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Abstract 
A key open problem in reinforcement learning is 
to assure convergence when using a compact hy­
pothesis class to approximate the value function. 
Although the standard temporal-difference learning 
algorithm has been shown to converge when the hy­
pothesis class is a linear combination of fixed ba­
sis functions, it may diverge with a general (non­
linear) hypothesis class. This paper describes the 
Bridge algorithm, a new method for reinforcement 
learning, and shows that it converges to an approxi­
mate global optimum for any agnostically learnable 
hypothesis class. Convergence is demonstrated on 
a simple example for which temporal-difference 
learning fails. Weak conditions are identified un­
der which the Bridge algorithm converges for any 
hypothesis class. Finally, connections are made be­
tween the complexity of reinforcement learning and 
the PAC-learnability of the hypothesis class. 

1 Introduction 
Reinforcement learning (RL) is a widely used method for 
learning to make decisions in complex, uncertain environ­
ments. Typically, an RL agent perceives mid acts in an en­
vironment, reeei ving rewards that provide some indication of 
the quality of its actions. The agent's goal is to maximize 
the sum of rewards received. RL algorithms work by learn­
ing a value/unction that describes the long-term expected sum 
of rewards from each state; alternatively, they can learn a 
Q-function describing the value of each action in each state. 
These functions can then be used to make decisions. 

Temporal-difference (TO) learning [Sutton, 1988] is a com­
monly used family of reinforcement learning methods. TO al­
gorithms operate by adjusting the value function to be locally 
consistent. When used With function approximators, such as 
neural networks, that provide a compact parameterized repre­
sentation of the value function, TO methods can solve real-
world problems with very large state spaces. Because of this, 
one would like to know if such algorithms can be guaranteed 
to work—i.e., to converge and to return optimal solutions. 

The theoretical study of RL algorithms usually divides the 
problem into two aspects: exploration policies that can guar­
antee complete coverage of the environment, and value deter-
mination to find the value function that corresponds to a given 
policy. This paper concentrates on the second aspect. Prior 
work [Jaakkola et al. , 1995] has established convergence of 

TO-learning with probability 1 when the value function is rep­
resented as a table where each state has its own entry. For 
large state spaces, however, compact parametric representa­
tions are required; for such representations, we are interested 
in whether an algorithm wi l l converge to the function that is 
closest, by some metric, to the true value function (a form of 
agnostic learning). Gordon [1995] proved that TO conveiges 
in this sense for representations called "averagers" on which 
the TO update is a max-norm contraction (see Section 2). Tsit-
siklis and van Roy [ 1996] proved convergence and established 
error bounds for TD( A) with linear combinations of fixed ba­
sis functions. 

With nonlinear representations, such as neural networks, 
TO has been observed to give suboptimal solutions [Bert-
sekas and Tsitsiklis, 1996] or even to diverge. This is a se­
rious problem since most real problems require nonlinearity. 
Baird [1995] introduced residual algorithms, for which con­
vergence can be proved when combined with a gradient de­
scent learning method (such as used with neural networks). 
Unfortunately the error in the resulting approximation can be 
arbitrarily large and furthermore the method requires two in­
dependent visits to each sampled state. 

This paper describes the Bridge algorithm, a new RL 
method for which we establish convergence and error bounds 
with any agnostically learnable representation. 

Section 2 provides the necessary definitions and notation. 
Section 3 explains the problem of nonconvergence and pro­
vides examples of this with TO. Section 4 outlines the Bridge 
algorithm, sketches the proof of convergence, and shows how 
it solves the examples for which TO fails. Section 5 briefly 
covers additional results on convergence to local optima for 
any representation and on the use of PAC-learning theory. 
Section 6 mentions some alternative techniques one might 
consider. The paper is necessarily technically (tense given the 
space restrictions. The results, however, should be of broad 
interest to the AI and machine learning communities. 

