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Abs t rac t 
This paper describes and 
evaluates the Confidence-based Dual Reinforce-
ment Q-Routing algorithm (CDRQ-Routing) 
for adaptive packet routing in communication 
networks. CDRQ-Routing is based on the Q-
learning framework of Q-Routing. The main 
contribution of this work is the increased quan­
tity and improved quality of exploration in 
CDRQ-Routing, which lead to faster adap­
tation and better routing policies learned as 
compared to Q-Routing, the state-of-the-art 
adaptive Bellman-Ford Routing, and the non-
adaptive shortest path routing. Experiments 
over several network topologies have shown 
that at different loads, CDRQ-Routing learns 
superior policies significantly faster than Q-
Routing. Moreover, CDRQ-Routing learns 
policies that sustain higher load levels than Q-
Routing. Analysis shows that overhead due to 
exploration is insignificant as eqmpared to the 
improvements in CDRQ-Routing. 

1 I n t r oduc t i on 
In a communication network information is transferred 
from one node to another as data packets [Tanenbaum, 
1989]. The process of sending a packet P(s , d) from its 
source node s to its destination node d is referred to 
as packet routing [Bellman, 1958]. Normally this packet 
takes multiple "hops" and on its way, spends some time 
waiting in the queues of intermediate nodes, while they 
are busy processing the packets that came earlier. Thus 
the delivery time of the packet, defined as the time it 
takes for the packet to reach its destination, depends 
mainly on the tota l time it has to spend in the queues 
of the intermediate nodes. Normally, there are multiple 
routes that a packet could take, which means that the 
choice of the route is crucial to the delivery t ime of the 
packet for any (s,d) pair. If there was a global observer 
wi th current information about the queues of all nodes 
in the network, it would be possible to make optimal 
routing decisions: always send the packet through the 
route that has the shortest delivery t ime at the moment. 

In the real world, such complete, global information is 
not available, and the performance of the global observer 
is an upper bound on actual performance. Instead, the 
task of making routing decisions has to be shared by all 
the nodes, each using only local information. Thus, a 
routing policy is a collection of local decisions at the in­
dividual nodes. When a node x receives a packet P(s, d) 
originating at node s and destined for node d, it has 
to choose one of its neighboring nodes y such that the 
packet reaches its destination as quickly as possible. 

The simplest policy is the shortest-path algorithm, 
which always routes packets through the path wi th the 
minimum number of hops. This policy is not always good 
because some intermediate nodes, falling in a popular 
route, might have large queues. In such cases it would 
be better to send the packet through another route that 
may be longer in terms of hops but results in shorter de­
livery time. Hence as the traffic builds up at some popu­
lar routes, alternative routes must be chosen to keep the 
average packet delivery t ime low. This is the key moti­
vation for adaptive packet routing strategies that learn 
alternate routes through exploration as the current rout­
ing policy begins to lead to degraded performance. 

Learning effective routing policies is a challenging task 
for several reasons [Kumar, 1998]. (i) The goal is to op­
timize a global metric, the average packet delivery time 
of all packets, using local information, (ii) There is no 
''training signal" available for directly evaluating a rout­
ing policy unt i l the packets have reached their destina­
t ion. (iii) When a packet reaches its destination, such a 
training signal could be generated, but to make it avail­
able to the nodes responsible for routing the packet, the 
training signal would have to travel to all these nodes, 
consuming a lot of network resources, (iv) Finally, it 
is not known which particular decision in the sequence 
of routing decisions deserves credit for the performance, 
and how much (the credit assignment problem). Thus, 
a way of efficiently exploring the network environment 
and continually updating the decision makers based on 
the local information is necessary in order to learn good 
routing policies. 

Bellman-Ford Routing [Bellman, 1957] (BF) is by far 
the mast widely used distance vector adaptive routing 
algorithm. In BF , each node has two tables which con-
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tain, for each possible destination, (1) a cost (cost ta-
ble) or minimum delivery time for sending a packet to 
that destination and (2) the node's neighbor {routing 
table) to which the packet should be forwarded to reach 
the destination for the corresponding cost. Neighbor­
ing nodes exchange their cost tables frequently for adap­
tation. The drawback being an enormous overhead of 
exploration (exchange of routing information between 
nodes) and a slow rate of learning. Q-Routing [Boyan 
and Li t tman, 1994; L i t tman and Boyan, 1993] uses the 
Q-learning framework [Watkins and Dayan, 1989] for 
this task. Each node makes i ts routing decisions based 
on the local routing information, which is a table of Q-
values that estimate the quality of the alternative routes. 
These values are updated each time the node sends a 
packet to one of its neighbors. This way, as the node 
routes packets, its Q-values gradually incorporate more 
global information. Such exploration has been shown ca­
pable erf adapting to load changes and to perform better 
than the non-adaptive shortest-path routing with high 
loads. 

