
Convergence of reinforcement learning with general function approximators

Vassilis A-Papavassiliou and Stuart Russell
Computer Science Division, U. of California, Berkeley, CA 94720-1776

{vassilis^russell} @cs.berkeley.edu

Abstract
A key open problem in reinforcement learning is
to assure convergence when using a compact hy­
pothesis class to approximate the value function.
Although the standard temporal-difference learning
algorithm has been shown to converge when the hy­
pothesis class is a linear combination of fixed ba­
sis functions, it may diverge with a general (non­
linear) hypothesis class. This paper describes the
Bridge algorithm, a new method for reinforcement
learning, and shows that it converges to an approxi­
mate global optimum for any agnostically learnable
hypothesis class. Convergence is demonstrated on
a simple example for which temporal-difference
learning fails. Weak conditions are identified un­
der which the Bridge algorithm converges for any
hypothesis class. Finally, connections are made be­
tween the complexity of reinforcement learning and
the PAC-learnability of the hypothesis class.

1 Introduction
Reinforcement learning (RL) is a widely used method for
learning to make decisions in complex, uncertain environ­
ments. Typically, an RL agent perceives mid acts in an en­
vironment, reeei ving rewards that provide some indication of
the quality of its actions. The agent's goal is to maximize
the sum of rewards received. RL algorithms work by learn­
ing a value/unction that describes the long-term expected sum
of rewards from each state; alternatively, they can learn a
Q-function describing the value of each action in each state.
These functions can then be used to make decisions.

Temporal-difference (TO) learning [Sutton, 1988] is a com­
monly used family of reinforcement learning methods. TO al­
gorithms operate by adjusting the value function to be locally
consistent. When used With function approximators, such as
neural networks, that provide a compact parameterized repre­
sentation of the value function, TO methods can solve real-
world problems with very large state spaces. Because of this,
one would like to know if such algorithms can be guaranteed
to work—i.e., to converge and to return optimal solutions.

The theoretical study of RL algorithms usually divides the
problem into two aspects: exploration policies that can guar­
antee complete coverage of the environment, and value deter-
mination to find the value function that corresponds to a given
policy. This paper concentrates on the second aspect. Prior
work [Jaakkola et al. , 1995] has established convergence of

TO-learning with probability 1 when the value function is rep­
resented as a table where each state has its own entry. For
large state spaces, however, compact parametric representa­
tions are required; for such representations, we are interested
in whether an algorithm wi l l converge to the function that is
closest, by some metric, to the true value function (a form of
agnostic learning). Gordon [1995] proved that TO conveiges
in this sense for representations called "averagers" on which
the TO update is a max-norm contraction (see Section 2). Tsit-
siklis and van Roy [1996] proved convergence and established
error bounds for TD(A) with linear combinations of fixed ba­
sis functions.

With nonlinear representations, such as neural networks,
TO has been observed to give suboptimal solutions [Bert-
sekas and Tsitsiklis, 1996] or even to diverge. This is a se­
rious problem since most real problems require nonlinearity.
Baird [1995] introduced residual algorithms, for which con­
vergence can be proved when combined with a gradient de­
scent learning method (such as used with neural networks).
Unfortunately the error in the resulting approximation can be
arbitrarily large and furthermore the method requires two in­
dependent visits to each sampled state.

This paper describes the Bridge algorithm, a new RL
method for which we establish convergence and error bounds
with any agnostically learnable representation.

Section 2 provides the necessary definitions and notation.
Section 3 explains the problem of nonconvergence and pro­
vides examples of this with TO. Section 4 outlines the Bridge
algorithm, sketches the proof of convergence, and shows how
it solves the examples for which TO fails. Section 5 briefly
covers additional results on convergence to local optima for
any representation and on the use of PAC-learning theory.
Section 6 mentions some alternative techniques one might
consider. The paper is necessarily technically (tense given the
space restrictions. The results, however, should be of broad
interest to the AI and machine learning communities.

