
Abstract 
Domain-specific search engines are becoming 
increasingly popular because they offer in-
creased accuracy and extra features not pos­
sible with general, Web-wide search engines. 
Unfortunately, they are also difficult and time-
consuming to maintain. This paper proposes 
the use of machine learning techniques to 
greatly automate the creation and maintenance 
of domain-specific search engines. We describe 
new research in reinforcement learning, text 
classification and information extraction that 
enables efficient spidering, populates topic hi­
erarchies, and identifies informative text seg­
ments. Using these techniques, we have built 
a demonstration system: a search engine for 
computer science research papers available at 
www.cora.justrcsettrch.com. 

1 Introduction 
As the amount of information on the World Wide Web 
grows, it becomes increasingly difficult to find just what 
we want. While general-purpose search engines such as 
AltaVista and HotBot offer high coverage, they often pro­
vide only low precision, even for detailed queries. 

When we know that we want information of a cer-
tain type, or on a certain topic, a domain-specific 
search engine can be a powerful tool. For exam­
ple, www.cmnpsearch.com allows complex queries over 
summer camps by age-group, size, location and cost. 
Performing such searches with a traditional, general-
purpose search engine would be extremely tedious or 
impossible. For this reason, domain-specific search en­
gines are becoming increasingly popular. Unfortunately, 
building these search engines is a labor-intensive process, 
typically requiring significant and ongoing human effort. 

This paper describes the Ra Project—an effort to auto­
mate many aspects of creating and maintaining domain-
specific search engines by using machine learning tech­
niques. These techniques allow search engines to be 
created quickly with minimal effort, and are suited for 
re-use across many domains. This paper presents ma-
chine learning methods for effident topic-directed spider­

ing, building a browsable topic hierarchy, and extracting 
topic-relevant substrings. These are briefly described in 
the following three paragraphs. 

Every search engine must begin with a collection 
of documents to index. When aiming to populate a 
domain-specific search engine, a web-crawling spider 
need not explore the Web indiscriminantly, but should 
explore in a directed fashion to find domain-relevant doc­
uments efficiently. We frame the spidering task in a rein­
forcement learning framework [Kaelbling et a/., 1996], al­
lowing us to mathematically define "optimal behavior." 
Our experimental results show that a simple reinforce-
ment learning spider is three times more efficient than a 
spider using breadth-first search. 

Search engines often provide a browsable topic hierar­
chy; Yahoo is the prototypical example. Automatically 
adding documents into a topic hierarchy can be posed as 
a text classification task. We present extensions to the 
naive Bayes text classifier (e.g. [McCallum et a/., 1998]) 
that use no hand-labeled training data, yet still result in 
accurate classification. Using only unlabeled data, the 
hierarchy and afew keywords for each category, the algo-
rithm combines naive Bayes, hierarchical shrinkage and 
Expectation-Maximization. It places documents into a 
70-leaf computer science hierarchy with 66% accuracy— 
performance approaching human agreement levels. 

Extracting topic-relevant pieces of information from 
the documents of a domain-specific search engine al­
lows the user to search over these features in a way that 
general search engines cannot. Information extraction, 
the process of automatically finding specific textual sub­
strings in a document, is well suited to this task. We 
approach information extraction with techniques used 
in statistical language modeling and speech recognition, 
namely hidden Markov models [Rabiner, 1989]. Our al­
gorithm extracts fields such as title, authors, and affilia­
tion from research paper headers with 91% accuracy. 