This paper presents a new adaptive routing algorithm 
called Confidence-based Dual Reinforcement Q-Routing 
(CDRQ-Routing; [Kumar, 1998]) that improves both the 
quality and quantity of exploration of Q-Routing. The 
quality of exploration is improved by associating confi­
dence values (between 0 - 1 ) wi th each of the Q-values in 
the network. These values represent how reliably the cor­
responding Q values represent the state of the network. 
The amount of adaptation for a Q-value, in other words 
the learning rate, depends on the confidence values of the 
new and the old Q-values (whereas in Q-Routing a fixed 
learning rate is used for all updates). This component 
of CDRQ-Routing is called Confidence based-Q-Routing 
(CQ-Routing; [Kumar and Miikkulainen, 1998]). The 
quality of exploration is increased by including backward 
exploration (whereas in Q-Routing only forward explo­
ration is used). As a result, w i th each packet hop, two Q-
value updates take place, one due to forward exploration 
and the other due to backward exploration. This com­
ponent of CDRQ-Routing is called the Dual Reinforce­
ment Q-Routing (DRQ-Routing; [Kumar and Mi ikku­
lainen, 1997]). Essentially, DRQ-Routing combines Q-
routing wi th dual reinforcement learning, which was first 
developed for a satellite communication problem, where 
the two ends of the communication system co-adapt us­
ing the reinforcement signal for the other end [Goetz et 
al., 1996]. CDRQ-Routing balances the complementary 
and independent improvements due to both these com­
ponents into one algorithm. The Q-Routing algorithm 
is described in section 2, followed by the CDRQ-Routing 
in section 3. The performance of the two algorithms are 
evaluated experimentally in section 4 and compared to 
the standard shortest-path algorithm. The amount of 
overhead generated by these algorithms is analyzed in 
section 5, and a number of directions for future research 
outlined. 

2 Q-Routing 
In Q-routing, the routing decision maker at each node 
x makes use of a table of values , where each 
value is an estimate, of how long it takes for a packet to 
be delivered to node d, if sent via neighbor y, excluding 
time spent in node x's queue. When the node has to 
make a routing decision it simply chooses the neighbor y 
for which is minimum. Learning takes place by 
updating the Q values. On sending P(s,d) to y, x im­
mediately gets back y's estimate for the time remaining 
in the t r ip, , where N(n) 
denotes the set of neighbors of node n. Node x can revise 
Q x(y,d) based on this feedback and the queue length qy 
of y, using a learning rate nf; 

(1) 
In other words, the information about the remaining 
path is used to update the Q value of the sending node. 
Such exploration can be termed forward exploration (fig­
ure 1). 

3 Confidence-based Dual 
Reinforcement Q-Routing 

Both the quantity and quality of Q-Routing are im­
proved in CDRQ-Routing using two components, CQ-
Routing and the DRQ-Routing, respectively. 

3.1 C Q - R o u t i n g 
When a Q-value is not updated for a long time, its re­
liability in representing the true state of the network 
goes down. In Q-Routing there is no way of quantifying 
the reliability of a Q-value. Moreover, in equation (1) 
the learning rate is constant for all updates, although it 
should depend on how reliable the updated 
and estimated Q-values are. These issues are 
addressed in CQ-Routing. In CQ-Routing, the accu­
racy, or reliability, of each Q-value is quantified 
by an associated confidence value (C-value), 
[0,1]. close to 1 indicates that Qa:(y,d) repre-
sents the network state accurately, while dose 
to 0 indicates that is almost random. The base 
case C-values corresponding to the base case Q-value, 
Q*(y,y) = S, are C. (y ,y ) = 1, Vy € N(x) and V* € V, 
the set of all nodes in the network. The C-values corre­
sponding to all the other Q-values, which are initialized 
randomly, are initially set to 0. 

