate for describing reusable knowledge-level models. 

An alternative approach to building KBS development 
tools was inspired by the tradit ional software engineering 
(SE) tools. SE tools are nevertheless inappropriate as KBS 
tools since the domain knowledge (the ontology) is much 
more complex in the case of a KBS than in the case of a 
typical software system. 

The remarks above suggest the need for a knowledge-level 
KBS development tool that would provide at least some of 
the nice simulation facilities offered by tradit ional SE tools. 
Such facilities are much harder to develop in the case of 
KBSs, since, as already mentioned above, we are dealing 
wi th much more complex domain knowledge. An extreme 
approach would be to use ful l predicate logic as a domain 
description language and to support the reasoning involved 
wi th a full first order logic theorem prover. This approach can 
be very inefficient in complex cases. Also, the readability of 
model specifications may sometimes be quite low, especially 
when dealing with complex logic formulae. 

In order to support knowledge-level knowledge modeling, 
a series of methodologies and specification languages have 
been put forward, the most important ones being the KADS 
methodology [10], K I F and Ontolingua, etc. A number of 
KADS operationalization languages and environments have 
been developed for supporting the KADS methodology with 
executable tools: S i (ML) 2 , OMOS, MoMo, K A R L , MODEL-
K, FORK ADS [5], etc. Most of these languages are either 
very expressive, formally sound but computationally ineffi­
cient (sometimes even intractable), or they have a more pro­
cedural semantics, being less expressive, but more tractable. 

This paper presents a hybrid architecture aiming at inte­
grating description logics (viewed as domain description lan­
guages) and logic programming (used for representing infer­
ence and control knowledge) in a declarative knowledge mod­
eling environment. The main byproduct of this declarative 
approach is the possibility of developing reusable libraries of 
problem solving methods. 

1.1 Br ie f descript ion of ExClaim 
ExClaim (Executable CommonKADS Language for Inte­
grated Modeling) is a knowledge modeling environment in­
tegrating description logics (used for representing domain 
knowledge) and logic programming (for dealing wi th infer­
ence and control knowledge). Originally developed as an op-
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( 'rat ionalization language for the; C o m m o n K A D S knowledge 
based systems methodology [2], ExClaim has a meta-level ar­
chitecture which structures the knowledge corresponding to 
a model on three levels, namely the domain, inference and 
task level. Figure 1 presents a graphical representation of the 
ExClaim architecture (which is typ ica l for the K A D S exper­
tise model) . A l though the decomposit ion of a given model in 
the three knowledge levels may not be unique, it is usually 
relat ively easy to map an in formal descript ion of the model 
onto this three-level architecture. 

The domain level encodes the domain ontology. The do­
main knowledge is main ly expressed in a description logic 
(DL) which provides fair ly sophisticated inference services 
(such as domain-level deduct ion, semantic consistency check­
ing, automat ic classification of concepts, knowledge st ructur­
ing and indexing). 

The inference level consists of a set of p r im i t i ve problem 
solving actions, whose internal funct ion ing is irrelevant f rom 
the point of view of the conceptual problem solving model. 
Inferences (represented graphical ly as ovals) have a set of in ­
put and ou tpu t roles (depicted in diagrams as rectangles), 
which denote, roughly speaking, the arguments of the infer­
ence. (Inference roles represent a k ind of meta-level abstrac­
t ion of domain level objects (concepts, relations, etc).) 

A l though the execution of inferences induces domain level 
operations, inferences do not manipulate domain level objects 
directly. Since they refer to domain object only indirectly 
via inference roles, (par t ia l ) models in which the domain-
level has been st r ipped off can be easily reused in a different 
domain. Reusabil i ty is thus a key feature of K A D S expertise 
models as it enables the construct ion of domain-independent 
l ibraries of models. 