2 Definitions
2.1 MDP
A Markov decision process M = is a set of
states S, a set of actions A, transition probability distributions

that define the next state distribution given a current
state x and action a, reward distributions r that define
the distribution of real-valued reward received upon execut­
ing a in x, and a discount factor . Since we are in­
terested in the problem of value determination, we assume we

748 MACHINE LEARNING

are given a fixed policy (choice of action at each state). When
executing only this fixed policy, the MDP actually becomes a
Markov chain, and we may therefore also write the transition
probabilities as p(-|x) and the reward distributions as r(-\x).
We assume that we are able to define the stationary distribu­
tion π of the resulting Markov chain and also that the rewards
lie in the range

observed random rewards, i.e. Rk has distribution r(-\Xk).
Define the true value function V* at a state x to be the ex­
pected, discounted reward to go from state x:

The problem of value determination is to determine the true
value function or a good approximation to it. Classical TD so­
lutions have made use of the backup operator T, which takes
an approximation V and produces a better approximation

An operator A is said to be a contraction with factor
under some norm || • || if

If = 1, A is said to be a nonexpansion. If we define the
V(x)and the -normto
then T is a contraction

with factor and fixed point V* under both max-norm and
-norm {Tsitsiklis and Van Roy, 1996]. Therefore repeated

application of T (i.e. the iterative process
converges to . We wil l use Tj to represent the operator T
applied j times.

If the transition probabilities p and reward distributions r
are known, then it is possible to compute TV directly from
its definition. However, if p and r are not known, then it is
not possible to compute the expectation in the definition of T.
In this case, by observing a sequence of states and rewards in
the Markov chain, 'we can form an unbiased estimate of T V .
Specifically, if we observe state x and reward r followed by
state x 2 , then the observed backed-up value, , is
an unbiased estimate of T V (x) . Formally we define
to be the conditional probability density of observed backed-
up values from state x:

where and are, as defined above, random variables
with distributions respectively. Thus if
a random variable Y has associated density then
E[Y] = . Similarly, we d e f i n e t o be the
conditional probability density of j-step backed-up values ob­
served from state x.

2.2 Funct ion Approx ima t ion
As state spaces becomes large or even infinite, it becomes in-
feasible to tabulate the value function for each state x, and
we must resort to function approximation. Our approximation
scheme consists of a hypothesis class H of representable func­
tions and a learning operator which maps arbitrary value
functions to functions in %.

The standard T based approaches that use function approx­
imation essentially compute or approximately compute the it-

erative process In practice, the
mapping usually cannot be performed exactly because, even
if we have access to the necessary expectation to compute
T V (x) exactly, it is infeasible to do so for all states x. Thus
we perform an approximate mapping using samples. We wi l l
take the state sample distribution to be the stationary distri­
bution Π. In general when we cannot compute TV(ar) ex­
actly, we approximate by generating samples (x, y)
with sample distribution

and passing them to a learning algorithm for H. The joint
probability density (from which we generate the samples)
simply combines (From which we sample the state x) with
the conditional probability density) (from which we
generate an estimate y for T V (x)) .

In this paper we focus on agnostic learning. In this case, the
learning operator seeks the hypothesis h that best matches
the target function V, even though typically the target func­
tion is not in the hypothesis class. If we measure distance us­
ing the -norm, then we can define the learning operator for
agnostic learning to be:

As already mentioned, in the typical case we do not have
access to the exact function V to be learned, but rather we can
draw samples (x, y) from a sample distribution P such that the
expected value of the conditional distribution is V (x) .
If, in addition, V samples the states according to (or what­
ever distribution was used to measure distance in the previous
definition) then an equivalent definition for agnostic learning
is based on minimizing risk;

where we define the risk of a hypothesis h with respect to a
distribution V to be:

In practice, is approximately performed by generating
enough samples (x, y) from the sample distribution P so as
to be able to estimate risk well, and thus to be able to output
the hypothesis in % that has minimal risk with respect to this
distribution. In the algorithm we present, we assume the abil­
ity to compute exactly for the given hypothesis class H.
This is certainly not a trivial assumption. In a later section,
we briefly discuss an extension to our algorithm for the case
where is a PAC-agnostic learning step rather than an ex­
act agnostic learning step.

