
Towards Efficient Metaquerying
Rachel Ben-Eliyahu - Zohary

Communication Systems Engineering
Ben-Gurian University of the Negev

Beer-Sheva
Israel

rachel@bgumail.bgu.ac.il

Ehud Gudes
Mathematics and Computer Science
Ben-Gurion University of the Negev

Beer-Sheva
Israel

ehud@cs.bgu.acM

Abstract
Metaquery (also known as metapattem) is a
datamining tool useful for learning rules in­
volving more than one relation in the database.
A metaquery is a template, or a second-order
proposition in a language L, that describes the
type of pattern to be discovered. This tool
has already been successfully applied to several
real-world applications.
In this paper we advance the state of the art
in metaqueries research in several ways. First,
we analyze the related computational problem
and classify it as NP-hard, with a tractable sub­
set that is quite immediately evident. Second,
we argue that the notion of support for meta-
queries, where support is intuitively some indi­
cation to the relevance of the rules to be dis-
covered, is not adequately defined in the liter­
ature, and propose our own definition. Third,
we propose some efficient algorithms for com­
puting support and present preliminary experi­
mental results that indicate that our algorithms
are indeed quite useful.

1 In t roduct ion
With the tremendous growth in information around us,
datamining is emerging as a vital research area among
the AI and Databases communities [Fayyad et a/., 1996].
Metaquerying [Shen, 1992; Wei-Min Shen and Zaniolo,
1996] is a very promising approach for datamining in re-
lational or deductive databases. Metaqueries serve as a
generic description of the class of patterns to be discov­
ered and help guide the process of data analysis and pat-
tern generation. Unlike many other discovery systems,
patterns discovered using metaqueries can link informa­
tion from many tables in databases. These patterns are
all relational, while most machine-learning systems can
only learn prepositional patterns.

Metaqueries can be specified by human experts or al­
ternatively, they can be automatically generated from
the database schema. Either way, they serve as a very
important interface between human ''discoverers,, and
the discovery system.

Figure 1: The relations student-course, course-
department, and student-department

A metaquery R has the form

(1)
where T and are literal schemas. Each literal schema

has the form where all non-predicate
variables are implicitly universally quantified. The
expression is called a relation pattern.
The right-hand-side is called the body of the
metaquery, and T is called the head of the metaquery.
The predicate variable can be instantiated only to a
predicate symbol of the specified arity The instan­
tiation must be done in a way which is consistent wi th
the variable names.

For example, suppose that you have a database having
the relations depicted in Figure 1. Let P,Q, and R be
variables for predicates, then the metaquery

(2)
specifies that the patterns to be discovered are transitiv­
ity relations

where p,g, and r are specific predicates. One possible
result of this metaquery on the database in Figure 1 is
the pattern

(3)
which means intuitively that if a student takes a course
from a certain department then he must be a student of
that department.

800 MACHINE LEARNING

mailto:rachel@bgumail.bgu.ac.il
mailto:ehud@cs.bgu.acM

Figure 2: The new relations student-course and student-
department

1.1 T h e n o t i o n o f support a n d confidence f o r
m e t a q u e r i e s

Suppose that we are given the metaquery (2) again,
but instead of the relations shown in Figure 1, we have
the relations shown in Figure 2 (the relation course-
department is the same as in Figure 1).

The rule (3) doesn't hold in all cases anymore. But
we can say that it holds in 75% of the cases, or in other
words, that it has confidence 0.75.

Let us now consider another set of relations from an
employee database of an Israeli high-tech company hav­
ing 1000 employees. The company is located in Beer-
Sheva, and all the employees except Ana live in Beer-
Sheva. Ana lives in Kibutz Shoval near by. None of the
employees, except Guy, where born in the area. Guy was
born in Kibutz Shoval and Ana is the boss of Guy.