In CQ-Routing, the learning rate depends on the C-
values of the Q-values that are part of the update. More 
specifically, when node x sends a packet P(s, d) to its 
neighbor y, it gets back not only the best estimate 
of node y for the remaining part of P(s,d)'s journey, 
namely , but also the confidence value associated 
with this Q value, namely, Now when node x 
updates its Q s (y ,d) value, it first computes the learning 
rate . . . . which depends on both 
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The C-values are themselves updated such that (1) If a 
Q-value is not updated in the last t ime step, then its 
C-value decays wi th a decay constant l and (2) 
if a Q-value is updated in the last t ime step, then its 
C-value is updated based on 

(3) 
3.2 D R Q - R o u t i n g 
Exploration of Q-values is done locally between neigh­
boring nodes during a packet hop to avoid excessive 
exploration overhead. In Q-Routing, only one Q-value 

is updated when a packet P(s,d) hops from 
x to y (forward exploration), however, one more Q-
value " ~ ' can also be updated in the same hop. 
This idea of using information about the traversed path 
for exploration in the reverse direction is called back-
ward exploration [Kumar, 1998] (figure 1) and is derived 
from Dual Reinforcement Learning, which was first de­
veloped for adaptive signal predistorters in satellite com­
munications [Goetz et al., 1996]. DRQ-Routing incor­
porates backward exploration into the Q-Routing algo­
rithm. When node x sends a packet P($, d) to its neigh­
bor y, the packet can take along Q-value information of 
node x, which can be used by y for updating its own es­
timate pertaining to x. Later when node y has to make 
a decision, it has the updated Q-value for x. The only 
exploration overhead is a slight increase in the size of 
the packets. More specifically, P(s, d), currently at node 
x, carries to node y the estimated time it takes for a 
packet destined for node s from node xf that is 

W i t h this information, node y 
can update its estimate , of sending a packet to 
node s via its neighbor x, using the queue length qx of 
node x and a learning rate nb: 

(4) 
In other words, the information about the path the 

packet has traversed so far is used to update the Q value 
of the receiving node. This way the packet is used to 
carry routing information from one node to the next as 
it moves from source to destination. In DRQ-Routing, 
both forward exploration and backward exploration are 
used to update two Q-values in each hop. Figure 1 illus-
trates these two updates as the packet P(s, d) hops from 
node x to its neighbor y. 

3.3 C D R Q - R o u t i n g 
CDRQ-Routing combines both the CQ-Routing and 
DRQ-Routing components. At each hop of packet 

4 Exper iments 
The experiments described in this paper are based on 
a simulated communication network. Packets destined 
for random nodes are introduced into this network at 
random nodes. The number of packets introduced per 
unit simulation t ime step (pkt/sim-time) is called the 
network load. Mult iple packets at a node are stored 
in its unbounded F IFO queue. In one time step, each 
node removes the packet in front of its queue, exam­
ines the destination of this packet and uses its routing 
decision maker to send the packet to one of its neigh­
boring nodes. The delivery time of a packet is defined 
as the time between its introduction at the source node 
and its removal at the destination node. Delivery time 
is measured in terms of simulation time steps. Aver­
age packet delivery t ime, computed at regular intervals 
(50 time steps in the current experiments), is the aver­
age of all the packets arriving at their destinations dur­
ing the last interval. This measure is used to monitor 
the network performance while learning is taking place. 
Average packet delivery t ime after learning has settled 
measures the quality of the final routing policy. 

The performance of CDRQ-Routing was tested 
against Q-Routing, Bellman-Ford routing and non-
adaptive shortest-path routing, on a number of network 
topologies including 128 node 7D-hypercube, 116-node 
LATA telephone network, and an irregular 6 x 6 grid 
(due to [Boyan and L i t tman, 1994; L i t tman and Boyan, 
1993] and shown in figure 2). The results were similar 
in all cases; the discussion below focuses on the last one 
since it best illustrates adaptation. In this network there 
are two ways of routing packets between the left cluster 
(nodes 1 through 18) and the right cluster (nodes 25 
through 36): the route including nodes 12 and 25 {R\) 
and the route including nodes 18 and 19 (Rz). 

