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Abstract 
Metaquery (also known as metapattem) is a 
datamining tool useful for learning rules in­
volving more than one relation in the database. 
A metaquery is a template, or a second-order 
proposition in a language L, that describes the 
type of pattern to be discovered. This tool 
has already been successfully applied to several 
real-world applications. 
In this paper we advance the state of the art 
in metaqueries research in several ways. First, 
we analyze the related computational problem 
and classify it as NP-hard, with a tractable sub­
set that is quite immediately evident. Second, 
we argue that the notion of support for meta-
queries, where support is intuitively some indi­
cation to the relevance of the rules to be dis-
covered, is not adequately defined in the liter­
ature, and propose our own definition. Third, 
we propose some efficient algorithms for com­
puting support and present preliminary experi­
mental results that indicate that our algorithms 
are indeed quite useful. 

1 In t roduct ion 
With the tremendous growth in information around us, 
datamining is emerging as a vital research area among 
the AI and Databases communities [Fayyad et a/., 1996]. 
Metaquerying [Shen, 1992; Wei-Min Shen and Zaniolo, 
1996] is a very promising approach for datamining in re-
lational or deductive databases. Metaqueries serve as a 
generic description of the class of patterns to be discov­
ered and help guide the process of data analysis and pat-
tern generation. Unlike many other discovery systems, 
patterns discovered using metaqueries can link informa­
tion from many tables in databases. These patterns are 
all relational, while most machine-learning systems can 
only learn prepositional patterns. 

Metaqueries can be specified by human experts or al­
ternatively, they can be automatically generated from 
the database schema. Either way, they serve as a very 
important interface between human ''discoverers,, and 
the discovery system. 

Figure 1: The relations student-course, course-
department, and student-department 

A metaquery R has the form 

(1) 
where T and are literal schemas. Each literal schema 

has the form where all non-predicate 
variables are implicitly universally quantified. The 
expression is called a relation pattern. 
The right-hand-side is called the body of the 
metaquery, and T is called the head of the metaquery. 
The predicate variable can be instantiated only to a 
predicate symbol of the specified arity The instan­
tiation must be done in a way which is consistent wi th 
the variable names. 

For example, suppose that you have a database having 
the relations depicted in Figure 1. Let P,Q, and R be 
variables for predicates, then the metaquery 

(2) 
specifies that the patterns to be discovered are transitiv­
ity relations 

where p,g, and r are specific predicates. One possible 
result of this metaquery on the database in Figure 1 is 
the pattern 

(3) 
which means intuitively that if a student takes a course 
from a certain department then he must be a student of 
that department. 
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Figure 2: The new relations student-course and student-
department 

1.1 T h e n o t i o n o f support a n d confidence f o r 
m e t a q u e r i e s 

Suppose that we are given the metaquery (2) again, 
but instead of the relations shown in Figure 1, we have 
the relations shown in Figure 2 (the relation course-
department is the same as in Figure 1). 

The rule (3) doesn't hold in all cases anymore. But 
we can say that it holds in 75% of the cases, or in other 
words, that it has confidence 0.75. 

Let us now consider another set of relations from an 
employee database of an Israeli high-tech company hav­
ing 1000 employees. The company is located in Beer-
Sheva, and all the employees except Ana live in Beer-
Sheva. Ana lives in Kibutz Shoval near by. None of the 
employees, except Guy, where born in the area. Guy was 
born in Kibutz Shoval and Ana is the boss of Guy. 

Now suppose that we pose the following metaquery: 

(4) 

with confidence 1.0. So we are going to learn the rule 
that if an employee was born in some place and a sec­
ond employee lives in that same place, then the first 
employee must be the boss of the second. This rule is 
useless because it is based on a very weak evidence two 
people out of the 1000 who work in this company. Rules 
in which the rule body is satisfied by only a very low 
fraction of the relations involved should be avoided, or 
in other words, we would like rules with high support. 

Hence, each answer to a metaquery is a rule accom­
panied by two numbers: the support and the confidence. 
The threshold for the support and confidence is provided 
by the user. Intuitively, the support indicates how fre­
quently the body of the rule is satisfied, and the confi­
dence indicates what fraction of the tuples which satisfy 
the body also satisfy the head. Similar to the case of 
association rules, the notions of support and confidence 
have two purposes: to avoid presenting negligible infor­
mation to the user and to cut off the search space by 
early detection of low support and confidence. 