Finally, let us define our goal. is defined to be the best
approximation to V* possible using %\

We seek techniques that return a value function V that mini­
mizes a relative or absolute error bound:

3 Nonconvergence of TD
In this section, we examine the non-convergence problem of
TD when used with non-linear function approximators. We
present simple examples which we wi l l reconsider with the
Bridge algorithm in the next section.

As mentioned above, standard TD with function approxi­
mation is based on the iterative process

PAPAVASSIUOU AND RUSS€LL 749

is a non-expansion under the same norm that makes T a
contraction, then the composite operator T is a contraction
and this process wi l l converge to some error bound relative to

. For example, Tsitsiklis and Van Roy [1996] consider a
linear hypothesis class, for which is simply a projection.
If one uses a nonlinear hypothesis class H for which IIH is not
a nonexpansion then this iterative process can either diverge
or get stuck in a local minimum arbitrarily far from

We now give simple examples demonstrating ways in
which TO can fail when it is used with a nonlinear hypothesis
class. Consider an MDP with two states where the probabil-
ity of going from one state to the other is 1, and the rewards
are also deterministic. The stationary distribution is 0.5 for
each state, the discount factor is .8 and the hypothesis class H

Figure 1: (a) Suboptimal Fixed Point and (b) Oscillation

If we modify the rewards slightly to be (r 1 , r 2) =
(10, —7.8) then the true value function V * = i s
no longer in H. The best representation of V* =
IIH V* = . If we start from (0,0) as above, we wil l
again reach a suboptimal fixed point around (5, —5). How­
ever, starting from V0 = (30,0) (or even V0 = (15,0))
the result of repeated applications of T as shown in Fig­
ure 1(b) displays a different type of failure — oscillation be­
tween points approaching (7.5,7.5) and (16,0). As in the pre­
vious e x a m p l e , i s small, so the re l a t i ve error
bound is large.

4 The Bridge Algorithm
We begin with a high level description of the algorithm (de­
tails are in the Appendix). This is followed by the conver­

gence results and another look at the examples from the pre­
vious section.

The main algorithm B r i d g e Va lueDe t , determines the
value function within some error bound by making repeated
calls to B r idgeStep . We wi l l now describe the first invoca­
t ion of B r idgeStep .

Metaphorically it consists of throwing a bridge across the
treacherous terrain that is the hypothesis class H, towards a
point on the far side of the optimal solution. If the bridge
lands somewhere close to where we aimed it, we wi l l be able
to walk along it in a productive direction (achieve a contrac­
tion). If the bridge lands far from our target, then we know that
there isn't any H-expressible value function near our taiget on
which the bridge could have landed (hence an error bound).
This is made precise by Lemma 2 in the next section.

We are given an old approximation V from which we try
tocreate a better approximation V n e w . Webasically have two
tools to work with: T and IIH. As can be seen in Figure 2 (and
in the example in the previous section), if we combine these
two operators in the standard way, Vnew = H « T V , we can
get stuck in a local minimum. We wi l l instead use them more
creatively to guarantee progress or establish an error bound.

Figure 2: Stuck in a local minimum

We begin by using not T but rather where j is deter­
mined by the main algorithm B r i d g e V a l u e D e t before it
calls B r idgeStep . We can then ask the question, given we
know where V and are, what does that tell us about the
location of V* ? It turns out that V* is restricted to lie in some
hypersphere whose position can be defined in terms of the po­
sitions of V and . This is made precise by Lemma 1 in
the next section. The hypersphere is depicted in Figure 3 and
as required, V* lies inside it.

Figure 3: The bridge is aimed

We now define a new operator B based on and the iden­
tity operator I.