2 Definitions 
2.1 MDP 
A Markov decision process M = is a set of 
states S, a set of actions A, transition probability distributions 

that define the next state distribution given a current 
state x and action a, reward distributions r that define 
the distribution of real-valued reward received upon execut­
ing a in x, and a discount factor . Since we are in­
terested in the problem of value determination, we assume we 
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are given a fixed policy (choice of action at each state). When 
executing only this fixed policy, the MDP actually becomes a 
Markov chain, and we may therefore also write the transition 
probabilities as p(-|x) and the reward distributions as r(-\x). 
We assume that we are able to define the stationary distribu­
tion π of the resulting Markov chain and also that the rewards 
lie in the range 

observed random rewards, i.e. Rk has distribution r(-\Xk). 
Define the true value function V* at a state x to be the ex­
pected, discounted reward to go from state x: 

The problem of value determination is to determine the true 
value function or a good approximation to it. Classical TD so­
lutions have made use of the backup operator T, which takes 
an approximation V and produces a better approximation 

An operator A is said to be a contraction with factor 
under some norm || • || if 

If = 1, A is said to be a nonexpansion. If we define the 
V(x)and the -normto 
then T is a contraction 

with factor and fixed point V* under both max-norm and 
-norm {Tsitsiklis and Van Roy, 1996]. Therefore repeated 

application of T (i.e. the iterative process 
converges to . We wil l use Tj to represent the operator T 
applied j times. 

If the transition probabilities p and reward distributions r 
are known, then it is possible to compute TV directly from 
its definition. However, if p and r are not known, then it is 
not possible to compute the expectation in the definition of T. 
In this case, by observing a sequence of states and rewards in 
the Markov chain, 'we can form an unbiased estimate of T V . 
Specifically, if we observe state x and reward r followed by 
state x 2 , then the observed backed-up value, , is 
an unbiased estimate of T V ( x ) . Formally we define 
to be the conditional probability density of observed backed-
up values from state x: 

where and are, as defined above, random variables 
with distributions respectively. Thus if 
a random variable Y has associated density then 
E[Y] = . Similarly, we d e f i n e t o be the 
conditional probability density of j-step backed-up values ob­
served from state x. 

2.2 Funct ion Approx ima t ion 
As state spaces becomes large or even infinite, it becomes in-
feasible to tabulate the value function for each state x, and 
we must resort to function approximation. Our approximation 
scheme consists of a hypothesis class H of representable func­
tions and a learning operator which maps arbitrary value 
functions to functions in %. 

The standard T based approaches that use function approx­
imation essentially compute or approximately compute the it-

erative process In practice, the 
mapping usually cannot be performed exactly because, even 
if we have access to the necessary expectation to compute 
T V ( x ) exactly, it is infeasible to do so for all states x. Thus 
we perform an approximate mapping using samples. We wi l l 
take the state sample distribution to be the stationary distri­
bution Π. In general when we cannot compute TV(ar) ex­
actly, we approximate by generating samples (x, y) 
with sample distribution 

and passing them to a learning algorithm for H. The joint 
probability density (from which we generate the samples) 
simply combines (From which we sample the state x) with 
the conditional probability density ) (from which we 
generate an estimate y for T V ( x ) ) . 

In this paper we focus on agnostic learning. In this case, the 
learning operator seeks the hypothesis h that best matches 
the target function V, even though typically the target func­
tion is not in the hypothesis class. If we measure distance us­
ing the -norm, then we can define the learning operator for 
agnostic learning to be: 

As already mentioned, in the typical case we do not have 
access to the exact function V to be learned, but rather we can 
draw samples (x, y) from a sample distribution P such that the 
expected value of the conditional distribution is V ( x ) . 
If, in addition, V samples the states according to (or what­
ever distribution was used to measure distance in the previous 
definition) then an equivalent definition for agnostic learning 
is based on minimizing risk; 

where we define the risk of a hypothesis h with respect to a 
distribution V to be: 

In practice, is approximately performed by generating 
enough samples (x, y) from the sample distribution P so as 
to be able to estimate risk well, and thus to be able to output 
the hypothesis in % that has minimal risk with respect to this 
distribution. In the algorithm we present, we assume the abil­
ity to compute exactly for the given hypothesis class H. 
This is certainly not a trivial assumption. In a later section, 
we briefly discuss an extension to our algorithm for the case 
where is a PAC-agnostic learning step rather than an ex­
act agnostic learning step. 

Finally, let us define our goal. is defined to be the best 
approximation to V* possible using %\ 

We seek techniques that return a value function V that mini­
mizes a relative or absolute error bound: 

3 Nonconvergence of TD 
In this section, we examine the non-convergence problem of 
TD when used with non-linear function approximators. We 
present simple examples which we wi l l reconsider with the 
Bridge algorithm in the next section. 