The inference structures represent the data-f low of a given 
model. The control of the various inferences is accomplished 
at the task level, 

2 T h e d o m a i n leve l 
The ExClaim domain level is an extension of a description 
logic ( D L ) , w i t h the concept, relation and attribute construc­
tors f rom Table 1 and the terminological and assertional ax­
ioms shown in Table 2. (The DL implementat ion used in 
ExClaim is the Mote l system [6].) Unl ike most implemented 

Tab le 1 : C o n c e p t / r e l a t i o n cons t ruc to r s 

Tab le 2 : T e r m i n o l o g i c a l a n d asser t iona l ax ioms 

logical and database systems1 , DLs use the open world as­
sumption ( i t is not automat ica l ly assumed tha t all the ind i ­
viduals known at one moment are all possible indiv iduals). 

The inference services provided by the DL include sat­
isf iabi l i ty (consistency) and subsumpt ion test ing, automatic 
classification of concepts in a hierarchy and instance retrieval. 

In a language inc lud ing concept negation, all of the* 
above services make use of the knowledge base consis­
tency a lgor i thm [3]. For example, subsumpt ion test ing 
subsumes(C,D) reduces to unsatisf iabi l i ty test ing of the con­
cept and (not (C) ,D) . 

2.1 The doma in level extension 
In order to be usable in real-life appl icat ions, our K R & R lan­
guage wi l l have to be able to describe collections of objects 
(such as sets or lists of instances/tuples). However, exist ing 
( implemented) DL systems usually lack constructors for sets 
or lists of objects2 and we therefore have to extend the de­
scr ipt ion logic w i t h such collections of concept instances or 
relat ion tuples. Th is does not affect the completeness of the 
DL inferences since the terminological and assertional lev­
els of the DL are completely separated ( i t is impossible to 

1 which usually use a form of closed world semantics 
2Some descript ion logics provide the con­

struct which denotes the concept whose extension is given by the set 
of instances However, what we need is a concept 
construct whose instances denote sets or lists of other instances (or 
tuples). 
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have a DL instance that represents a collection of other DL 
instances). 

This domain extension leads to a hybrid domain level in 
which simple instances are represented in the DL , while col­
lections (sets or lists) are stored in the extension. 

The internal representation of a so-called domain store el­
ement is the following: 

A domain-level concept or (binary) relation can have an 
associated DL description, represented as 

DL ^description  

Here C and R stand for domain level concept/relation names, 
while DL-C and DLJl. represent their associated DL descrip­
tions. 

3 The inference level 
Inferences are primit ive problem solving actions which per­
form elementary problem solving operations (i.e. operations 
whose internal functioning is irrelevant from the point of view 
of the conceptual model). 

Inferences operate on inference roles3, which can be either 
inputs or outputs. Inference roles represent a kind of meta-
level abstraction of domain level objects (concepts, relations, 
etc). In order to enhance the flexibility of the mapping be­
tween inference roles and domain level objects, the following 
types of inference role domain links have been introduced: 

• simple (the role refers a single DL instance) 

• set (the role refers a single domain level instance repre­
senting a set of DL instances) 

• list (the role refers a single domain level instance repre­
senting a list of DL instances). 

Domain links are represented in ExClaim as: 

domainJink  

Input roles implement the upward reflection rules of the 
meta-level architecture, i.e. they are responsible, broadly 
speaking, for retrieving domain level instances. More pre­
cisely, input roles can perform the following types of domain 
operations: 

• retrieve (retrieve an instance of the domain level object 
linked to the input role, but do not remove the instance 
afterwards) 

• noretrieve (no instances are retrieved from the domain, 
as if no domain operation was performed; the value of 
the role is set in the call of the inference rather than 
retrieved from the domain) 

• delete (retrieves a domain level instance and subse­
quently removes i t ; the domain level description logic 
must provide facilities for knowledge revision in order 
to support this operation). 

3 l n KADS, the arguments of inferences are called roles. 