B simply amplifies the Bellman residual by a factor of
As can be seen in Figure 3, B V is the point on the far side

750 MACHINE LEARNING

of the hypersphere from V. This operates- is what we use to
throw a bridge. We aim the bridge for B V , which is beyond
anywhere where our goal might be, i^.the true value function
lies somewhere between V and B V . The motivation for us­
ing B is in a sense to jump over all local minima between V
and V*

Ideally we would be able to represent B V (just as in the
standard approach we would want to represent T V) but this
function is most likely not in our class of representable func­
tions. Therefore we must apply the operator H to map it into
H. The result, W = I l H B V e H, is shown in Figure 4. The
bridge is supported by V and W and is shown as a line be­
tween them. In summary we throw the bridge aiming for B V,
but H determines the point W on which it actually lands.

Figure 4: The bridge is established

In practice we perform the mapping IIH by generating sam­
ples from an appropriate distribution and passing them to a
learning algorithm for H. In particular to compute H B V ,
we generate samples (x, y) according to the distribution:

I
The key feature of this distribution is that if a random variable
Y has associated density i then E[Y] = B V (x) .

The final step is to walk along the bridge. The bridge is a
line between V and W and our new approximation Vnew wi l l
be some point on this line (see Figure 5). This point is deter­
mined by projecting a point n < 1 of the way from V to
onto the line, where n is a function of the input parameters.
(We could just project , but using n is a refinement that
yields a better guaranteed effective contraction factor.)

Figure 5: The new approximation

Thus the new approximation VneW, which is not necessar­
ily i n H , is a weighted average of the old approximation V and
W %. Calculating the weights (p and 1 - p) in this average
requires the ability to measure distance and risk. In particular
we need to measure the distance between V and W and the
risk of V and W with respect to the distribution . These

three lengths (and n) determine the relative position of
with respect to V and W (See Figure 5). to practice we es­
timate the true risk with the empirical risk [Haussler, 1992],
which we calculate using samples drawn from the distribution

have just described a single invocation of BridgeStep
that represents the first iteration of the main algorithm. Each
iteration builds a new bridge based on the previous one, so a
generic iteration would begin with a V that was the of
the previous iteration (see Figure 6). In particular, the input
V of a generic iteration is not in H, but is rather a linear com­
bination of the initial approximation and all previous W
functions. Thus the final result is a tall weighted tree whose
leaves are in U. If we insist on a final result that is in H, then
we can apply a final mapping at the very end.

Just as the standard TD algorithm was summarized as
, the Bridge algorithm can be essentially

summarized as

Figure 6: Generic iteration of BridgeStep

4.1 Convergence of the Br idge a lgor i thm
We wil l state the main convergence theorem for the Bridge al­
gorithm, but space limitations allow us to state only the two
most important Lemmas used in the proof. We begin with a
very useful observation about the geometric relationship be­
tween V, TV and V * .

Lemma 1 Let A be a contraction with contraction factor
under some norm. Let V* be the fixed point of A. For any
point

In words, given the positions of V and A V , let c =
. Then we know that the position of V* has to be

on or inside the hypersphere of radius centered at O (see
Figure 7). This hypersphere is simply the set of points that are
at least a factor of C closer to AV than to V. Note that the dis­
tance from V to the furthest point on the hypersphere is

We apply Lemma 1 using for A and for This de­
fines a hypersphere inside of which the true value function
must lie. Lemma 1 is used mainly to prove Lemma 2, which
characterizes the behavior of B r idgeStep and provides most
of the meat of the convergence proof.

Lemma 2 Given an approximation V and parameters
andj > 1, BridgeStep returns a new approxima-

PAPAVASSILIOU AND RUSSELL 751

tion Vnew that satisfies at least one of the following two con-
ditions, where the error bound is
defined in the Appendix

(Error Bound)
Intuitively, if the bridge lands close to where we aimed it,

we wi l l achieve a contraction towards the goal. If the bridge
lands far away, we wi l l prove a relative error bound for the
result. The key quantity that determines which of these two
events happens, is the angle formed between the bridge and
the line from V to B V . If W = is close to B V ,
then wi l l be small, the bridge wi l l lie close to the hyper-
sphere, and we wi l l be able to walk along the bridge and make
progress. If instead W is far from B V , then wi l l be large
and walking along the bridge wi l l not take us closer to the
goal, but we wi l l be able to prove that we are already close
enough.