We have brought all the above-described machine 
learning techniques together in Cora, a publicly-available 
search engine on computer science research papers 
(www.cora.justresearch.com). An intelligent spider starts 
from the home pages of computer science departments 
and laboratories and collects links to postscript docu­
ments. These documents are converted to plain text 

662 MACHINE LEARNING 

A Machine Learning Approach to Bui ld ing 
Domain-Specific Search Engines 

Andrew McCal lum+ + Kamal Nigam* Jason Rennie* Krist ie Seymore+ 
mccallum@justresearch.com knigam@cs.cmu.edu jr6b6andrew.cmu.edu kseymore@ri.cmu.edu 

++ Just Research +School of Computer Science 
4616 Henry Street Carnegie Mellon University 

Pittsburgh, PA 15213 Pittsburgh, PA 15213 

http://www.cora.justrcsettrch.com
http://www.cmnpsearch.com
http://www.cora.justresearch.com
mailto:mccallum@justresearch.com
http://Imigam6c8.cmu.edu
http://jr6b6andrew.cmu.edu
http://kseymore6rtcmu.edu


Figure 1: A screen shot of the query results page of the 
Cora search engine. Note the topic hierarchy and the 
extracted paper titles, authors and abstracts. 

and further processed if they are determined to be re­
search papers (e.g. by having Abstract and Reference 
sections). Important identifying information such as the 
title and author is then extracted from the head of each 
paper, as well as the bibliography section. The extracted 
results are used to group citations to the same paper 
together and to build a citation graph. Phrase and 
keyword search facilities over the collected papers are 
provided, as well as a computer science topic hierarchy 
which lists the most-cited papers in each research topic. 
Figure 1 shows the results of a search query as well as the 
topic hierarchy. Our hope is that, in addition to provid-
ing a platform for machine learning research, this search 
engine will become a valuable tool for other computer 
scientists. The following sections describe the new re­
search that makes Cora possible; more detail is provided 
in McCallum et al. {1999] and by other papers available 
at Cora's web page. 

2 Efficient Spidering 
In Cora, efficient spidering is a significant concern. Many 
of the pages in CS department web sites are about 
courses and administration, not research papers. While 
a general-purpose search engine should index all pages, 
and might use breadth-first search to collect documents, 
Cora need only index a small subset. Avoiding whole 
regions of departmental web graphs can significantly im­
prove efficiency and increase the number of research pa­
pers found given a finite amount of time. 

For a formal setting in which to frame the problem 

of efficient spidering, we turn to reinforcement learn­
ing. Reinforcement learning is a framework for lean-
ing optimal decision-making from rewards or punishment 
[Kaelbling et at., 1996]. The agent learns a policy that 
maps states to actions in an effort to maximize its re-
ward over time. We use the infinite-horizon discounted 
model where reward over time is a geometrically dis­
counted sum in which the discount, 0 < r < 1, devalues 
rewards received in the future. A Q-function repre­
sents the policy by mapping state-action pairs to their 
expected discounted reward. Policy decisions are made 
by selecting the action with the largest Q-value. 

As an aid to understanding how reinforcement learn­
ing relates to spidering, consider the common reinforce-
ment learning task of a mouse exploring a maze to find 
several pieces of cheese. The agent receives immediate 
reward for finding each piece of cheese, and has actions 
for moving among the grid squares of the maze. The 
state is both the position of the mouse and the locations 
of the cheese pieces remaining to be consumed (since the 
cheese can only be consumed and provide reward once). 
Note that in order to act optimally, the agent most con­
sider future rewards. 

In the spidering task, the on-topic documents are im­
mediate rewards, like the pieces of cheese. An action is 
following a particular hyperlink. The state is the set of 
on-topic documents remaining to be consumed, and the 
set of hyperlinks that have been discovered. The key fea­
ture of topic-specific spidering that makes reinforcement 
learning the proper framework is that the environment 
presents situations with delayed reward. 

The problem now is how to practically apply reinforce-
ment learning to spidering. The state-space is enormous 
and does not allow the spider to generalize to hyperlinks 
that it has not already seen. Hence, we make simpli­
fying assumptions that (1) disregard state and (2) cap­
ture the relevant distinctions between actions using only 
the words found in the neighborhood of the correspond-
ing hyperlink. Thus our Q-function becomes a mapping 
from a "bag-of-words" to a scalar. 