Formally, given a rule 

(6) 

let J denote the relation which is the equijoin of 

and let Jt be the relation which is the eqinjoin1 

of J and t. Where y and x are some relations, let be 
the projection of y over the fields which are common to y 
and x, and let be the number of tuples in x. For each 
i, i = l...m define to be the fraction . The sup- . 
port of the rule (6) is the maximum over t = l . . .m. 
Less formally, the support is the maximum fraction of 
any relation in J. The confidence of (6) is the fraction 
of t that appears in J, or, formally, the confidence of (6) 
is 

The support that we have defined has the following 
useful property: 
C la im 1.1 For any two relations and in the rule 
(6) that have at least one common attribute variable, 
is not bigger the the fraction of that participates in the 
equijoin between and 
This property enables us to get an upper bound on the 
support of the rule (6) by performing pairwise equijoins 
instead of equijoin of all the relations in the body of the 
rule. 

Shen et al. [Wei-Min Shen and Zaniolo, 1996] are to 
best of our knowledge the first who have presented a 
framework that uses metaqueries to integrate inductive 
learning methods with deductive database technologies. 
The confidence measure that we use is similar to the one 
used by Shen et al. . However, we do not agree with 
their definition of support, and hence developed our own. 
According to Shen and Leng [Shen and Leng, 1996], the 
support (called "base by Shen and Leng) should be the 
fraction . We believe that our definition of sup­
port reflects better its intuitive meaning. Consider again 
the students database of Figure 1, and suppose that 
there are 100,000 tuples in the relation student-course 
and 1000 tuples in the relation course-department. Ac­
cording to Shen and Leng, the support for the rule (3) 
wil l be The support wi l l shrink even more 
as the number of courses grow, no matter how many 
students are in the relation student-course. This low 
support wil l render the rule (3) uninteresting, although 
this rule involves all the tuples in the relation student-
course. Note that according to our definition, the sup­
port for this rule is 1.0, because there is one relation, 
student-course which participate in the equijoin of the 
body of The rule in ful l capacity. 

2 C o m p l e x i t y 
How hard is answering a metaquery? In this section we 
wil l show that the computation task is NP-Hard. First, 
let us rephrase the problem as a decision problem. 
De f in i t i on 2.1 (The MQ Prob lem) 
Instance: A database VB and a metaquery MQ of the 

form(l). 
1The equijoins are accomplished by enforcing values of 

attributes that are bound to the same variable name in the 
metaquery to be equivalent. 
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T h e o r e m 2.2 The MQ problem is NP-Hard. 

Proo f : We wi l l show a reduction from HAMILTO­
N IAN PATH (HP) to the MQ problem. We remind the 
reader that the HP problem is as follows [Garey and 
Johnson, 1979]: given a directed Graph (V, E), deter­
mine whether there is a path in the graph by which each 
vertex is visited exactly once. So suppose we are given a 
graph G = (V, E). We wi l l construct a database VB and 
a metaquery MQ as follows. VB w i l l have two relations: 
Rv and RE- RV contains exactly one tuple, which is the 
list of all vertices in V, and is the set of all edges in 
E, that is: 

and 

MQ w i l l be the following metaquery: 

We claim that the answer to the MQ problem composed 
of the above VB and MQ w i l l be "YES* iff there is 
a Hamiltonian path in G. And indeed, if 
there is a Hamiltonian path in G, then the rule 

Holds w i th support > 0 and confidence > 0, and so the 
answer to the given MQ problem wi l l be "YES". On the 
other hand, if the answer to this MQ problem is YES, 
then, since we require that the support and confidence 
be positive, and since Rv has only one tuple and RE is 
the only binary relation, it must be the case that there 
is a Hamiltonian path in G. ■ 

It is worthwhile to mention a tractable subset. If the 
database scheme is fixed in advance, and we do not al­
low a predicate variable to appear more than once in a 
query, then the number and maximum size of al l possi-
ble different metaqueries is a constant. In this case every 
metaquery has a constant number of instantiations and 
hence can be answered by a jo in of a constant number 
of relations. 

The reader might wonder whether the complexity 
analysis done on inductive logic programs (e.g. [Dze-
roski et al, 1992]) is relevant here. The answer is no. 
In inductive logic programming the goal is to construct 
a program that w i l l generate a given goal relation out 
of other relations and positive and negative examples. 
Here, we are interested in finding to what extent some 
rule on given relations and goal relation holds. We don't 
have to find a rule that accurately generates the goal 
relation, said we do not have negative examples. 