Figure 8 shows the case where the angle is small. As de­
scribed previously, the small hypersphere represents the set
of points that are at least a factor of closer to than
they are to V. This follows from applying Lemma 1 to the
operator . Now think of B r i dgeS tep as an operator that
takes V and returns , and ask the question, what set of
points are at least a factor of „ (which is an input parame­
ter to Br idgeStep) closer to than to V? Applying
Lemma 1 to this question defines another, much larger hy­
persphere which is depicted in Figure 8 with center at O for
the case = arcsin — arcsin Note that this larger hy­
persphere completely contains the smaller hypersphere which
contains V * . Thus V* also lies inside the larger hypersphere
and so is at least a factor of closer to V* than V is.
This holds for = arcsin — arcsin . I f is smaller than
this, the achieved contraction is even better.

Figure 8: Contraction is achieved when is small

Figure 9 shows the case where the angle is large, is large
when it is not possible to find a hypothesis in % close to B V .
In fact we choose W = to be the closest such hy­
pothesis, so the rest of % must lie further away. In particular
% must lie completely outside the big hypersphere depicted

in Figure 9 with center at B V, for otherwise W would not be
the closest hypothesis to B V . Furthermore we know that V*
must lie on or inside the small hypersphere in Figure 9. Thus
there is a separation between V* and H and this separation
allows us to prove, for any possible position of V * , an upper
bound on the relative error

Figure 9: Relative error bound is established when 9 is large

It should be noted that in general we do not know and we
cannot measure 0 to determine which of the two conditions
of Lemma 2 Vnew satisfies. We only know that it satisfies at
least one of them.

By Lemma 2, if V already satisfies the relative error bound
then so wi l l V n e w , because i f Vnew achieves a contraction
over V, its error decreases. Thus each successive approxima­
tion is better than the one before, until we achieve the relative
error bound from which point every subsequent approxima­
tion wi l l also achieve that bound.

We now give the main result, which is guaranteed conver­
gence to a relative or absolute error bound. Moreover, the
maximum number of invocations of B r i dgeS tep , and thus
the maximum number of hypotheses in the linear combina­
tion, can be specified.

Theorem 1 Let v > 1 and e0 > 0 be the desired relative
and absolute error bounds respectively. Let N be an upper
bound on the desired number of iterations. Then the algorithm
BridgeValueDet(z/ , €o,N) produces an approximation V,
consisting of a linear combination of at most N+l hypotheses
from H, that satisfies at least one of either the relative error
bound v or the absolute error bound eo-'

The proof of the theorem follows directly from Lemma 2;
rewards are bounded, so the true value function is bounded, so
the absolute error of the initial approximation can be bounded.
If all N iterations achieve a contraction, then the absolute er­
ror wi l l be smaller than requested. If at least one of the itera­
tions failed to achieve a contraction, then it achieved a relative
error bound and all subsequent iterations, including the last
one, wi l l achieve the requested relative error bound. Again,
since we do not know which of the two conditions of Lemma 2

752 MACHINE LEARNING

each iteration satisfies, we do not know whether the final an­
swer V satisfies the relative or the absolute error bound. We
know only that it satisfies at least one of them.
Corollary 1 Let v, and N be as defined in Theorem 1
LetV = Br idgeVa lueDet (i / , _, N), a linear combination
of hypotheses firm H. Then V, the result of map­
ping V back into H satisfies at least one of either the relative
error bound 2v + 1 or absolute error bound

42 The Examples Revisited
We now reconsider the examples from Section 3. The main
algorithm B r i d g e V a l u e D e t takes parameters v, „, and N,
from which it computes the number of lookahead steps j to
use to achieve the requested error bounds. Also for each it­
eration, it chooses a parameter an which determines the con­
traction factor achieved or relative error bound established for
that iteration. These two parameters, j and , are passed
to B r i d g e S t e p at each iteration. In this section, we exam­
ine the effect of repeated applications of Br idgeStep , using
j = 3 and = .99 for every iteration.