We represent the mapping using a collection of naive 
Bayes text classifiers (see Section 3.1), and cast this re­
gression problem as classification. We discretize the dis­
counted sum of future reward values of our training data 
into bins, place each hyperlink into the bin correspond-
ing to its Q-value (calculated as described below), and 
use the text in the hyperlink's anchor and surrounding 
page as training data for the classifier. At test time, the 
estimated Q-value of a hyperlink Is the weighted aver­
age of each bin's average Q-value, using the classifier's 
probabilistic class memberships as weights. 

Other systems have also studied spidering, but with­
out a framework defining optimal behavior. For exam­
ple, ARACHNID [Menczer, 1997] does so with a collection 
of competitive, reproducing and mutating agents. Addi­
tionally, there are systems that use reinforcement learn-
ing for non-spidering Web tasks. Web Watcher [Joachims 
et a/., 1997] is a browsing assistant that uses a combi-
nation of supervised and reinforcement teaming to rec-

MCCALLUM, NIGAM, RENNIE, AND SEYMORE G63 



Figure 2: Average performance of two reinforcement 
learning spiders versus traditional breadth-first search. 

ommend relevant hyperlinks to the user. Laser uses 
reinforcement leaming to tune the search parameters of 
a search engine [Boyan et at, 1996]. 

2.1 Experimental Results 
In August 1998 we fully mapped the OS department web 
sites at Brown University, Cornell University, University 
of Pittsburgh and University of Texas. They include 
53,012 documents and 592,216 hyperlinks. We perform 
four test/tram splits, where the data from three univer­
sities is used to train a spider that is tested on the fourth. 
The target pages (for which a reward of 1 is given) are 
computer science research papers, identified separately 
by a simple hand-coded algorithm with high precision. 

We currently train the agent off-line. We find all tar­
get pages in the training data, and calculate the Q-value 
associated with each hyperlink as the discounted sum 
of rewards that result from executing the optimal pol-
icy (as determined fay full knowledge of the web graph). 
The agent amid also learn from experience on-line us­
ing A spider is evaluated cm each test/train split 
by having it spider the test university, starting at the 
department's home page. In figure 2 we report results 
from traditional Breadth-First search as well as two dif­
ferent reinforcement learners. Immediate uses = 0, 
and represents the Q-function as a binary classifier be­
tween immediate rewards and other hyperlinks. Future 
uses = 0.5, and represents the Q-function with a more 
finely-discriminating 3-bin classifier that uses future re­
wards. 

At all times during its progress, both reinforcement 
learning spiders have found more research papers than 
breadth-first search. One measure of performance is the 
number of hyperlinks followed before 75% of the research 
papers are found. Both reinforcement learners are signif­
icantly more efficient, requiring exploration of less than 
16% of the hyperlinks; in comparison, Breadth-first re­
quires 48%. This represents a factor of three increase in 
spidering efficiency. 

Note that the Future reinforcement learning spider 

performs better than the immeadiate 

alternative branches, none of which give immediate re­
ward. On average the Immediate spider takes nearly 
three times as long as Future to find the first 28 (5%) 
of the papers. However, after the first 50% of the papers 
are found, the Immediate spider performs slightly better, 
because many links with immediate reward have been 
discovered, and the Immediate spider recognizes them 
more accurately. In ongoing work we are improving the 
accuracy of the classification when there is future reward 
and a larger number of bins. We have also run experi­
ments cm tasks with a single target page, where future 
reward decisions are more crucial. In this case, the Fu­
ture spider retrieves target pages twice as efficiently as 
the Immediate spider [Rennie and McCallum, 1999). 

3 Classification into a Hierarchy by 
Bootstrapping w i th Keywords 

Topic hierarchies are an efficient way to organize and 
view large quantities of information that would other­
wise be cumbersome. As Yahoo has shown, a topic 
hierarchy can be an integral part of a search engine. For 
Cora, we have created a 70-leaf hierarchy of computer sci­
ence topics, the top part of which is shown in Figure 1. 
Creating the hierarchy structure and selecting just a few 
keywords associated with each node took about three 
hours, during which an expert examined conference pro­
ceedings and computer science Web sites. 