As mentioned above, standard TD with function approxi­
mation is based on the iterative process 

PAPAVASSIUOU AND RUSS€LL 749 



is a non-expansion under the same norm that makes T a 
contraction, then the composite operator T is a contraction 
and this process wi l l converge to some error bound relative to 

. For example, Tsitsiklis and Van Roy [1996] consider a 
linear hypothesis class, for which is simply a projection. 
If one uses a nonlinear hypothesis class H for which IIH is not 
a nonexpansion then this iterative process can either diverge 
or get stuck in a local minimum arbitrarily far from 

We now give simple examples demonstrating ways in 
which TO can fail when it is used with a nonlinear hypothesis 
class. Consider an MDP with two states where the probabil-
ity of going from one state to the other is 1, and the rewards 
are also deterministic. The stationary distribution is 0.5 for 
each state, the discount factor is .8 and the hypothesis class H 

Figure 1: (a) Suboptimal Fixed Point and (b) Oscillation 

If we modify the rewards slightly to be ( r 1 , r 2 ) = 
(10, —7.8) then the true value function V * = i s 
no longer in H. The best representation of V* = 
IIH V* = . If we start from (0,0) as above, we wil l 
again reach a suboptimal fixed point around (5, —5). How­
ever, starting from V0 = (30,0) (or even V0 = (15,0)) 
the result of repeated applications of T as shown in Fig­
ure 1(b) displays a different type of failure — oscillation be­
tween points approaching (7.5,7.5) and (16,0). As in the pre­
vious e x a m p l e , i s small, so the re l a t i ve error 
bound is large. 

4 The Bridge Algorithm 
We begin with a high level description of the algorithm (de­
tails are in the Appendix). This is followed by the conver­

gence results and another look at the examples from the pre­
vious section. 

The main algorithm B r i d g e Va lueDe t , determines the 
value function within some error bound by making repeated 
calls to B r idgeStep . We wi l l now describe the first invoca­
t ion of B r idgeStep . 

Metaphorically it consists of throwing a bridge across the 
treacherous terrain that is the hypothesis class H, towards a 
point on the far side of the optimal solution. If the bridge 
lands somewhere close to where we aimed it, we wi l l be able 
to walk along it in a productive direction (achieve a contrac­
tion). If the bridge lands far from our target, then we know that 
there isn't any H-expressible value function near our taiget on 
which the bridge could have landed (hence an error bound). 
This is made precise by Lemma 2 in the next section. 

We are given an old approximation V from which we try 
tocreate a better approximation V n e w . Webasically have two 
tools to work with: T and IIH. As can be seen in Figure 2 (and 
in the example in the previous section), if we combine these 
two operators in the standard way, Vnew = H « T V , we can 
get stuck in a local minimum. We wi l l instead use them more 
creatively to guarantee progress or establish an error bound. 

Figure 2: Stuck in a local minimum 

We begin by using not T but rather where j is deter­
mined by the main algorithm B r i d g e V a l u e D e t before it 
calls B r idgeStep . We can then ask the question, given we 
know where V and are, what does that tell us about the 
location of V* ? It turns out that V* is restricted to lie in some 
hypersphere whose position can be defined in terms of the po­
sitions of V and . This is made precise by Lemma 1 in 
the next section. The hypersphere is depicted in Figure 3 and 
as required, V* lies inside it. 

Figure 3: The bridge is aimed 

We now define a new operator B based on and the iden­
tity operator I. 

B simply amplifies the Bellman residual by a factor of 
As can be seen in Figure 3, B V is the point on the far side 
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of the hypersphere from V. This operates- is what we use to 
throw a bridge. We aim the bridge for B V , which is beyond 
anywhere where our goal might be, i^.the true value function 
lies somewhere between V and B V . The motivation for us­
ing B is in a sense to jump over all local minima between V 
and V* 

Ideally we would be able to represent B V (just as in the 
standard approach we would want to represent T V ) but this 
function is most likely not in our class of representable func­
tions. Therefore we must apply the operator H to map it into 
H. The result, W = I l H B V e H, is shown in Figure 4. The 
bridge is supported by V and W and is shown as a line be­
tween them. In summary we throw the bridge aiming for B V, 
but H determines the point W on which it actually lands. 