Now suppose that we pose the following metaquery:

(4)

with confidence 1.0. So we are going to learn the rule
that if an employee was born in some place and a sec­
ond employee lives in that same place, then the first
employee must be the boss of the second. This rule is
useless because it is based on a very weak evidence two
people out of the 1000 who work in this company. Rules
in which the rule body is satisfied by only a very low
fraction of the relations involved should be avoided, or
in other words, we would like rules with high support.

Hence, each answer to a metaquery is a rule accom­
panied by two numbers: the support and the confidence.
The threshold for the support and confidence is provided
by the user. Intuitively, the support indicates how fre­
quently the body of the rule is satisfied, and the confi­
dence indicates what fraction of the tuples which satisfy
the body also satisfy the head. Similar to the case of
association rules, the notions of support and confidence
have two purposes: to avoid presenting negligible infor­
mation to the user and to cut off the search space by
early detection of low support and confidence.

Formally, given a rule

(6)

let J denote the relation which is the equijoin of

and let Jt be the relation which is the eqinjoin1

of J and t. Where y and x are some relations, let be
the projection of y over the fields which are common to y
and x, and let be the number of tuples in x. For each
i, i = l...m define to be the fraction . The sup- .
port of the rule (6) is the maximum over t = l . . .m.
Less formally, the support is the maximum fraction of
any relation in J. The confidence of (6) is the fraction
of t that appears in J, or, formally, the confidence of (6)
is

The support that we have defined has the following
useful property:
C la im 1.1 For any two relations and in the rule
(6) that have at least one common attribute variable,
is not bigger the the fraction of that participates in the
equijoin between and
This property enables us to get an upper bound on the
support of the rule (6) by performing pairwise equijoins
instead of equijoin of all the relations in the body of the
rule.

Shen et al. [Wei-Min Shen and Zaniolo, 1996] are to
best of our knowledge the first who have presented a
framework that uses metaqueries to integrate inductive
learning methods with deductive database technologies.
The confidence measure that we use is similar to the one
used by Shen et al. . However, we do not agree with
their definition of support, and hence developed our own.
According to Shen and Leng [Shen and Leng, 1996], the
support (called "base by Shen and Leng) should be the
fraction . We believe that our definition of sup­
port reflects better its intuitive meaning. Consider again
the students database of Figure 1, and suppose that
there are 100,000 tuples in the relation student-course
and 1000 tuples in the relation course-department. Ac­
cording to Shen and Leng, the support for the rule (3)
wil l be The support wi l l shrink even more
as the number of courses grow, no matter how many
students are in the relation student-course. This low
support wil l render the rule (3) uninteresting, although
this rule involves all the tuples in the relation student-
course. Note that according to our definition, the sup­
port for this rule is 1.0, because there is one relation,
student-course which participate in the equijoin of the
body of The rule in ful l capacity.

2 C o m p l e x i t y
How hard is answering a metaquery? In this section we
wil l show that the computation task is NP-Hard. First,
let us rephrase the problem as a decision problem.
De f in i t i on 2.1 (The MQ Prob lem)
Instance: A database VB and a metaquery MQ of the

form(l).
1The equijoins are accomplished by enforcing values of

attributes that are bound to the same variable name in the
metaquery to be equivalent.

BEN-EUYAHU-ZOHARY AND GUMS 801

(5)

T h e o r e m 2.2 The MQ problem is NP-Hard.

Proo f : We wi l l show a reduction from HAMILTO­
N IAN PATH (HP) to the MQ problem. We remind the
reader that the HP problem is as follows [Garey and
Johnson, 1979]: given a directed Graph (V, E), deter­
mine whether there is a path in the graph by which each
vertex is visited exactly once. So suppose we are given a
graph G = (V, E). We wi l l construct a database VB and
a metaquery MQ as follows. VB w i l l have two relations:
Rv and RE- RV contains exactly one tuple, which is the
list of all vertices in V, and is the set of all edges in
E, that is:

and

MQ w i l l be the following metaquery:

We claim that the answer to the MQ problem composed
of the above VB and MQ w i l l be "YES* iff there is
a Hamiltonian path in G. And indeed, if
there is a Hamiltonian path in G, then the rule

Holds w i th support > 0 and confidence > 0, and so the
answer to the given MQ problem wi l l be "YES". On the
other hand, if the answer to this MQ problem is YES,
then, since we require that the support and confidence
be positive, and since Rv has only one tuple and RE is
the only binary relation, it must be the case that there
is a Hamiltonian path in G. ■

It is worthwhile to mention a tractable subset. If the
database scheme is fixed in advance, and we do not al­
low a predicate variable to appear more than once in a
query, then the number and maximum size of al l possi-
ble different metaqueries is a constant. In this case every
metaquery has a constant number of instantiations and
hence can be answered by a jo in of a constant number
of relations.

The reader might wonder whether the complexity
analysis done on inductive logic programs (e.g. [Dze-
roski et al, 1992]) is relevant here. The answer is no.
In inductive logic programming the goal is to construct
a program that w i l l generate a given goal relation out
of other relations and positive and negative examples.
Here, we are interested in finding to what extent some
rule on given relations and goal relation holds. We don't
have to find a rule that accurately generates the goal
relation, said we do not have negative examples.

Figure 3 : A l g o t i t h m f o r t h e i n s t a n t i a t i o n stage

3 Eff icient A lgo r i t hms for Metaquer ies
In this section we discuss the algorithms for generating
all rules resulting from a given metaquery.

The process of answering a metaquery can be divided
into two stages. In the first stage, which we call the in-
stantiation stage, we are looking for sets of relations that
match the pattern determined by the metaquery. In the
second stage, which we call the filtration stage, we filter
out all rules that match the pattern of the metaquery
but do not have enough support and confidence.

3 . 1 T h e i n s t a n t i a t i o n s t a g e
The process of instantiating a metaquery is similar
to solving a Constraint Satisfaction problem (CSP)
[Dechter, 1992] where we sure basically looking for all
solutions of the CSP problem. In our experiments we
used a very simple CSP algorithm (forward checking
wi th Back-jumping [Dechter, 1990]) but other more ad­
vanced algorithms may be used.

The basic instantiation algorithm is shown in Figure 3.
If this stage suceeds, at the end of this stage each relation
pattern R(X1,...,Xn) that appear in the metaquery is
instantiated. That is, R is bound to some relation name
r and each variable is bound to an attr ibute ("field")
of the relation. We assume that a procedure att(r, X)
can return the attribute in r to which the variable X is
bound.

3.2 T h e f i l t r a t i o n s t a g e
The filtration stage itself is composed of two steps: fil­
tering out rules wi th low support, and filtering out rules

802 MACHINE LEARNING

Figure 4: c o m p u t i n g s u p p o r t f o r a r u l e b o d y

wi th low confidence. We compute confidence only for
rules w i th sufficient support. In our research we have
focused so far on algorithms for computing support. We
wi l l discuss three alternatives:

T h e J o i n approach the straightforward way: com-
puting the equijoin of the body of the rule, then
computing ' as defined in section 1.1) for each
relation in the body, and then taking the maximum.

T h e h i s t o g r a m approach Using histograms for esti­
mating support. Computing the support using the
Join approach only for rules wi th high estimated
support.

T h e h i s t o g r a m + m e m o r y approach same as the
histogram approach, except that we store interme­
diate results in memory, and reuse them when we
are called to make the same computation.

The procedure computes the
support of each relation by performing the Join as
explained in section 1.1. and then returns

. Since the Join is an expensive operation, we
t ry to detect rules wi th low support using some low-
cost procedures. The other two approaches compute an
upper bound on the support and then compute the exact
support only for rules wi th high enough upper bound of
support. The idea is summarized in Algori thm compute-
support in Figure 4. Note that once one relation wi th
high is found, we turn to compute the exact support
using Join.