For the first example, with initial = (0,0), the results
of repeated applications of B r i dgeS tep are shown in Fig­
ure 10(a). Because for this example = 0 (i.e.
the true value function is in H), the relative error bound is al­
ways infinite. Therefore, by Lemma 2, every step achieves at
least a contraction a and so the algorithm converges to the true
value function.

Figure 10: Examples revisited with Bridge

For the second example, with V0 = (30,0), the results
of repeated applications of B r i dgeS tep are shown in Fig­
ure 10(b). Looking at the first step more closely, =
(10.2,10.6), B V 0 = (-10.7,21.7) and , =
(-16.2,16.2). The dotted line between and W0 is the
bridge. V i , being a weighted average of and Wo , lies on
this bridge. Similarly, V2 lies on the bridge between Vx and
W 1 ,

Figure 11: (a) Lemma 2 applied to second example
(b) linear combination

Figure 11(a) demonstrates Lemma 2 on every fifth appli­
cation of B r idgeStep . In particular, note that the effective

contraction factor only exceeds a after the desired relative er­
ror bound has been achieved. In
fact cm this example, the algorithm performs far better than
the theory guarantees, Figure 11(b) shows the weights of the
averages and the structure of the resulting linear combination
after 7 steps.

5 Extensions
It is possible to extend the algorithm in many ways. In partic­
ular relying on an exact, agnostic learning operator is not
practical. Here we briefly discuss the use of two other learning
operators and we hope in the future to consider others still.

5.1
Most significantly we have extended our algorithm to the case
where the learning step cannot be done exactly but is in­
stead a PAC learning step (see [Papavassiliou and Rus­
sell, 1998]). We actually use the same and for every iter­
ation, so the learning step has the same complexity for
every iteration. This is simple but most likely not optimal.
One appealing aspect of considering PAC agnostic learning is
the potential availability of sample complexity results based
on some measure of the complexity of H. Unfortunately it is
necessary to learn and estimate risk under the stationary distri­
bution of the Markov chain. Simply running the chain to gen­
erate samples wi l l only generate them correctly in the steady-
state limit. Therefore computing sample complexity results
for the risk estimation and agnostic learning steps requires ex­
tending the current state of the theory to the case where sam­
ples are generated from a Markov chain, rather than i.i.d. One
would expect the sample complexity to depend on the mixing
time of the Markov chain and the variance of the sample dis­
tribution. The form of these theorems wi l l also determine the
extent to which samples can be reused between the different
risk estimation steps within an iteration or even across itera­
tions.

5.2 Subopt imal learning
Previous algorithms for this problem have been shown to con­
verge for learning operators Un that are non-expansions

The convergence results for Bridge hold for learning operators
that perform agnostic learning. Unfortunately there is a gen­
eral lack of useful agnostic learning algorithms (the risk mini­
mization step is typically intractable), so it would be beneficial
to extend the results to learning systems that are not optimal.

It is possible to weaken the conditions on the learning op­
erator and give convergence results for Bridge that hold when

satisfies the banana-fudge condition

for some nondecreasing functions k1 > 0 and k2- The only
modification necessary to Bridge is to include k1 and k2 in the
calculation of the relative error bound e r r B o u n d
Note that for , this condition re­
duces to

which is in fact the property of agnostic learning that is used
to derive the results in this paper.

