
Processing Symbols at Variable Speed in DUAL: 
Connectionist Activation as Power Supply 

Alexander A. Petrov Boicho N. Kokinov 
Central and East European Center for Cognitive Science Department of Information Research 
Department of Cognitive Science and Psychology Institute of Mathematics 

New Bulgarian University Bulgarian Academy of Sciences 
21 Montevideo Str.; Sofia 1635, BULGARIA Acad G.Bonchev, bl 8; Sofia 1113, BULGARIA 

apetrov&cogs.nbu.acad.bg kokinov@cogs.nbu.acad.bg 

Abstract 
This article explores the advantages and one 
potential implementation of a new style of com­
putation in which multiple lines of symbolic 
processing are pursued at different speeds within 
a hybrid multi-agent system. The cognitive 
architecture DUAL consists of small hybrid 
computational entities called DUAL agents. Each 
agent has a symbolic processor capable of 
simple symbol manipulations. There is also an 
activation level associated with each agent. Acti­
vation spreads according to connectionist rules. 
The speed of each symbolic processor is propor­
tional to the activation level of the correspond­
ing DUAL agent and varies dynamically. Thus 
multiple candidate-solutions to a given problem 
can be explored in parallel. More computational 
resources are dedicated to the more promising 
candidates and the degree of 'promise' is re­
evaluated dynamically. This allows for flexible 
and efficient behavior of the system as a whole. 
The exact relationship between symbolic speed 
and connectionist activation is based on an 
energetic analogy. The symbolic processor is 
conceptualized as a machine converting connec­
tionist activation into symbolic work. A lan­
guage for implementing variable-speed symbol 
manipulations using delayed evaluation is 
introduced: S-LlSP. A small example from a 
DUAL-based cognitive model illustrates variable-
speed marker passing in a semantic network. 

1 Introduction 
There are two challenges that any computational system 
operating in a complex environment must face— 
flexibility and efficiency. Stated in general terms, the en­
vironment presents some problems (or tasks) to the sys­
tem, which in turn has to generate solutions (or behav­
iors). Under this formulation, flexibility implies that the 
set of potential solutions to any given problem should be 
as large and open-ended as possible. No options should 
be ruled out a priori. At the same time, the pressure for 

efficiency restricts the number of candidate-solutions that 
can actually be considered in any particular case. 

Each of these requirements is hard enough in itself but 
the conjunction of the two is even more demanding 
because they push in opposite directions. This dual chal­
lenge has been addressed in various ways ranging from 
the exhaustive backtracking of the early AI programs, to 
heuristic search [Newell and Simon, 1976] and hill 
climbing, to the elaborate control strategies of modern 
cognitive architectures such as ACT-R [Anderson and 
Lebiere, 1998] and SOAR [Newell, 1990]. 

One approach [Hofstadter, 1983; Hofstadter, 1995; 
Kokinov, 1994a] to the flexibility/efficiency challenge 
rests on the following four ideas: (i) Multiple candidate-
solutions are considered in parallel, (ii) There is a very 
cheap mechanism that calculates rough on-line estimates 
of the 'promise' of each candidate. (Hi) The computa­
tional resources of the system are allocated unevenly 
among the candidates, favoring the more promising ones. 
(iv) Promise estimates are updated constantly, taking into 
account whatever new information becomes available and 
re-allocating the computational resources accordingly. 

Spreading activation is one mechanism that seems 
ideally suited for points (ii) and (iv) above. It is cheap, 
runs continuously, and can poll information from various 
sources dynamically. On the other hand, many tasks 
require complex, structured, and hierarchically organized 
representations. Taken together, this suggests a hybrid 
symbolic/connectionist system. Such hybrid systems 
have a number of desirable properties [Dinsmore, 1992; 
Sun and Alexandre, 1997]. 

This article builds on the hybridization idea [Kokinov, 
1997] and concentrates on the interface between the 
symbolic and the subsymbolic. The main idea is to have 
multiple symbolic processors running at variable speed. 
The speed is proportional to the activation level attached 
to each processor and estimating the 'promise' of the 
candidate-solution that the processor is working upon. 
This concretizes the general point (Hi) above. The speed 
varies dynamically, as the activation level varies. 

The next section begins with a brief overview of some 
alternative proposals from the literature. The variable-
speed idea is then described in detail, followed by an 
illustrative example from an implemented simulation. 

846 MACHINE LEARNING 



2 Variable-Speed Symbolic Processing 
Symbol manipulation is done in discrete steps. The 
algorithm describing a symbolic process usually involves 
branching and loops, but during the execution it unfolds 
into a linear sequence of steps. As a first approximation, 
it may be assumed that all steps are of equal 'length'. 
(This approximation will be refined later on). Thus the 
speed of a symbolic process can be defined as the number 
of steps advanced during a given time interval. 