The procedure -upbound called by the algorithm
compute-support returns an upper bound for the value

for a single relation in the body of the rule. This can
be done by one of the two procedure: -upbound-brave
or .-upbound-cautious, shown in Figures 5 and 6, re-
spectively. The basic idea is that an upper bound can be
achieved by taking the jo in of a relation ri wi th any other

Figure 5: c o m p u t i n g S i b rave ly

Figure 6: c o m p u t i n g S i cau t ious ly

relation wi th which has a variables in common. Pro-
cedure -upbound-brave does this by picking one arbi­
trary relation wi th which has a common variable, and
procedure -upbound-cautious does this by considering
all relations wi th which has variables in common, and
taking the minimum. Procedure -upbound-cautious
works harder than procedure -upbound-brave but it
achieves a tighter upper bound and hence can save more
Join computations.

The proce-
dure upbound called by procedure -upbound-cautious
or procedure -upbound-brave founds an upper bound
on (as in Section 1.1) for a given relation using
one of two approaches: the histogram approach or the
histogram+memory approach.

The histograms approach exploits the fact that his­
tograms are easy to construct and are quite useful for
support estimation. A histogram of an attribute of some
relation is a mapping h between the set of values that
this attribute can take and the set of natural numbers,
such that for each possible value v, h(v) is the number
of tuples in the relation in which v appears as the value
of the attribute. Given two relations and proce-
dure upbound-histo shown in Figure 7 achieves an upper
bound on the support of the equijoin between them. Pro­
cedure upbound-histo prepares the histograms and then
calls the procedure Histo which actually computes the

BEN-ELIYAHU-ZOHARY AND GUDES 803

Figure 7: Computing support from histograms

support.
According to Claim 1.1 of Section 1.1, the number

returned by Histo is also an upper bound on the support
of the rule in which only and appear in the body
wi th a common variable X.

The problem wi th the procedure upbound-histo is that
it doesn't exploit the fact that pairs of instantiated re-
lations can appear again and again in many different
instantiations of the same metaquery. In the procedure
upbound-histo-mem, shown in Figure 9, we save in mem­
ory estimated support of pairs of relations and retrieve
this information if necessary.

3.3 Eva luat ion
The efficiency of algorithm compute-support depends on
the likelihood of finding a rule wi th high support. If
a large fraction of the rules has a high support, then
this algorithm wi l l work harder then the straightforward
algorithm which computes support by performing Join
without trying to estimate the result before. Note that
for rules wi th high support algorithm compute-support
works harder than the algorithm which performs a Join

Figure 9: Computing support from histograms and memory

directly because first it estimates the support, finds out
that it is high, and then calls the Join procedure.

Our working assumption is that rules wi th high sup-
port are much less likely. In any case, however, the above
analysis calls for an experimental evaluation of the algo-
rithms. In this subsection we present some preliminary
results on such experiments. The evaluation was done on
the Studentgrades database supported by the FlexiMine
system [Domshlak et a/., 1998]. This database contains
information on students and some of their demographic
characteristics, courses, and grades. The relevant ta­
bles for our experiment are: The student table wi th 997
rows, The course table wi th 1403 rows, The family table
wi th 997 rows, The studentcourse table w i th 20705 rows.
Each table contains between 5 and 9 attributes.

We have compared the performance of our algorithms
by measuring the t ime it took them to compute support
of 20 different rules involving four relations each. A l l
the rules were instances of the same metaquery. The
experiments were done on a Sun / SunOS workstation
wi th one spare CPU and 128 MB main memory.

The t ime (in seconds) for the support computation
were measured for the following configurations:

1. the support is computed by performing the jo in
(procedure Join-support),

2. the support is computed by histogram without using
memory (procedure upbound-histo in Figure 7).

3. the support is computed by our histogram using
memory (procedure upbound-histo-mem in Figure
9)-

A l l the above methods were tested using the procedure
5,-upbound-brave. Procedure -upbound-cautious was
not tested yet.