The shortest-path routing algorithm, which chooses 
the route w i th minimum hops, routes most of the traffic 
between the left cluster and the right cluster via route 
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Figure 2: The 6 x 6 Irregular Grid. 

R1 For low loads (e.g. 1.25 pkt/sim-time), this rout­
ing policy works fine and throughout the simulation, the 
average packet delivery time is low (figure 3). Bellman-
Ford shows a small learning period after which it also 
converges to close-to-optimal routing policy by around 
400 sim-time. At medium loads (such as 2.25 pkt/sim-
time), the shortest-path strategy breaks down as nodes 
12 and 25 become flooded wi th packets. The average de­
livery time increases linearly wi th simulation time (fig­
ure 4). Bellman-Ford learns a stable but inferior rout­
ing policy at medium load. At high loads (such as 3.0 
pkt/sim-time) the flooding of node 12 and 25 takes place 
at an even faster rate. Bellman-Ford breaks down at 
high loads and shows similar trends as shown by short­
est path at low loads. Thus Bellman-Ford is good only at 
low loads but its performance degrades as load increases. 

The main result, however, is the comparison between 
Q-Routing and CDRQ-Routing. To demonstrate the 
independent and complimentary contributions of the 
components of CDRQ-Routing, the performance of CQ-
Routing and DRQ-Routing are also shown. The Q-tables 
in Q-Routing and CDRQ-Routing at all nodes were ini­
tialized to low random values. In Q-Routing and DRQ-
Routing, the learning rate for forward exploration, n f, 
was set at 0.85, while that of backward exploration in 
DRQ-Routing, nb was set at 0.95. In CQ-Routing and 
CDRQ-routing, the learning rates are computed using 
the confidence values of equation (2). The decay con­
stants A in CQ-Routing and CDRQ-Routing were set at 
0.95 and 0.90 respectively. These learning rates and de­
cay constants were found experimentally to give the best 
performance. 

The results shown in figures 2,3 and 4 for low, medium 
and high loads, are averages of 50 test runs, each time 
with different random start. Statistical significance was 
computed using standard t-test [Press et a/., 1995] at 
99% confidence. During the first few hundred time steps 
the average packet delivery times are small because the 
packets destined for distant nodes have not yet reached 
their destinations, and statistics are available only for 

Figure 3: Learning at low load 

Figure 4: Learning at medium load 

packets destined for nearby nodes (with small delivery 
times). As distant packets start arriving, the average 
packet delivery time increases, while learning is stil l in 
progress. Eventually the learning converges, and each of 
the curves settles down indicating a stable routing policy. 

At low loads, CDRQ-Routing learns an effective rout­
ing policy almost three times faster than Q-Routing 
(figure 3). CQ-Routing is only slightly better than Q-
Routing while DRQ-Routing is significantly better. This 
is because at low loads the number of packets in the net­
work and consequently the number of Q-value updates 
is low. Hence increasing the amount of exploration per 
packet hop has a significant effect on the speed of learn­
ing. At medium loads, CDRQ-Routing learns a more ef­
fective policy nearly twice as fast as Q-Routing (figure 4). 
CQ-Routing and DRQ-Routing, are both significantly 
better than Q-Routing throughout the learning phase 
(200 through 2000 time steps). CDRQ-Routing is better 
than CQ-Routing and DRQ-Routing, which shows that 
both components of CDRQ-Routing contribute indepen* 
dently and in complementary ways to CDRQ-Routing. 
At high load levels, CDRQ-Routing converges to a rout-

KUMAR AND MIIKKULAINEN 761 



ing policy which is more than twice as good, in terms 
of average packet delivery t ime, as the policy to which 
Q-Routing converges (figure 5). Again, CDRQ-Routing 
learns faster than both its components. 

The results are summarized in figure 6, which shows 
the average packet delivery times at different load lev­
els after the learning has converged. This measures the 
quality of the final policy in terms of how much load 
it can sustain. The plots are averages over 10 simula­
tions. The performance of the "global" routing policy 
wi th complete information about all nodes (section 1) 
is also shown as a benchmark. Shortest path routing 
breaks down as load increases beyond 1.5 pkts/sim-time 
due to excessive traffic buildup along R1. Bellman-Ford 
can sustain a l i t t le higher load levels but breaks down 
at around 2 pkt/shn-t ime. CDRQ-Routing learns sig­
nificantly better policies than Q-Routing at all loads. 
Moreover, the performance of CDRQ-Routing is close to 
the global routing unt i l 2.25pkts/sim-time and it can sus­
tain load levels up to 3.0 pkt/sim-t ime while Q-Routing 
breaks down after 2.25 pkt/sim-t ime. 