A much more difficult and time-consuming part of cre-
ating a hierarchy is placing documents into the correct 
topic nodes. Yahoo has hired many people to catego-
rize web pages into their hierarchy. In contrast, mar 
chine learning can automate this task with supervised 
text classification. However, acquiring enough labeled 
training documents to build an accurate classifier is of­
ten prohibitively expensive. 

In this paper, we ease the burden on the classifier 
builder by using only unlabeled data, some keywords 
and the class hierarchy. Instead of asking the builder 
to hand-label training examples, the builder simply pro-
vides a few keywords for each category. A large collection 
of unlabeled documents are then preliminarily labeled 
by using the keywords as a rule-list classifier (searching 
a document for each keyword and placing it in the class 
of the first keyword found). These preliminary labels 
are noisy, and many documents remain unlabeled. How­
ever, we then bootstrap an improved classifier. Using the 
documents and preliminary labels, we initialize a naive 
Bayes text classifier from the preliminary labels. Then, 
Expectation-Maximization [Dempster et al, 1977] esti­
mates labels of unlabeled documents and re-estimates 
labels of keyword-labeled documents. Statistical shrink­
age is also incorporated in order to improve parameter 
estimates by using the class hierarchy. In this paper we 
combine for the first time in one document classifier both 
EM for unlabeled data and hierarchical shrinkage. 

i l l MACHINE LEARNING 



We use the framework of multinomial naive Bayes text 
classification. The parameters of this model are, for each 
class the frequency with which each word wt occurs, 

and the relative document frequency of each 
class, Given estimates of these parameters and a 
document di, we can determine the probability that it 
belongs in class cj by Bayes' rule: 

(1) 

where is the word wt that occurs in the the pesi­
tion of document di. Training a standard naive Bayes 
classifier requires a set of documents, D, and their class 
labels. The estimate of a word frequency is simply the 
smoothed frequency with which the word occurs in train-
ing documents from the class: 

where N(wt,,di) is the number of times word wt occurs 
in document is an indicator of whether doc-
ument di belongs in class Cj, and is the number of 
words in the vocabulary. Similarly, the class frequen­
cies are smoothed document frequencies estimated 
from the data. 

When a combination of labeled and unlabeled data is 
available, past work has shown that naive Bayes param­
eter estimates can be improved by using EM to combine 
evidence from all the data [Nigam et a/., 1999]. In our 
bootstrapping approach, an initial naive Bayes model 
is estimated from the preliminarily-labeled data. Then 
EM iterates until convergence (1) labeling all the data 
(Equation 1) and (2) rebuilding a model with all the data 
(Equation 2). The preliminary labels serve to provide a 
good starting point; EM then incorporates the unlabeled 
data and re-estimates the preliminary labels. 

When the classes are organized hierarchically, as is our 
case, naive Bayes parameter estimates can be improved 
with the statistical technique shrinkage [McCallum et 
of., 1998]. New word frequency parameter estimates for 
a class are calculated by a weighted average between the 
class's local estimates, and estimates of its ancestors in 
the hierarchy (each formed by pooling data from all the 
ancestor's children). The technique balances a trade­
off between the specificity of the unreliable local word 
frequency estimates and the reliability of the more gen­
eral ancestor's frequency estimates. The optimal mix­
ture weights for the weighted average are calculated by 
EM concurrently with the class labels. 

3.2 Expe r imen ta l Resul ts 
Now we describe results of classifying computer science 
research papers into our 70-leaf hierarchy. A test set 
was created by hand-labeling a random sample of 625 
research papers from the 30,682 papers formerly com­
prising the entire Cora archive. Of these, 225 did not fit 

into any category, and were discarded. In these experi­
ments, we used the title, author, institution, references, 
and abstracts of papers for classification, not the full 
text. 