Figure 4: The bridge is established 

In practice we perform the mapping IIH by generating sam­
ples from an appropriate distribution and passing them to a 
learning algorithm for H. In particular to compute H B V , 
we generate samples (x, y) according to the distribution: 

I 
The key feature of this distribution is that if a random variable 
Y has associated density i then E[Y] = B V ( x ) . 

The final step is to walk along the bridge. The bridge is a 
line between V and W and our new approximation Vnew wi l l 
be some point on this line (see Figure 5). This point is deter­
mined by projecting a point n < 1 of the way from V to 
onto the line, where n is a function of the input parameters. 
(We could just project , but using n is a refinement that 
yields a better guaranteed effective contraction factor.) 

Figure 5: The new approximation 

Thus the new approximation VneW, which is not necessar­
ily i n H , is a weighted average of the old approximation V and 
W %. Calculating the weights (p and 1 - p) in this average 
requires the ability to measure distance and risk. In particular 
we need to measure the distance between V and W and the 
risk of V and W with respect to the distribution . These 

three lengths (and n) determine the relative position of 
with respect to V and W (See Figure 5). to practice we es­
timate the true risk with the empirical risk [Haussler, 1992], 
which we calculate using samples drawn from the distribution 

have just described a single invocation of BridgeStep 
that represents the first iteration of the main algorithm. Each 
iteration builds a new bridge based on the previous one, so a 
generic iteration would begin with a V that was the of 
the previous iteration (see Figure 6). In particular, the input 
V of a generic iteration is not in H, but is rather a linear com­
bination of the initial approximation and all previous W 
functions. Thus the final result is a tall weighted tree whose 
leaves are in U. If we insist on a final result that is in H, then 
we can apply a final mapping at the very end. 

Just as the standard TD algorithm was summarized as 
, the Bridge algorithm can be essentially 

summarized as 

Figure 6: Generic iteration of BridgeStep 

4.1 Convergence of the Br idge a lgor i thm 
We wil l state the main convergence theorem for the Bridge al­
gorithm, but space limitations allow us to state only the two 
most important Lemmas used in the proof. We begin with a 
very useful observation about the geometric relationship be­
tween V, TV and V * . 

Lemma 1 Let A be a contraction with contraction factor 
under some norm. Let V* be the fixed point of A. For any 
point 

In words, given the positions of V and A V , let c = 
. Then we know that the position of V* has to be 

on or inside the hypersphere of radius centered at O (see 
Figure 7). This hypersphere is simply the set of points that are 
at least a factor of C closer to AV than to V. Note that the dis­
tance from V to the furthest point on the hypersphere is 

We apply Lemma 1 using for A and for This de­
fines a hypersphere inside of which the true value function 
must lie. Lemma 1 is used mainly to prove Lemma 2, which 
characterizes the behavior of B r idgeStep and provides most 
of the meat of the convergence proof. 

Lemma 2 Given an approximation V and parameters 
andj > 1, BridgeStep returns a new approxima-
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tion Vnew that satisfies at least one of the following two con-
ditions, where the error bound is 
defined in the Appendix 

(Error Bound) 
Intuitively, if the bridge lands close to where we aimed it, 

we wi l l achieve a contraction towards the goal. If the bridge 
lands far away, we wi l l prove a relative error bound for the 
result. The key quantity that determines which of these two 
events happens, is the angle formed between the bridge and 
the line from V to B V . If W = is close to B V , 
then wi l l be small, the bridge wi l l lie close to the hyper-
sphere, and we wi l l be able to walk along the bridge and make 
progress. If instead W is far from B V , then wi l l be large 
and walking along the bridge wi l l not take us closer to the 
goal, but we wi l l be able to prove that we are already close 
enough. 

Figure 8 shows the case where the angle is small. As de­
scribed previously, the small hypersphere represents the set 
of points that are at least a factor of closer to than 
they are to V. This follows from applying Lemma 1 to the 
operator . Now think of B r i dgeS tep as an operator that 
takes V and returns , and ask the question, what set of 
points are at least a factor of „ (which is an input parame­
ter to Br idgeStep) closer to than to V? Applying 
Lemma 1 to this question defines another, much larger hy­
persphere which is depicted in Figure 8 with center at O for 
the case = arcsin — arcsin Note that this larger hy­
persphere completely contains the smaller hypersphere which 
contains V * . Thus V* also lies inside the larger hypersphere 
and so is at least a factor of closer to V* than V is. 
This holds for = arcsin — arcsin . I f is smaller than 
this, the achieved contraction is even better. 