Intuitively, the nonexpansion condition for IIH requires
that two points that are close to each other, me mapped close

PAPAVASSILIOU AND RUSSELL IS

to each otter. The banana-fudge condition requires that two
points that are close to each other, are mapped a similar dis­
tance away, but they can be mapped in opposite directions and
so end up very for from each other. The banana-fudge con­
dition is obviously the weaker one, requiring only similarity
in level of success and not similarity in outcome. It disal­
lows the case where one function is learned very well, but an­
other function very close to the first is learned very poorly. We
are currently searching for learning algorithms that satisfy the
banana-fudge condition, but unfortunately it seems most com­
mon practical learning algorithms do not.

6 Other Approaches
We briefly discuss other known alternatives to Bridge as well
as mention some of the new directions one mi ght consider.

6.1 Al ternat ives
If H is convex and is the agnostic learning operator,
then is a nonexpansion and con­
verges. For nonconvex H, an alternative approach to Bridge
is to PAC-agnostically learn the convex hull of H using
at each iteration [Lee et a/., 1995]. The resulting iterated
procedure converges since

is a nonexpansion. Unfortunately, this algo­
rithm requires many more agnostic learning steps per iteration
than seems practical.

A noniterative method that returns the optimal answer is to
reduce the value determination problem to a single instance
of supervised learning by using the operator (otherwise
known as . I t does unlimited lookahead, has con­
traction factor = 0 and so it generates V* after just one it­
eration. Looked at another way, the distribution has
mean . Unfortunately there is
empirical evidence that suggests the sample distribution
is very hard to learn and requires very many samples (perhaps
because it can have high variance).

Strictly speaking, it is not necessary to backup values be­
yond the -horizon which is . Even this, however,
may yield sample distributions with too much variance for
practical use, although it is offset by the need to perform only
a single learning step.

Finally it may be possible, using Lemma 1, to establish
convergence rates and error bounds for the iterated procedure

where m is less than the -horizon.
However, m would probably have to be much larger than j,
the number of lookahead steps used by Bridge, and so again
we would expect bad sample complexity.

6.2 New Direct ions
There are many ways in which the basic tools used in con­
structing this algorithm might be used in constructing more
powerful methods. Specifically the geometric relationship be­
tween V, T V , and V* established in Lemma 1 is very use­
ful in (1) providing geometric intuition to design new methods
and (2) proving performance guarantees for these methods.

One can think of many different ways to throw a bridge and
many different kinds of bridges to throw. For example, we es­
tablish W, the other end of the bridge by learning the point

. This choice is rather arbitrary, picked
to simplify the error bound analysis. One might try instead
learning a point further or a little closer to V.

Once we establish W, we throw a one-dimensional, linear
bridge from V to W and learn a point close to TjV cm this
line (learning is equivalent to projection in linear hypothesis
classes). One might try establishing more than two points with
which to support the bridge. For example, given V and after
establishing W (l) , we could try establishing W(2) by learn­
ing a point strategically located far from both V and W (1) on
the other side of the hypersphere defined by Lemma 1. Then
we could throw a two-dimensional, planar bridge across these
three points and project TjV (or a point close by) onto this
plane. We can continue in this way, considering methods that
establish W(l) , , W (n) and use an n-dimensional hyper-
plane to learn . In the logical l imit this method looks
like a local version of [Lee et al, 1995] which learns the ful l
convex hull. It is local in that it only closes under weighted
averaging those points of % that are closest to some point of
the hypersphere defined by Lemma 1. Our current method
which only uses one-dimensional bridges is effectively a light
version of these convex-hull methods, in that before learning

it closes under linear combinations only two points from
H, namely V and W.

7 Conclusion
We have developed a method that reduces the value determi­
nation problem to the agnostic learning problem. Requesting
that our algorithm halt in fewer iterations or with better er­
ror bounds pushes more of the complexity into the learning
step and in the limit effectively forces it to consider infinite
lookahead which is . Similarly, if we were to extend our
algorithm to use more and more supports for the bridge, we
suspect it would approximate the performance of the convex
hull learning algorithm. Thus our method can be thought of
as a more versatile and hopefully more efficient alternative to
these aggressive methods.