Conventional multi-tasking operating systems support 
multiple processes running in parallel. A single physical 
processor serves all processes in turn by time-sharing. 
Different priorities can be assigned to control the number 
of time slices allotted to a given process. This scheme 
can easily be adapted to use activation levels as priori­
ties. However, it requires a centralized task manager and 
hence hinders the self-organizing kind of parallelism that 
is of interest here. 

In production systems [Newell, 1973, 1990; Anderson, 
1983], the equivalent of a symbolic step is called a 
production. There are production systems that use the 
notion of activation [Anderson, 1983; Just and Carpenter, 
1992]. The cognitive architecture ACT-R [Anderson and 
Lebiere, 1998] is a representative example. Productions 
in ACT-R operate on declarative memory elements called 
chunks. There is an activation level associated with each 
chunk and a strength value for each production. These 
subsymbolic parameters are used by the conflict resolu-
tion mechanism to select (stochastically) which produc­
tion fires on a given cycle. Moreover, the time to execute 
a production depends on the activation of the chunk(s) 
that have matched its condition(s). This temporal rela­
tionship is used to predict reaction time data from psy­
chological experiments. The timing, however, is not used 
to control the processing within the architecture itself. 
The control is based on a goal stack and only the produc­
tions that match the chunk at the top of the stack are con­
sidered for firing. Thus there is little parallelism at the 
level of global symbolic processes. Rather, a single proc­
ess is carried out by manipulating the single goal stack. 

In the models of Douglas Hofstadter and his collabora­
tors [Hofstadter, 1983, 1995; Mitchell, 1993; French, 
1995] the equivalent of a symbolic step is called a 
codelet. Many such codelets wait in a repository called 
the coderack and vie for a chance to run. Codelets tend 
to form chains—when a codelet is executed, it posts one 
or more successors to the coderack. Each such chain cor­
responds to a symbolic process. The coderack contains 
codelets belonging to different chains, thus emulating 
parallelism. An urgency value is assigned to each code-
let These urgencies depend on various things, including 
activation levels. On each cycle, a codelet is chosen from 
the coderack and run. The choice is probabilistic but not 
uniformly random—it is biased in favor of codelets with 
higher urgencies. When this sampling is repeated many 
times, the overall effect is that all symbolic processes 
(i.e. chains) advance in parallel at speeds proportional to 
the average urgency of the respective codelets. 

A very interesting 'feature of this scheme is the so-
called computational temperature. It is a global para­
meter controlling the degree of randomness in the sys­
tem. The temperature modulates the strength of the bias 
that the urgencies introduce into the coderack. At inter­
mediate temperatures the probability of selecting a given 
codelet is roughly linearly related to its urgency. At high 
temperatures, however, all codelets have approximately 
equal chances to run regardless of their urgencies. By 
contrast, at low (freezing) temperatures the bias becomes 
overwhelming and the most urgent codelet is chosen 
almost deterministically. There are specialized codelets 
that measure the temperature and change it dynamically. 

Restated in terms of speed, the Hofstadter's proposal 
allows for parallel symbolic processes running at differ­
ent speeds. The speed can be controlled both by local 
factors (urgencies) and a global one (temperature). Both 
kinds of factors vary dynamically. 

Sometimes, however, a phenomenon called urgency 
explosion occurs in the coderack [French, 1995]. It is 
analogous to inflation in economics and occurs when 
many new codelets of high urgency are posted to the 
coderack, thus inflating the urgencies of the old codelets 
waiting therein. The urgency explosion has undesirable 
consequences and special measures must be taken to 
prevent it [French, 1995]. 

Finally, the task of designing a system in which paral­
lel symbolic processes run at variable speed may be 
addressed in a straightforward manner. The cognitive ar­
chitecture DUAL [Kokinov, 1994a, 1994b] represents 
such an attempt. It consists of a population of small 
computational entities called DUAL agents. Each agent is 
hybrid and has a symbolic and a connectionist aspect. 
The symbolic aspect consists of a micro-frame and a 
symbolic processor. The connectionist aspect is analo­
gous to a unit in a neural network. Hie micro-frame is a 
bundle of labeled slots filled with references to other 
agents. The agent interacts with the agents referenced in 
its micro-frame by sending them messages and activa­
tion. An activation level is associated with each DUAL 
agent and the interactions between the agents can be 
regarded as links. The activation level of a given agent 
represents the system's internal estimate of its relevance 
to the problem being solved, the surrounding context, etc. 
It changes dynamically as these factors change. A 
threshold is imposed on the activation so that the agents 
that fail to reach some minimal degree of relevance are 
kept dormant. 

The symbolic processor of each agent runs at a speed 
proportional to its activation level. Thus very active 
agents run rapidly and determine the overall flow of com­
putation, moderately active agents run slowly, and in­
active agents do not run at all. All agents above the 
threshold run in parallel and there is no central executive 
in the system to coordinate their work. Rather, coordina­
tion and global consistency are achieved by massive local 
interactions: both symbolic (exchange of messages) and 
connectionist (exchange of activation). The behavior of 

PETROV AND KOKINOV 847 



the system as a whole emerges out of these local acti-
vities. This style of dynamic emergent computation 
allows for great flexibility, efficiency, and context sensi­
tivity [Kokinov et al., 1996]. 