Figure 8: Contraction is achieved when is small 

Figure 9 shows the case where the angle is large, is large 
when it is not possible to find a hypothesis in % close to B V . 
In fact we choose W = to be the closest such hy­
pothesis, so the rest of % must lie further away. In particular 
% must lie completely outside the big hypersphere depicted 

in Figure 9 with center at B V, for otherwise W would not be 
the closest hypothesis to B V . Furthermore we know that V* 
must lie on or inside the small hypersphere in Figure 9. Thus 
there is a separation between V* and H and this separation 
allows us to prove, for any possible position of V * , an upper 
bound on the relative error 

Figure 9: Relative error bound is established when 9 is large 

It should be noted that in general we do not know and we 
cannot measure 0 to determine which of the two conditions 
of Lemma 2 Vnew satisfies. We only know that it satisfies at 
least one of them. 

By Lemma 2, if V already satisfies the relative error bound 
then so wi l l V n e w , because i f Vnew achieves a contraction 
over V, its error decreases. Thus each successive approxima­
tion is better than the one before, until we achieve the relative 
error bound from which point every subsequent approxima­
tion wi l l also achieve that bound. 

We now give the main result, which is guaranteed conver­
gence to a relative or absolute error bound. Moreover, the 
maximum number of invocations of B r i dgeS tep , and thus 
the maximum number of hypotheses in the linear combina­
tion, can be specified. 

Theorem 1 Let v > 1 and e0 > 0 be the desired relative 
and absolute error bounds respectively. Let N be an upper 
bound on the desired number of iterations. Then the algorithm 
BridgeValueDet(z/ , €o,N) produces an approximation V, 
consisting of a linear combination of at most N+l hypotheses 
from H, that satisfies at least one of either the relative error 
bound v or the absolute error bound eo-' 

The proof of the theorem follows directly from Lemma 2; 
rewards are bounded, so the true value function is bounded, so 
the absolute error of the initial approximation can be bounded. 
If all N iterations achieve a contraction, then the absolute er­
ror wi l l be smaller than requested. If at least one of the itera­
tions failed to achieve a contraction, then it achieved a relative 
error bound and all subsequent iterations, including the last 
one, wi l l achieve the requested relative error bound. Again, 
since we do not know which of the two conditions of Lemma 2 
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each iteration satisfies, we do not know whether the final an­
swer V satisfies the relative or the absolute error bound. We 
know only that it satisfies at least one of them. 
Corollary 1 Let v, and N be as defined in Theorem 1 
LetV = Br idgeVa lueDet ( i / , _, N), a linear combination 
of hypotheses firm H. Then V, the result of map­
ping V back into H satisfies at least one of either the relative 
error bound 2v + 1 or absolute error bound 

42 The Examples Revisited 
We now reconsider the examples from Section 3. The main 
algorithm B r i d g e V a l u e D e t takes parameters v, „, and N, 
from which it computes the number of lookahead steps j to 
use to achieve the requested error bounds. Also for each it­
eration, it chooses a parameter an which determines the con­
traction factor achieved or relative error bound established for 
that iteration. These two parameters, j and , are passed 
to B r i d g e S t e p at each iteration. In this section, we exam­
ine the effect of repeated applications of Br idgeStep , using 
j = 3 and = .99 for every iteration. 

For the first example, with initial = (0,0), the results 
of repeated applications of B r i dgeS tep are shown in Fig­
ure 10(a). Because for this example = 0 (i.e. 
the true value function is in H), the relative error bound is al­
ways infinite. Therefore, by Lemma 2, every step achieves at 
least a contraction a and so the algorithm converges to the true 
value function. 

Figure 10: Examples revisited with Bridge 

For the second example, with V0 = (30,0), the results 
of repeated applications of B r i dgeS tep are shown in Fig­
ure 10(b). Looking at the first step more closely, = 
(10.2,10.6), B V 0 = (-10.7,21.7) and , = 
(-16.2,16.2). The dotted line between and W0 is the 
bridge. V i , being a weighted average of and Wo , lies on 
this bridge. Similarly, V2 lies on the bridge between Vx and 
W 1 , 

Figure 11: (a) Lemma 2 applied to second example 
(b) linear combination 

Figure 11(a) demonstrates Lemma 2 on every fifth appli­
cation of B r idgeStep . In particular, note that the effective 

contraction factor only exceeds a after the desired relative er­
ror bound has been achieved. In 
fact cm this example, the algorithm performs far better than 
the theory guarantees, Figure 11(b) shows the weights of the 
averages and the structure of the resulting linear combination 
after 7 steps. 