Traditional naive Bayes with 400 labeled training doc­
uments, tested in a leave-one-out fashion, results in 47% 
classification accuracy. However, less than 160 docu­
ments could have been hand-labeled in the 90 minutes 
it took to create the keyword-lists; using this smaller 
training set results in only 30% accuracy. The rale-
list classifier based on the keywords alone provides 45%. 
We now turn to our bootstrap approach. When these 
noisy keyword-labels are used to train a traditional naive 
Bayes text classifier, 47% accuracy is readied on the test 
set. The full algorithm, including EM and hierarchi-
cal shrinkage, achieves 66% accuracy. As an interesting 
comparison, human agreement between two people on 
the test set was 72%. 

These results demonstrate the utility of the bootstrap­
ping approach. Keyword matching alone is noisy, but 
when naive Bayes, EM and hierarchical shrinkage are 
used together as a regularize, the resulting classification 
accuracy is close to human agreement levels. Automat-
ically creating preliminary labels, either from keywords 
or other sources, avoids the significant human effort of 
hand-labeling training data. 

In future work we plan to refine our probabilistic 
model to allow for documents to be placed in interior hi-
erarchy nocks, documents to have multiple class assign­
ments, and multiple mixture components per class. We 
are also investigating principled methods of re-weighting 
the word features for "semi-supervised" clustering that 
will provide better discriminative training with unla­
beled data. 

4 Information Extraction 
Information extraction is concerned with identifying 
phrases of interest in textual data. In the case of a 
search engine over research papers, the automatic ex-
traction of informative text segments can be used to (1) 
allow searches over specific fields, (2) provide useful ef­
fective presentation of search results (e.g. showing title 
in bold), and (3) match references to papers. We have 
investigated techniques for extracting the fields relevant 
to research papers, such as title, author, and journal, 
from both the headers and reference sections of papers. 

Our information extraction approach is based on hid-
den Markov models (HMMs) and their accompanying 
search techniques that are widely used for speech recog­
nition and part-of-speech tagging [Rabiner, 1989]. Dis­
crete output, first-order HMMs are composed of a set of 
states Q, which emit symbols from a discrete vocabulary 

and a set of transitions between states A 
common goal of learning problems that use HMMs is to 
recover the state sequence that has the high­
est probability of having produced some observation se­
quence 

MCCALLUM, NIGAM, RENNIE, AND SEYMORE G65 



Figure 3: Illustrative example of an HMM for reference 
extraction. 

where M is the model, is the probability of 
transitioning between states qk-1 and qk, and 
is the probability of state qk emitting output symbol 
xk. The Viterbi algorithm [Viterbi, 1967] can be used to 
efficiently recover this state sequence. 

HMMs may be used for extracting information from 
research papers by formulating a model in the following 
way: each state is associated with a class that we want 
to extract, such as title, author, or affiliation. Each state 
emits words from a class-specific unigram distribution. 
In order to label new text with classes, we treat the words 
from the new text as observations and recover the most-
likely state sequence. The state that produces each word 
is the class tag for that word. An illustrative example of 
an HMM for reference extraction is shown in Figure 3. 

Our weak with HMMs for information extraction fo­
cuses on learning the appropriate model structure (the 
number of states and transitions) automatically from 
data. Other systems using HMMs for information ex­
traction include that by Leek [1997], which extracts in­
formation about gene names and locations from scientific 
abstracts, and the Nymble system [Bikel et at, 1997] for 
named-entity extraction.. These systems do not consider 
automatically determining model structure from data; 
they either use one state per class, or use hand-built 
models assembled by inspecting training examples. 

4 .1 Expe r imen t s 
The goal of our information extraction experiments is 
to investigate whether a model with multiple states per 
class, either manually or automatically derived, outper­
forms a model with only one state per class for header 
extraction. We define the header of a research paper 
to be all of the words from the beginning of the paper 

up to either the first section of the paper, usually the 
introduction, or to the end of the first page, whichever 
occurs first. A single token, either +INTRO+ or +PAGE+, 
is added to the end of each header to indicate the case 
with which it terminated. Likewise, the abstract Is auto­
matically located and substituted with the single token 
+ABSTRACT+. A few special classes of words are identi­
fied using simple regular expressions and converted to 
tokens such as +EMAIL+. Al l punctuation, case and new-
line information is removed from the text. The target 
classes we wish to identify include the following fifteen 
categories: title, author, affiliation, address, note, email, 
date, abstract, introduction, phone, keywords, web, de-
gree, publication number, and page. 