Figure 3 : A l g o t i t h m f o r t h e i n s t a n t i a t i o n stage 

3 Eff icient A lgo r i t hms for Metaquer ies 
In this section we discuss the algorithms for generating 
all rules resulting from a given metaquery. 

The process of answering a metaquery can be divided 
into two stages. In the first stage, which we call the in-
stantiation stage, we are looking for sets of relations that 
match the pattern determined by the metaquery. In the 
second stage, which we call the filtration stage, we filter 
out all rules that match the pattern of the metaquery 
but do not have enough support and confidence. 

3 . 1 T h e i n s t a n t i a t i o n s t a g e 
The process of instantiating a metaquery is similar 
to solving a Constraint Satisfaction problem (CSP) 
[Dechter, 1992] where we sure basically looking for all 
solutions of the CSP problem. In our experiments we 
used a very simple CSP algorithm (forward checking 
wi th Back-jumping [Dechter, 1990]) but other more ad­
vanced algorithms may be used. 

The basic instantiation algorithm is shown in Figure 3. 
If this stage suceeds, at the end of this stage each relation 
pattern R(X1,...,Xn) that appear in the metaquery is 
instantiated. That is, R is bound to some relation name 
r and each variable is bound to an attr ibute ("field") 
of the relation. We assume that a procedure att(r, X) 
can return the attribute in r to which the variable X is 
bound. 

3.2 T h e f i l t r a t i o n s t a g e 
The filtration stage itself is composed of two steps: fil­
tering out rules wi th low support, and filtering out rules 
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Figure 4: c o m p u t i n g s u p p o r t f o r a r u l e b o d y 

wi th low confidence. We compute confidence only for 
rules w i th sufficient support. In our research we have 
focused so far on algorithms for computing support. We 
wi l l discuss three alternatives: 

T h e J o i n approach the straightforward way: com-
puting the equijoin of the body of the rule, then 
computing ' as defined in section 1.1) for each 
relation in the body, and then taking the maximum. 

T h e h i s t o g r a m approach Using histograms for esti­
mating support. Computing the support using the 
Join approach only for rules wi th high estimated 
support. 

T h e h i s t o g r a m + m e m o r y approach same as the 
histogram approach, except that we store interme­
diate results in memory, and reuse them when we 
are called to make the same computation. 

The procedure computes the 
support of each relation by performing the Join as 
explained in section 1.1. and then returns 

. Since the Join is an expensive operation, we 
t ry to detect rules wi th low support using some low-
cost procedures. The other two approaches compute an 
upper bound on the support and then compute the exact 
support only for rules wi th high enough upper bound of 
support. The idea is summarized in Algori thm compute-
support in Figure 4. Note that once one relation wi th 
high is found, we turn to compute the exact support 
using Join. 

The procedure -upbound called by the algorithm 
compute-support returns an upper bound for the value 

for a single relation in the body of the rule. This can 
be done by one of the two procedure: -upbound-brave 
or .-upbound-cautious, shown in Figures 5 and 6, re-
spectively. The basic idea is that an upper bound can be 
achieved by taking the jo in of a relation ri wi th any other 

Figure 5: c o m p u t i n g S i b rave ly 

Figure 6: c o m p u t i n g S i cau t ious ly 

relation wi th which has a variables in common. Pro-
cedure -upbound-brave does this by picking one arbi­
trary relation wi th which has a common variable, and 
procedure -upbound-cautious does this by considering 
all relations wi th which has variables in common, and 
taking the minimum. Procedure -upbound-cautious 
works harder than procedure -upbound-brave but it 
achieves a tighter upper bound and hence can save more 
Join computations. 

The proce-
dure upbound called by procedure -upbound-cautious 
or procedure -upbound-brave founds an upper bound 
on (as in Section 1.1) for a given relation using 
one of two approaches: the histogram approach or the 
histogram+memory approach. 