5 Extensions 
It is possible to extend the algorithm in many ways. In partic­
ular relying on an exact, agnostic learning operator is not 
practical. Here we briefly discuss the use of two other learning 
operators and we hope in the future to consider others still. 

5.1 
Most significantly we have extended our algorithm to the case 
where the learning step cannot be done exactly but is in­
stead a PAC learning step (see [Papavassiliou and Rus­
sell, 1998]). We actually use the same and for every iter­
ation, so the learning step has the same complexity for 
every iteration. This is simple but most likely not optimal. 
One appealing aspect of considering PAC agnostic learning is 
the potential availability of sample complexity results based 
on some measure of the complexity of H. Unfortunately it is 
necessary to learn and estimate risk under the stationary distri­
bution of the Markov chain. Simply running the chain to gen­
erate samples wi l l only generate them correctly in the steady-
state limit. Therefore computing sample complexity results 
for the risk estimation and agnostic learning steps requires ex­
tending the current state of the theory to the case where sam­
ples are generated from a Markov chain, rather than i.i.d. One 
would expect the sample complexity to depend on the mixing 
time of the Markov chain and the variance of the sample dis­
tribution. The form of these theorems wi l l also determine the 
extent to which samples can be reused between the different 
risk estimation steps within an iteration or even across itera­
tions. 

5.2 Subopt imal learning 
Previous algorithms for this problem have been shown to con­
verge for learning operators Un that are non-expansions 

The convergence results for Bridge hold for learning operators 
that perform agnostic learning. Unfortunately there is a gen­
eral lack of useful agnostic learning algorithms (the risk mini­
mization step is typically intractable), so it would be beneficial 
to extend the results to learning systems that are not optimal. 

It is possible to weaken the conditions on the learning op­
erator and give convergence results for Bridge that hold when 

satisfies the banana-fudge condition 

for some nondecreasing functions k1 > 0 and k2- The only 
modification necessary to Bridge is to include k1 and k2 in the 
calculation of the relative error bound e r r B o u n d 
Note that for , this condition re­
duces to 

which is in fact the property of agnostic learning that is used 
to derive the results in this paper. 

Intuitively, the nonexpansion condition for IIH requires 
that two points that are close to each other, me mapped close 
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to each otter. The banana-fudge condition requires that two 
points that are close to each other, are mapped a similar dis­
tance away, but they can be mapped in opposite directions and 
so end up very for from each other. The banana-fudge con­
dition is obviously the weaker one, requiring only similarity 
in level of success and not similarity in outcome. It disal­
lows the case where one function is learned very well, but an­
other function very close to the first is learned very poorly. We 
are currently searching for learning algorithms that satisfy the 
banana-fudge condition, but unfortunately it seems most com­
mon practical learning algorithms do not. 

6 Other Approaches 
We briefly discuss other known alternatives to Bridge as well 
as mention some of the new directions one mi ght consider. 

6.1 Al ternat ives 
If H is convex and is the agnostic learning operator, 
then is a nonexpansion and con­
verges. For nonconvex H, an alternative approach to Bridge 
is to PAC-agnostically learn the convex hull of H using 
at each iteration [Lee et a/., 1995]. The resulting iterated 
procedure converges since 

is a nonexpansion. Unfortunately, this algo­
rithm requires many more agnostic learning steps per iteration 
than seems practical. 

A noniterative method that returns the optimal answer is to 
reduce the value determination problem to a single instance 
of supervised learning by using the operator (otherwise 
known as . I t does unlimited lookahead, has con­
traction factor = 0 and so it generates V* after just one it­
eration. Looked at another way, the distribution has 
mean . Unfortunately there is 
empirical evidence that suggests the sample distribution 
is very hard to learn and requires very many samples (perhaps 
because it can have high variance). 

Strictly speaking, it is not necessary to backup values be­
yond the -horizon which is . Even this, however, 
may yield sample distributions with too much variance for 
practical use, although it is offset by the need to perform only 
a single learning step. 