Manually tagged headers are split into a 500-header, 
23,557 word token labeled training set and a 435-header, 
20,308 word token test set. Unigram language models 
are built for each class and smoothed using a modified 
form of absolute discounting. Each state uses its class 
unigram distribution as its emission distribution. 

We compare the performance of a model with one state 
per class (Baseline) to that of models with multiple states 
par class (M-merged, V-merged). The multi-state models 
are derived from training data in the following way: a 
maximally-specific HMM is built where each word token 
in the training set is assigned a single state that only 
transitions to the state that follows it. Each state is as­
sociated with the class label of its word token. Then, 
the HMM is put through a series of state merges in or-
der to generalize the model. First, "neighbor merging" 
combines all states that share a unique transition and 
have the same class label. For example, all adjacent title 
states are merged into one title state. As two states are 
merged, transition counts are preserved, introducing a 
self-loop on the new merged state. The neighbor-merged 
model is used as the starting point for the two multi-state 
models. Manual marge decisions are made in an itera­
tive manner to produce the M-merged model, and an au­
tomatic forward and backward V-merging procedure is 
used to produce the V-merged model. V-merging consists 
of merging any two states that share transitions from or 
to a commcm state and have the same label. Transition 
probabilities for the three models are set to their max­
imum likelihood estimates; the baseline model takes its 
transition counts directly from the labeled training data, 
whereas the multi-state models use the counts that have 
been preserved during the state merging process. 

Model performance is measured by word classification 
accuracy, which is the percentage of header words that 
are emitted by a state with the same label as the words' 
true label. Extraction results are presented in Table 1. 
Hidden Markov models do well at extracting header in-
formation; the best performance of 91.1% is obtained 
with the M-merged model. Both of the multi-state mod­
els outperform the Baseline model, indicating that the 
richer representation available through models derived 
from data is beneficial. However, the automatically-
derived V-merged model does not perform as well as the 
manually-derived M-merged model. The V-merged model 

HI MACHINE LEARNING 



Model 
Baseline 
M-merged 

| V-merged 

Number of 
states 

17 
36 
155 

Number of 
transitions 

149 
164 
402 

Accuracy | 
89.8 | 
91.1 
90.2 

Table 1: Extraction accuracy (%) for the Baseline, M-
merged and V-merged models. 

is l imited in the state merges it can perform, whereas the 
M-merged model is unrestricted. We expect that more 
sophisticated state merging techniques, as discussed in 
[Seymore et al., 1999], wi l l result in superior-performing 
models for information extraction. 

5 Related Work 
Several related research projects are investigating the au­
tomatic construction of special-purpose web sites. The 
New Zealand Digital Library project [Witten et al., 
1998] has created publicly-available search engines for 
domains from computer science technical reports to song 
melodies using manually identified web sources. The 
CiteSeer project [Bollacker et al, 1998] has also devel­
oped a search engine for computer science research pa­
pers that provides similar functionality for matching ref­
erences and searching. The WebKB project [Craven et 
al., 1998] uses machine learning techniques to extract 
domain-specific information available on the Web into a 
knowledge base. The W H I R L project [Cohen, 1998] is an 
effort to integrate a variety of topic-specific sources into a 
single domain-specific search engine using HTML-based 
extraction patterns and fuzzy matching for information 
retrieval searching. 

6 Conclusions 
The amount of information available on the Internet con­
tinues to grow exponentially. As this trend continues, 
we argue that, not only wi l l the public need powerful 
tools to help them sort though this information, but the 
creators of these tools wi l l need intelligent techniques 
to help them build and maintain these tools. This pa­
per has shown that machine learning techniques can sig­
nificantly aid the creation and maintenance of domain-
specific search engines. We have presented new research 
in reinforcement learning, text classification and infor­
mation extraction towards this end. In future work, we 
wi l l apply machine learning to automate more aspects of 
domain-specific search engines, such as creating a topic 
hierarchy wi th clustering and automatically identifying 
seminal papers wi th citation graph analysis. We wi l l 
also verify that the techniques in this paper generalize 
by applying them to a new domain. 