5 Discussion and Future Work 

Exploration makes it possible for a routing algorithm 
to adapt. In this paper, Q-Routing was compared wi th 
CDRQ-Routing, which uses both forward and backward 
exploration, together w i th confidence values for explo­
ration. CDRQ-Routing has more exploration per packet 
hop and the quality of exploration is also higher. As a re­
sult, CDRQ-Routing learns better routing policies than 
Q-Routing significantly faster. Moreover, compared wi th 
Bellman-Ford routing, CDRQ-Routing is much superior 
in terms of speed of convergence, quality of the routing 
policy learned, load level sustenance and amount of ex­
ploration overhead, making them more practical for use 
in communication networks. 

Exploration adds overhead into the routing algorithm. 
It is important to analyze the tradeoff between the im­
provements and the overhead incurred. In Bellman-Ford, 
exploration overhead comprises of frequent exchanges of 
cost tables (which are as large as the number of nodes in 
the network) between every pair of neighboring nodes. 
This leads to prohibitive overhead and is a serious draw­
back for Bellman-Ford. The Q-Routing and CDRQ-
Routing, on the other hand do not suffer from this draw­
back. In forward exploration, when a node y receives a 
packet from node x, it sends back an estimate and a 
confidence value to node x. The estimate does not enter 
node x's queue, but instead node x waits for the estimate 
and processes it before the next packet in its queue. The 
transmission of this estimate over the l ink takes 
time, where p is the size of the data packet (that takes 
S units of transmission time) and e is the size of the es­
timate packet containing a Q-value and a C-value. The 
percentage overhead due to forward exploration is e /p 
(since the transmission time is proportional to packet 
size). In backward exploration, an additional Q value 
and its C-value are appended to the packet, increasing 
the packet size to (p+e) . The transmission time of the 
larger packet is . Again the percentage over­
head due to backward exploration is only e /p . The total 
overhead due to both forward and backward exploration 
is therefore, 2e /p . Since estimate packet contains only 
a Q-value and a C-value, this overhead is less than 2%, 
while the adaptability they establish improves the per­
formance of the routing algorithm multi-fold. 

Unbounded FIFO queues were used in the current 
simulations for simplicity. In the real world, the queue 
buffers of the network routers are finite, leading to pos­
sible congestion in heavily loaded parts of the networks. 
Extension of the CDRQ-Routing to address the problem 
of finite buffer networks is an important future direction. 
This extension would make CDRQ-Routing a more real­
istic routing strategy that does not only route optimally, 
but can also sustain higher loads in finite buffer networks 
to avoid congestion. Also the processing speeds and l ink 
delays 8 are assumed in this paper. While this assump-
t ion is realistic for a small scale L A N , it is not valid for 
a heterogeneous communication network like the Inter­
net. Abi l i ty of CDRQ-Routing to learn effective routing 
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policies on such networks is another direction of future 

6 Conclusion 
In this paper a new adaptive network routing algorithm, 
CDRQ-Routing, was presented. It combines Q-Routing 
and Dual Reinforcement learning to get increased explo­
rative capabilities, and introduces a confidence measure 
to quantify the reliability of Q-values. CDRQ-Routing is 
superior to Q-Routing and Bellman-Ford Routing both 
in terms of quality and quantity of exploration as shown 
by simulation results. CDRQ-Routing learns a better 
routing policy more than twice a fast as Q-Routing at 
various load levels. At high loads, the CDRQ-Routing 
policy performs more than twice as well as Q-Routing 
policy in terms of average packet delivery time, while 
Bellman-Ford routing breaks down at high loads. More­
over, CDRQ-Routing can sustain higher load levels than 
shortest-path routing, Bellman-Ford Routing and Q-
Routing. The additional overhead of adding backward 
exploration and C-values is less than 0.2%, which makes 
CDRQ-Routing an efficient and practically viable adap­
tive network routing algorithm specially as compared to 
the Bellman-Ford Routing. 
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