804 MACHINE LEARNING

conf- the confi- References

Figure 10: Comparison of support computations

Table 10 shows the results obtained when the support
threshold was set to 0.5. The columns is as follows:

n u m - the serial number of the rule,
dence of the rule.

S jo in - the support computed by the definition, i.e first
performing the jo in and then computing the support

Sh is to - the estimated support computed by our Histo
method (Figure 8).

j o i n - the t ime to compute the support by the Join
method, accumulated.

h i s to - the t ime to compute the support by the his-
togram method, accumulated, including t ime for
computing the histograms.

m e m - the t ime to compute the support by the His-
togram method wi th memory, accumulated.

It can be seen that the Histogram method achieves about
50% savings in t ime, while the memory method has even
improved on that.

Figure 11 shows the behavior of all three methods wi th
a varying support threshold (0 — 0.5). Line 1 is the t ime
for the Join method, Line 2 - for the histogram method,
and Line 3 for the histogram+memory method. In that
figure the t ime for the Join method is normalized to 1,
while the other t ime lines are relative to this t ime (e.g.
the value 0.8 for the histogram method means that for
that value of support, the histogram method time was
0.8 of the Join method). It can be seen that the larger
is the support threshold, the better the methods which
estimate first perform. This is because the highest the
threshold is, the more rules do not pass it and can be
cut by using support estimates.

4 Conclusion
This paper contributes to the research on metaqueries in
several ways. We analyze the complexity of the related
computational problem, we propose a new notion of sup­
port for a rule generated according to a pattern, and
we present novel and efficient algorithms for computing

support. Although more experimental work is needed
for real evaluation of the algorithms we have developed,
preliminary experimental evaluation is quite promising.

[Dechter, 1990] Rina Dechter. Enhancement schemes for
constraint processing: Backjnmping, learning, and cutset
decomposition. 41:273-312, 1990.

[Dechter, 1992] Rina Dechter. Constraint networks. In Stu-
art C. Shapiro, editor, Encyclopedia of Artificial Intelli­
gence, pages 276-285. John Wiley, 2nd edition, 1992.

[Domshlak et of., 1998]
C. Domshlak, D. Gershkovich, E. Gndes, N. Liusternik,
A. Meiseb, T. Rosen, and S. E. Shimony. FlexiMine - A
Flexible Platform for KDD Research and Application Con­
struction. Technical Report version FC-98-04, Ben-Gurion
University, 1998. KDD-98, Fourth International Confer­
ence on Knowledge Discovery in Databases.

[Dzeroslri et al., 1992] S. Dzeroslri, S. Muggleton, and
S. Russell. Pac-learnability of determinate logic programs.
In Proceedings of the Fifth ACM Workshop on Computa­
tional Learning Theory, pages 128-135, New York, 1992.

[Fayyad et al. , 1996] U. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Ad­
vances in Knowledge Discovery and Data Mining. AAAI
Press/MIT Press, 1996.

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and intractability, A guide to the the­
ory of NP-completeness. W. H. Freeman and Company,
1979.

[Shen and Leng, 1996] Wei-Min Shen and Bing Leng. A
metapattern-based automated discovery loop for inte­
grated data mining- unsupervised learning of relational
patterns. IEEE Transactions on Knowledge and Data En­
gineering, 8(6):898-910, 1996.

[Shen, 1992] W. M. Shen. Discovering regularities from
knowledge bases. Intelligent Systems, 7(7):623-636, 1992.

[Wei-Min Shen and Zaniolo, 1996] B. Mitbander
Wei-Min Shen, K. Ong and C. Zaniolo. Metaqueries for
Data Mining. In Advances in Knowledge Discovery and
Data Mining, pages 375-397. AAAI /MIT press, 1996.

BEN-ELIYAHU-ZQHARY AND GUOES 805