References 
[Bikel et al., 1997] D. Bikel, S. Miller, R. Schwartz, and 

R. Weischedel. Nymble: a high-performance teaming 
name-finder. In ANLP-97,1997. 

[Bollacker et a t , 1998] K. Bollacker, S. Lawrence, and C. L. 
Giles. CiteSeer: As autonomous web agent tat automatic 
retrieval and identification of interesting publications. In 
Agents '98, 1998. 

[Boyan et ol., 1996] Justin Boyan, Dayne Freitag, and 
Thorsten Joachims. A machine learning architecture for 
optimising web search engines. In AAAI workshop on 
Internet-Baaed Information Systems, 1996. 

[Cohen, 1998] W. Cohen. A web-based information system 
that reasons with structured collections of text. In Agents 
'98,1998. 

[Graven et el., 1998] M. Craven, D. DiPasquo, D. Preitag, 
A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. 
Learning to extract symbolic knowledge from the World 
Wide Web. In AAAI-98,1998. 

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and 
D. B. Rubin. Maximum likelihood from incomplete data 
via the EM algorithm. Journal of the Royal Statistical 
Society, Series B, 39(l):l-38, 1977. 

[Joachims et al., 1997] T. Joachims, 
D. Preitag, and T. Mitchell. Webwatcher: A tour guide 
for the World Wide Web. In IJCAI-97,1997. 

[Kaelbling et al, 1996] L. Kaelbling, M. Littman, and 
A. Moore. Reinforcement learning: A survey. Journal 
of Artificial Intelligence Research, 4:237-285, 1996. 

[Leek, 1997] T. Leek. Information extraction using hidden 
Markov models. Master's thesis, UCSD, 1997. 

[McCallum et al., 1998] A. McCallum, R. Rosenfeld, 
T. Mitchell, and A. Ng. Improving text clasification by 
shrinkage in a hierarchy of classes. In ICML-98,1998. 

[McCallum et al., 1999} A. McCallum, K. Nigam, J. Rennie, 
and K. Seymore. Building domain-specific search engines 
with machine learning techniques. In AAAI Spring Sym-
posium on Intelligent Agents in Cyberspace, 1999. 

[Menczer, 1997] F. Menczer. ARACHNID: Adaptive re­
trieval agents choosing heuristic neighborhoods for infor­
mation discovery. In ICML-97,1997. 

[Nigam et al, 1999] K. Nigam, A. McCallum, S. Thrun, and 
T. Mitchell. Text classification from labeled and unlabeled 
documents using EM. Machine Learning, 1999. To appear. 

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov 
models and selected applications in speech recognition. 
Proceedings of the IEEE, 77(2):257-286, 1989. 

[Rennie and McCallum, 1999] Jason Rennie and Andrew 
McCallum. Using reinforcement learning to spider the Web 
efficiently. In ICML-99, 1999. 

[Seymore et al, 1999] K. Seymore, A. McCallum, and 
R. Rosenfeld. Learning hidden Markov model structure 
for information extraction. In AAAI Workshop on Ma-
chine Learning for Information Extraction, 1999. 

[Viterbi, 1967] A. J. Viterbi. Error bounds for convolutional 
codes and an asymtotically optimum decoding algorithm. 
IEEE Transactions on Information Theory, IT-13:260-
269, 1967. 

[Witten et al., 1998] I. Witten, C. Nevill-Manning, R. Mc-
Nab, and S. J. Cunnningham. A public digital library 
based an full-text retrieval: Collections and experience. 
Communications of the ACM, 41 (4):71-75, 1998. 

MCCALLUM. NIGAM, RENNIE, AND SEYMORE 667 