The key features that characterize our approach are (1) the
complication of learning is abstracted into a learning operator

, (2) we use a new operator B rather than being restricted
to the backup operator T, (3) we form linear combinations of
hypotheses from a class H rather than being limited to just
H, and (4) we use Lemma 1 to prove convergence and error
bound results. These techniques can be applied or modified
to develop endless variations on Bridge as well as completely
new algorithms.

A big missing ingredient in justifying one method over an­
other is sample complexity. In particular, we do not know how
sample complexity depends on the lookahead j, or, in the case
of , how it depends on , and so we cannot properly trade
off these parameters to achieve the best performance.

Our results are stated for the problem of value determina­
tion, but they apply to any situation with an operator that is
a contraction with respect to a norm defined by a samplable
distribution. For the problem of value determination, the op­
erator is T, the one-step backup operator, and it is a con­
traction under the norm defined by the stationary distribution
of the Markov chain. As stated previously, this distribution
can only be sampled exacdy in the steady-state limit, so im­
provements in the theory are necessary. Finally, a big hurdle
to a practical, implementable algorithm is the lack of useful,
well-behaved (agnostic or not) learning algorithms. By ap­
plying the techniques used in developing Bridge, we hope to
bridge the gap between the available supervised learning al­
gorithms and those needed by theoretically justified reinforce-

754 MACHINE LEARNING

ment learning methods.

References
[Bairf, 1995] Leemon Baird. Residual algorithms: Re­

inforcement learning with function approximation. In
Proceedings of the Twelfth International Conference on
Machine Learning, Tahoe City, CA, Proceedings of the
Twelfth International Conference on Machine Learning
1995. Morgan Kaufmann.

[Bertsekas and Tsitsiklis, 1996] D. C. Bertsekas and J. N.
Tsitsiklis. Neum-dynamic programming. Athena Scien­
tific, Belmont, Mass., 1996.

[Gordon, 1995] Geoffrey J. Gordon. Stable function approx­
imation in dynamic programming. In Proceedings of the
Twelfth International Conference on Machine Learning,
Tahoe City, CA, July 1995. Morgan Kaufmann.

[Haussler, 1992] David Haussler. Decision theoretic general­
izations of the pac model for neural net and other learning
applications. Information and Computation, 100(1):78-
150,1992.

[Jaakkola et a/., 1995] Tommi Jaakkola, Satinder P. Singh,
and Michael I. Jordan. Reinforcement learning algorithm
for partially observable Markov decision problems. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in
Neural Information Processing Systems 7, pages 345-352,
Cambridge, Massachusetts, 1995. MIT Press.

[Lee et al, 1995] W.S. Lee, P.L. Bartlett, and R.C.
Williamson. On efficient agnostic learning of linear
combinations of basis functions. In Proceedings of the
Eighth Annual Conference on Computational Learning
Theory, pages 369-376,1995.

[Papavassiliou and Russell, 1998] V. Papavassiliou and
S. Russell. Convergence of reinforcement learning
with pac function approximators. Technical Report
UCB//CSD-98-1005, University of California, Berkeley,
1998.

[Sutton, 1988] R. S. Sutton. Learning to predict by the meth­
ods of temporal differences. Machine Learning, 3:9-44,
August 1988.

[Tsitsiklis and Van Roy, 1996] John N. Tsitsiklis and Ben­
jamin Van Roy. An analysis of temporal-difference learn­
ing with function approximation. Technical Report LIDS-
P-2322, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, 1996.

A Detailed Algorithm
Here we give details of the algorithm as well as define the rel­
ative error bound B r i d g e Va lueDet
first calculates the necessary number of backup steps j in or­
der to achieve the desired error bounds within the desired
number of iterations. For each iteration it intelligently selects
the parameter and calls the subroutine BridgeStep with the
current approximation. Finally it detects when it can halt sue-
cessfiilly and returns a weighted tree of hypotheses.

PAPAVASSILIOU AND RUSSELL US