Figure 2: Role mapping types 

Output roles implement the downward reflection rules of 
the meta-level architecture since they are responsible mainly 
for storing object instances in the domain level. More pre­
cisely, output roles can perform the following types of domain 
operations: 

• store ("instances" of the given output role are asserted 
in the domain) 

• nostore (the "instances" of the output role are not re­
flected in the domain; instead, their value is passed to 
the caller of the inference). 

Inferences perform automatic domain operations on their 
input /output roles. Since no direct domain reference is made 
in inferences (or tasks), these levels of the model are domain-
independent and thus reusable (the code of the inference 
can remain exactly the same even after changing the domain 
level). 

The automatic domain operations in inferences can be re­
garded as a more evolved form of parameter passing in an 
inference call. For instance, the operation types "noretrieve" 
and "nostore" perform no actual domain operations and rely 
on the explicit parameter passing mechanism in the call of the 
inference. On the other hand, the operation types "delete" 
and "store" perform domain operations and should be back-
trackable if we intend to provide a non-deterministic com­
putation model. This in tu rn requires the non-monotonicity 
of the domain level and the existence of knowledge revision 
facilities in the corresponding description logic. 

The backtrackability of domain operations requires that 
whenever the inference (that performed the corresponding 
domain operation) fails, the state of the domain store and 
the description logic is restored to the state before the call of 
the failing inference. The same happens when new solutions 
are sought for by backtracking. 

In order to further enhance the flexibility of the inference 
level primitives, two types of role mappings have been pro­
vided (see also Figure 2): 

• simple (refers to a single domain store element associ­
ated wi th the inference role) 

• set (refers to the set of all simple domain store elements 
associated wi th the inference role) 

The ExClaim representation of role mappings and the as­
sociated role operations is: 

role ..mapping 

Note that a "simple" role operation involves a single* do­
main store element of the form: 

doinain^store  

i r respective of the domain link type, which can be: simple, set or 
list. 



From the conceptual point of view, inferences are primit ive 
problem solving actions and their internal structure as well as 
their functioning need not be further detailed. However, if we 
are aiming at an operational system, the knowledge engineer 
would have to provide the "code" of the inference in order to 
be able to execute the model. 

In ExClaim, inferences are normal logic programs, i.e. sets 
of clauses of the form (we are using a Prolog syntax): 

i n f e r e n c e . n a m e ( [ i n p u t . r o l e . i = V a l u e . i , . . .] , 
[ o u t p u t . r o l e . j = V a l u e . j , . . . ] ) : -

in ference.body. 

The heads of such clauses have two arguments representing 
the lists of input and output role bindings. A role binding is 
a term of the form role_name = RoleValue (RoleValue can 
be a variable or a (partial ly) instantiated Prolog term). The 
order of the role bindings in the binding lists is irrelevant. 

An inference body can contain calls to other inferences 
or tasks, but this is not recommended as a good modeling 
approach (since inferences should be thought of as primit ive 
executable objects). 

In ExClaim, inferences are executed using the following 
primit ive: 

exec_inference(inference_name, 
[ i n p u t . r o l e . i = I n p u t V a l u e . i , . . .] , 
[ o u t p u t . r o l e . j = OutputValue. j , . . . ] ) . 

which perforins the following operations: 

• unify the input arguments of the inference with those of 
the call 

• perform domain operations for the input roles (nore-
trieve, retrieve, delete) 

• execute the inference body 

• unify the output arguments of the inference with those 
of the call 

• perform domain operations for the output roles (nostore, 
store). 

A l l the above steps of exec_inf erence are backtrackable. As 
already mentioned, backtracking to a domain operation may 
involve domain level knowledge revision too. 

4 The task level 
The task level embodies the control knowledge of a model. 
Tasks do not perform domain operations since they are 
viewed as composite executable objects (only the primit ive 
executable objects, i.e. the inferences, are allowed to perform 
domain operations). 

Since no domain operations are associated to task roles, 
tasks are, from an operational point of view, like inferences 
with "noretrieve" input roles and "nostore" output roles. 