Finally it may be possible, using Lemma 1, to establish 
convergence rates and error bounds for the iterated procedure 

where m is less than the -horizon. 
However, m would probably have to be much larger than j, 
the number of lookahead steps used by Bridge, and so again 
we would expect bad sample complexity. 

6.2 New Direct ions 
There are many ways in which the basic tools used in con­
structing this algorithm might be used in constructing more 
powerful methods. Specifically the geometric relationship be­
tween V, T V , and V* established in Lemma 1 is very use­
ful in (1) providing geometric intuition to design new methods 
and (2) proving performance guarantees for these methods. 

One can think of many different ways to throw a bridge and 
many different kinds of bridges to throw. For example, we es­
tablish W, the other end of the bridge by learning the point 

. This choice is rather arbitrary, picked 
to simplify the error bound analysis. One might try instead 
learning a point further or a little closer to V. 

Once we establish W, we throw a one-dimensional, linear 
bridge from V to W and learn a point close to TjV cm this 
line (learning is equivalent to projection in linear hypothesis 
classes). One might try establishing more than two points with 
which to support the bridge. For example, given V and after 
establishing W ( l ) , we could try establishing W(2 ) by learn­
ing a point strategically located far from both V and W (1) on 
the other side of the hypersphere defined by Lemma 1. Then 
we could throw a two-dimensional, planar bridge across these 
three points and project TjV (or a point close by) onto this 
plane. We can continue in this way, considering methods that 
establish W( l ) , . . . . , W ( n ) and use an n-dimensional hyper-
plane to learn . In the logical l imit this method looks 
like a local version of [Lee et al, 1995] which learns the ful l 
convex hull. It is local in that it only closes under weighted 
averaging those points of % that are closest to some point of 
the hypersphere defined by Lemma 1. Our current method 
which only uses one-dimensional bridges is effectively a light 
version of these convex-hull methods, in that before learning 

it closes under linear combinations only two points from 
H, namely V and W. 

7 Conclusion 
We have developed a method that reduces the value determi­
nation problem to the agnostic learning problem. Requesting 
that our algorithm halt in fewer iterations or with better er­
ror bounds pushes more of the complexity into the learning 
step and in the limit effectively forces it to consider infinite 
lookahead which is . Similarly, if we were to extend our 
algorithm to use more and more supports for the bridge, we 
suspect it would approximate the performance of the convex 
hull learning algorithm. Thus our method can be thought of 
as a more versatile and hopefully more efficient alternative to 
these aggressive methods. 

The key features that characterize our approach are (1) the 
complication of learning is abstracted into a learning operator 

, (2) we use a new operator B rather than being restricted 
to the backup operator T, (3) we form linear combinations of 
hypotheses from a class H rather than being limited to just 
H, and (4) we use Lemma 1 to prove convergence and error 
bound results. These techniques can be applied or modified 
to develop endless variations on Bridge as well as completely 
new algorithms. 

A big missing ingredient in justifying one method over an­
other is sample complexity. In particular, we do not know how 
sample complexity depends on the lookahead j, or, in the case 
of , how it depends on , and so we cannot properly trade 
off these parameters to achieve the best performance. 

Our results are stated for the problem of value determina­
tion, but they apply to any situation with an operator that is 
a contraction with respect to a norm defined by a samplable 
distribution. For the problem of value determination, the op­
erator is T, the one-step backup operator, and it is a con­
traction under the norm defined by the stationary distribution 
of the Markov chain. As stated previously, this distribution 
can only be sampled exacdy in the steady-state limit, so im­
provements in the theory are necessary. Finally, a big hurdle 
to a practical, implementable algorithm is the lack of useful, 
well-behaved (agnostic or not) learning algorithms. By ap­
plying the techniques used in developing Bridge, we hope to 
bridge the gap between the available supervised learning al­
gorithms and those needed by theoretically justified reinforce-
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ment learning methods. 
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A Detailed Algorithm 
Here we give details of the algorithm as well as define the rel­
ative error bound B r i d g e Va lueDet 
first calculates the necessary number of backup steps j in or­
der to achieve the desired error bounds within the desired 
number of iterations. For each iteration it intelligently selects 
the parameter and calls the subroutine BridgeStep with the 
current approximation. Finally it detects when it can halt sue-
cessfiilly and returns a weighted tree of hypotheses. 
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