The histograms approach exploits the fact that his­
tograms are easy to construct and are quite useful for 
support estimation. A histogram of an attribute of some 
relation is a mapping h between the set of values that 
this attribute can take and the set of natural numbers, 
such that for each possible value v, h(v) is the number 
of tuples in the relation in which v appears as the value 
of the attribute. Given two relations and proce-
dure upbound-histo shown in Figure 7 achieves an upper 
bound on the support of the equijoin between them. Pro­
cedure upbound-histo prepares the histograms and then 
calls the procedure Histo which actually computes the 
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Figure 7: Computing support from histograms 

support. 
According to Claim 1.1 of Section 1.1, the number 

returned by Histo is also an upper bound on the support 
of the rule in which only and appear in the body 
wi th a common variable X. 

The problem wi th the procedure upbound-histo is that 
it doesn't exploit the fact that pairs of instantiated re-
lations can appear again and again in many different 
instantiations of the same metaquery. In the procedure 
upbound-histo-mem, shown in Figure 9, we save in mem­
ory estimated support of pairs of relations and retrieve 
this information if necessary. 

3.3 Eva luat ion 
The efficiency of algorithm compute-support depends on 
the likelihood of finding a rule wi th high support. If 
a large fraction of the rules has a high support, then 
this algorithm wi l l work harder then the straightforward 
algorithm which computes support by performing Join 
without trying to estimate the result before. Note that 
for rules wi th high support algorithm compute-support 
works harder than the algorithm which performs a Join 

Figure 9: Computing support from histograms and memory 

directly because first it estimates the support, finds out 
that it is high, and then calls the Join procedure. 

Our working assumption is that rules wi th high sup-
port are much less likely. In any case, however, the above 
analysis calls for an experimental evaluation of the algo-
rithms. In this subsection we present some preliminary 
results on such experiments. The evaluation was done on 
the Studentgrades database supported by the FlexiMine 
system [Domshlak et a/., 1998]. This database contains 
information on students and some of their demographic 
characteristics, courses, and grades. The relevant ta­
bles for our experiment are: The student table wi th 997 
rows, The course table wi th 1403 rows, The family table 
wi th 997 rows, The studentcourse table w i th 20705 rows. 
Each table contains between 5 and 9 attributes. 

We have compared the performance of our algorithms 
by measuring the t ime it took them to compute support 
of 20 different rules involving four relations each. A l l 
the rules were instances of the same metaquery. The 
experiments were done on a Sun / SunOS workstation 
wi th one spare CPU and 128 MB main memory. 

The t ime ( in seconds) for the support computation 
were measured for the following configurations: 

1. the support is computed by performing the jo in 
(procedure Join-support), 

2. the support is computed by histogram without using 
memory (procedure upbound-histo in Figure 7). 

3. the support is computed by our histogram using 
memory (procedure upbound-histo-mem in Figure 
9)-

A l l the above methods were tested using the procedure 
5,-upbound-brave. Procedure -upbound-cautious was 
not tested yet. 
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conf- the confi- References 

Figure 10: Comparison of support computations 

Table 10 shows the results obtained when the support 
threshold was set to 0.5. The columns is as follows: 

n u m - the serial number of the rule, 
dence of the rule. 

S jo in - the support computed by the definition, i.e first 
performing the jo in and then computing the support 

Sh is to - the estimated support computed by our Histo 
method (Figure 8). 

j o i n - the t ime to compute the support by the Join 
method, accumulated. 

h i s to - the t ime to compute the support by the his-
togram method, accumulated, including t ime for 
computing the histograms. 

m e m - the t ime to compute the support by the His-
togram method wi th memory, accumulated. 

It can be seen that the Histogram method achieves about 
50% savings in t ime, while the memory method has even 
improved on that. 

Figure 11 shows the behavior of all three methods wi th 
a varying support threshold (0 — 0.5). Line 1 is the t ime 
for the Join method, Line 2 - for the histogram method, 
and Line 3 for the histogram+memory method. In that 
figure the t ime for the Join method is normalized to 1, 
while the other t ime lines are relative to this t ime (e.g. 
the value 0.8 for the histogram method means that for 
that value of support, the histogram method time was 
0.8 of the Join method). It can be seen that the larger 
is the support threshold, the better the methods which 
estimate first perform. This is because the highest the 
threshold is, the more rules do not pass it and can be 
cut by using support estimates. 

4 Conclusion 
This paper contributes to the research on metaqueries in 
several ways. We analyze the complexity of the related 
computational problem, we propose a new notion of sup­
port for a rule generated according to a pattern, and 
we present novel and efficient algorithms for computing 

support. Although more experimental work is needed 
for real evaluation of the algorithms we have developed, 
preliminary experimental evaluation is quite promising. 
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