One and the same role can be an inference role and a task 
role at the same time. (For example, the input role of a 
composite task can also be the input role of a component 
inference or subtask. The actual domain operations are per­
formed when the inference is executed.) 

Parameter passing in tasks is done explicit ly in the call of 
the task. From the programmer's point of view, tasks have 
the same syntax as inferences: 

t a s k . n a m e ( [ i n p u t . r o l e . i = I n p u t V a l u e . i , . . . ] , 
[ o u t p u t . r o l e . i = OutputValue_j , . . . ] ) : -

task.body. 

Task bodies can, of course, contain calls to other inferences 
and subtasks. Executing a task w i th 

exec. task( task.name, 
[ i n p u t . r o l e _ i = I n p u t V a l u e . i , . . . ] , 
[ o u t p u t . r o l e . j = Ou tpu tVa lue . j , . . . ] ) 

amounts to 

• unifying the input arguments of the task wi th those of 
the call 

• executing the body 

• unifying the output arguments of the task wi th those of 
the call. 

Al l the above execution steps of exec. task are backtraekable. 

5 A simple example 
A very simple example of a resource allocation problem wil l 
be used to illustrate the facilities of ExClaim. In a university 
department there is a set of classes to be taught by a set 
of lecturers. Classes can be either courses or seminars (but 
not both), while lecturers are either professors or assistants 
(but not both). Let us further assume that assistants are 
allowed to teach only seminars and that the list of classes 
familiar to (known by) the various lecturers is also given. Of 
course, a lecturer can teach a given class only if he knows 
it. Also, we require that each class should be taught by a 
lecturer and that a lecturer cannot teach more than one class 
(of course, there may be lecturers that don't teach any class 
at all). The goal of the problem is to find an assignment of 
lecturers (resources) to classes (requests) such that all the 
above constraints are verified. 

The most straightforward conceptualization of this prob­
lem involves defining the following concepts and relations: 

defconcept( lecturer, o r (p ro f , ass is tan t ) ) . 
defpriraeconcept(prof, l e c t u r e r ) . 
defprimeconcept(assistant, a l l ( teaches, seminar)). 
d i s j o i n t ( [p ro f , ass i s t an t ] ) . 
defconcept(class, or(course, seminar)). 
defprimeconcept(course, c lass) . 
defprimeconcept(seminar, c lass) . 
d i s j o i n t ( [ cou rse , seminar]) . 
defprimerelat ion(knows). 
defpr imerelat ion(teaches). 

The relations teaches and knows l ink a lecturer wi th the 
course he teaches or knows respectively. 

Given the relation knows, one must find the relation 
teaches subject to all the problem constraints. Some of these 
constraints are easily expressible in the description logic (like 
the ones presented above). Other constraints may not be 
expressible in the DL and we may have to take them into 
account at the inference level. For instance, the constraint 
mentioning that "a lecturer can teach a given class only if he 
knows i t " cannot be represented in the DL unless the par­
ticular DL we are using allows the famous role-value map 
constructor: 

equal(subset(teaches, knows), t op ) . 

However, since role-value maps (together wi th relation com­
position and concept conjunction) induce the undecidability 
of the DL inference services [9], they are usually not pro­
vided in implemented DL systems wi th complete algorithms. 
Therefore, we wil l have to encode this constraint at the higher 
levels of the model (inference and/or task level). 
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On the other hand, the constraints that each class should 
be taught by a lecturer and that a lecturer cannot teach more 
than one class could easily be represented in existing DLs as: 

defpr imeconcept (c lass , e x i s t s ( i n v ( t e a c h e s ) , l e c t u r e r ) ) 
de fp r imeconcep t ( lec tu re r , a t m o s t d , teaches) ) . 

In fact, if all the problem constraints could be represented 
in the description logic, we could use the DL inference ser­
vices to solve our problem without additional support from 
the inference or task level (DL inference services are usually 
reducible to the knowledge base consistency test, which typ­
ically works by constructing models of the K B . The model 
constructed while proving the KB consistency can then be 
used to extract the solution of the problem). 

However, not all constraints are expressible in a given DL , 
so that the additional levels are really necessary. Also, we 
may wish to exert a tighter control on the problem solving 
process and thus inference and task levels are again needed 
(relying entirely on the description logic inference services 
may turn out to be too expensive from a computational point 
of view). 

Last, if we are trying to develop reusable models, hav­
ing separate domain, inference and task levels turns out to 
be again very useful. For instance, stripping off the domain 
level from our simple allocation example leads to a reusable 
problem-solving model for general resource allocation prob­
lems (lecturers are abstracted as resources, while classes are 
viewed as requests). We could also reuse the domain model 
in a different problem involving lecturers and classes. 

After having completely described the domain level of our 
simple model, we proceed to the construction of the inference 
level. An extremely simple non-deterministic approach wil l 
be followed. 

Assume that a partial assignment (of the teaches relation) 
has been constructed up to this point and that we are cur­
rently attempting to extend this partial assignment with a 
new tuple for teaches chosen from the tuples of knows and 
l inking a class that has not already been assigned and a lec­
turer who is stil l free (teaches no other class). The corre­
sponding inference structure is depicted in Figure 3. Note 
that we have used generic (abstract) names for the inference 
roles denoting lecturers, classes and the relations teaches and 
knows. Classes are regarded as requests, whereas lecturers 
are the resources to be allocated to these requests. The tu­
ples of teaches are thought of as assignments, whereas the 
tuples of knows are just candidate_assignments. 

The inference ge t . reques t chooses a request that 
has not been assigned yet. This chosen_request is 
passed on to assignoresource, which tries to retrieve a 
candidate-assignment for this request. If it succeeds, the 
assignment is stored in the domain level. The whole process 
is repeated (at the task level) unt i l there are no more unas-
signed requests (case in which it terminates wi th success) or 
unti l a failure occurs (case in which the system automati­
cally backtracks to a previous state). Backtracking involves 
not only the inference and task levels, but also the domain 
level since the DL has to be restored to its previous state 
(before the call). 

Inference and task bodies are extremely simple since we 
are heavily relying on the automatic domain operations per­
formed by inferences. We are also relying on the powerful 
description logic inference mechanisms (mainly when doing 
domain store retrieval but also when checking for global con­
sistency after a solution has been found). 

F igure 3: The non-determin is t ic inference s t ructure for 
the lecturer a l locat ion prob lem 

Note that the problem-solving process involves computa­
tions (deduction) at two different levels: (1) at the domain 
level (DL deduction) and (2) at the inference and task levels 
(execution of inferences and tasks). 

This observation shows that not only the description of 
the problem, but also the problem-solving process itself is 
distributed at different levels. We feel that this separation of 
computations (performed while solving the problem) is ex­
tremely useful and natural, leading to a higher reusability of 
the models. For instance, a change in the domain model does 
not require modifications at the inference or task levels. Let 
us illustrate this wi th an example. 

Consider a problem instance in which there are only two 
lecturers (l1 and /2), two classes (a course c\ and another 
class c2) and in which and fa know both c1 and c2-

If we are not told whether or are professors or as­
sistants, the system wil l return two alternative allocations, 
namely and  

However, if we now specify that is an assistant, only the 
second assignment wil l be retained as a consistent one, since 
an assistant cannot teach a course  

6 Generic inferences and rei f icat ion 
For achieving reusability of the models we need to open 
the possibility of wr i t ing generic inferences, i.e. inferences 
parametrized by the types of their arguments, which wil l be 
known only at runtime. 

Consider, for example, the following situation. If we 
want to describe the staff of some research institute, we 
may want to introduce concepts like director, secretary, re­
searcher and instances like Tom, Joan, Mary, Peter, Fred 
etc: Torn director, Joan secretary, Mary secretary, 
Peter researcher, Fred researcher. Note that the 
concepts director, secretary and researcher represent po­
sitions in the research insti tute. They are therefore not 
only concepts, but also instances of the (meta-level) con­
cept position: director position, secretary position, 
researcher position. 

The meta-level concept position should not be confused 
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w i t h the concept employee, which is a super-concept of 
director, secretary and researcher director employee, 
secretary employee, researcher employee. 

Now suppose we would l ike to wr i te separate inferences for 
ret r iev ing directors, secretaries and researchers. This would 
amount to w r i t i ng three separate pieces of code tha t are ex­
tremely similar. For instance, the inference for retr ieving 
secretaries would be described by 

c h o o s e _ s e c r e t a r y ( [ c a n d i d a t e * Cand] , [ chosen .cand ida te = Cand ] ) . 

I f we would like to avoid w r i t i ng three separate pieces of 
code, we would have to wr i te a generic inference tha t would 
be parametr ized by the position of the person we'd like to 
choose. Th is can be accomplished by using an input role, 
called type, l inked to the concept position and which is sup­
posed to specify the posi t ion of the person to be chosen. 

d o m a i n _ l i n k ( c a n d i d a t e , s i m p l e , concep t , employee) . 
ro le_mapp ing(gener i c_choose , c a n d i d a t e , s i m p l e , r e t r i e v e ) . 
d o m a i n _ l i n k ( t y p e , s i m p l e , concep t , p o s i t i o n ) , 
r o l e . m a p p i n g ( g e n e r i c . c h o o s e , t y p e , s i m p l e , r e t r i e v e ) . 
d o m a i n _ l i n k ( i n , s i m p l e , r e l a t i o n , i n ) . 
ro le_mapp ing(gener i c_choose , i n , s i m p l e , r e t r i e v e ) . 
doma in_ l i nk (chosen_cand ide t« , s i m p l e , concept , employee) . 
ro le_mapp ing(gener ic_chooBe, chosen .cand ida te , s i m p l e , n o s t o r e ) . 

gene r i c_choose ( [ cand ida te = Cand, i n = [Cand,Type] , 
type « Type, [ chosen .cand ida te = Cand ] ) . 

Note tha t we are making use of the bu i l t - in relat ion in 
(in l inks an instance X w i t h a concept C whenever A' is an 
instance of C). It is usually enough to have a single role 
called in (and l inked to the predefined relat ion in) since all 
inferences tha t need to refer to it can do so. Of course, in 
can be used as inpu t and output role at the same t ime. 0 

Whenever the role in is used as an input (ou tpu t ) role, it 
retrieves (stores) tuples of the form [X, C] wh i th X C. 

The predefined relat ion in allows therefore a k ind of rneta-
level (generic) inferences which are sometimes very impor tan t 
for wr i t i ng domain- independent and reusable models.6 Th is 
is achieved by abstract ing not only the arguments of infer­
ences, but also their "types11. (More theoretical details on 
reif ieation can be found in [1].) 

7 Related approaches and conclusions 
The fol lowing advantages of the approach presented in this 
paper can be ment ioned: 
• the meta-level architecture of the system enables the de­
velopment of reusable domain- independent problem solving 
models (PSMs) and of appl icat ion- independent ontologies. 
• the possibi l i ty of developing domain- independent exe­
cutable l ibraries of PSMs, as in [2]. 
• suppor t ing the process of K B S val idat ion by using the infer­
ence services offered by the domain-level language: semantic 

5 I t can be an input for some inferences and an ou tpu t role for others. 
6 B y using a generic inference in our example, we don ' t have to wr i te 

any more separate inferences for each type of posit ion (director, secre­
tary or researcher). Not only is it cumbersome to have three identical 
pieces of code, bu t these pieces of code would depend on the domain 
level (the types of posit ions - director, secretary and researcher are 
domain-dependent; we cannot change the domain level, for example 
by in t roducing a new posi t ion, wi thout having to modi fy the inference 
level too, since we would have to add a new inference for the new po­
si t ion type. On the other hand, if we are using the generic inference 
above, we would only have to change the domain l ink of the role type). 

consistency checking, domain level deduct ion automat ic con­
cept classification, knowledge s t ruc tur ing and indexing. Most 
K B S development tools do not provide all of these inference 
services. Also, most of the exist ing tools provide symbol-level 
inference services, as opposed to ExClaim, in which knowl­
edge is represented at the knowledge-level (due to its clean 
integrat ion of the domain-level descript ion logic w i th the in ­
ference and task-level logic programs). 
• the descript ion logic used at the domain level can be re­
garded as a reasonable compromise between expressiveness, 
readabi l i ty of formulas and run t ime efficiency. 
• ExClaim provides non-determinist ic inference and task lev­
els, which rely on a non-monotonic domain level. The lack of 
non-determinism in a K B S is, in our opin ion, an impor tan t 
drawback, since algor i thms in KBSs (as opposed to t rad i ­
t ional software engineering environments) are complex and 
usually non-determinist ic. 
• ExClaim provides the reified membership relat ion in which 
can be used to wr i te generic inferences. These inferences 
increase the domain-independence and reusabi l i ty of models. 

Several previous works have dealt w i t h hyb r id representa­
t ion languages combining descript ion logics w i t h logic pro­
gramming, for example AL- log 4], C A R I N [8], F-logic [7]. 
However, none of these systems allows the K B S developer to 
specify reusable models, as in ExClaim. 

The main goal of this research is the creation of domain-
independent executable l ibraries of problem solving models. 

Acknowledgments 
The research presented in this paper has been par t ly sup­
por ted by the European Commun i t y project P E K A D S 
(CP93-7599). I am indebted to Doina Til ivea for developing 
the graphical user interface of ExClaim, to Jan Wielemaker 
for support on using the X P C E environment [ l1] as well as to 
Ul l r ich Hustadt and Renate Schmidt for pe rm i t t i ng the use 
of the Motel terminological system [6] in this research. 

References 
| l ] Badea L i v i u . Reifying Concepts m Description Logics. Proc. 

IJCAI -97 , 142-147.' 

[2] Breuker J . , Van de Velde J. CommonKA DS Library for Expertise 
Modelling. Reusable Problem Solving Components. IOS 1994. 

[3] Buchheit M., Donin i P .M. , Schaerf A. Decidable Reasoning in 
Terminological Knowledge Representation Systems. J. of AI Re­
search 1 (1993), 109-138. 

[4] Donini P., Lenzerini M. , Nard i D., Schaerf A. A hybrid system 
integrating datalog and concept languages. L N A I 549, 1991. 

[5] Pensel I ) . , van Harmelen F., A comparison of languages which 
operationalize and formalize KADS models of expertise. Report 
280, Universi tat Kar lsruhe, September 1993. 

[6] Hustadt U., Nonnengart A. , Schmidt R., T i m m .J. Motel User 
Manual. Max Planck Ins t i tu te Report MPI-I-92-236, Sept. 1994. 

[7] Ki fer M., Lausen G., Wu J. Logical foundations of object-
oriented and frame-based languages. .J. of the A C M , May 1995. 

[8] Levy A., Rousset M.O. CARIN: a representation language inte­
grating rules and description logics. Proc. ECAP96. 

[9] Schmidt-SchauB M. Subsumption in KL-ONE is undecidable. 
Proceedings KR-89, pp. 421-431. 

[lO] Schreiber G., Wie l inga B., Breuker J. KADS: A Principled 
Approach to Knowledge-Based System Development. Academic 
Press, 1993. 

[ l l ] Wielemaker J . , Anjcwierden A. Programming in PCE/Prolog. 
Universi ty of Amsterdam, 1992. 

BADEA 611 