The presentation so far simply postulated that the sym­
bolic processors in DUAL run at a speed proportional to 
the activation level of the corresponding agent. The next 
two sections concretize this abstract specification. 

3 The Energetic Analogy: Activation as 
Power 

The exact relationship between symbolic speed and con-
nectionist activation in the architecture DUAL rests on die 
following energetic analogy: the manipulation of sym­
bols can be conceptualized as work and the connectionist 
activation as power. Doing work requires energy, which 
is supplied to the symbolic processor by the connectionist 
aspect of the agent. The energy is calculated by inte­
grating the power over time. The speed of the symbolic 
computation depends on the power (i.e. the activation 
level). The same amount of work is completed rapidly 
when there is plenty of power, slowly when power is 
scarce, and not at all if it is lacking completely. 

The symbolic processing in the architecture can be 
categorized into segments of increasing complexity 
[Petrov, 1998]. (0 A symbolic operation is the smallest 
unit of symbol manipulation. The operations are simple, 
atomic, and deterministic. They are the elementary in­
structions of the symbolic processor, (if) A symbolic step 
is a sequence of operations performed by a single agent 
without intervening symbolic interactions with other 
agents. (iii) A rigid symbolic process is a fixed and a 
priory specified sequence of steps performed by a single 
agent. There may be intervening interactions, (rv) An 
emergent symbolic process is distributed over a coalition 
of interacting agents. It does not have any complete a 
priory specification. Rather, the course of computation is 
determined dynamically by the interplay of various 
pressures [Kokinov et al.,1996]. 

Each symbolic operation is characterized by some 
consumption C. This is a real number specifying the 
amount of symbolic work embedded in the operation. 
Different operations may have different consumptions. 
They are free parameters of the particular model and may 
be fixed on theoretical grounds and/or estimated from 
empirical data. This scheme offers considerably more 
freedom than the alternative proposals that typically 
assume equal consumption for all operations. 

If a fine-grained analysis at the level of individual op­
erations is not warranted, consumptions may be specified 
at the level of symbolic steps. The latter are often more 
convenient due to their larger grain size. A symbolic 
step is performed by a single agent and by definition 
there is no symbolic exchange with other agents during 
the step. Thus as far as the inter-agent communication is 
concerned, steps can be treated as units, disregarding the 
constituent operations. What matters is the final outcome 

(in the form of a message send to another agent) and the 
timing of its appearance. 

Each symbolic processor acts as a machine that trans-
forms connectionist energy into symbolic work. Not all 
energy, however, is converted into useful work. There is 
some overhead for covering the internal needs of the 
processor itself. The efficiency coefficient x\ is defined as 
the ratio of the useful work A to the total energy input E: 
n=A/E. This coefficient characterizes the symbolic proc­
essor. Different processors can have different efficien­
cies. In a cognitive model, for instance, processors per­
forming highly automated tasks have n close to 1 while 
processors performing novel tasks have low efficiency. 
The efficiency can even be adjusted dynamically by some 
kind of learning—the basic rule is that it increases with 
practice. 

Suppose a symbolic processor starts working on some 
operation (or step) at time t0. The amount of energy 
needed for the operation can be calculated in advance—it 
is E^C/Tl, where C is the consumption of the operation. 
This energy must be provided by the connectionist aspect 
of the agent. This takes time, as the rate of supply is 
limited. The energy function that describes the accumu­
lation of energy in time is defined by the integral: 

t 

E(t) = ja(t)dr 
to 

where a(T) is the activation level. Activation levels in 
DUAL must be above some positive threshold in order for 
the symbolic processor to work. (If a(f) drops below the 
threshold even for a moment, the symbolic processing is 
aborted and ail intermediate results are lost) Because 
a(T) is always positive, E(t) is an increasing function and 
thus has an inverse E"1. The inverse function expresses 
the time needed to produce a given amount of energy. 

Putting all pieces together, the exact moment in which 
the symbolic operation is completed is t = t0 + E-1(Cft\). 
The outcome of the operation becomes available at that 
moment. It may be a message sent to another agent or a 
modification of the internal micro-frame. Then the proc­
essor moves to the next operation as prescribed by the 
algorithm and the whole cycle repeats. 

When the symbolic processor is idle, all energy pro­
duced by the connectionist aspect of the agent goes 
unused. It cannot be accumulated. In other words, it is 
not allowed to amass energy 'on store' and then expend it 
all at once, thus attaining very high peak power. 

The energetic analogy offers the following advantages: 
(/) It provides for variable-speed symbolic computation 
and hence for all associated benefits. Indeed, it is clear 
that the specification described in this section implies 
that die more active agents run more rapidly, (ii) The ac­
tivation levels can change dynamically and all changes 
have instant effect, (iii) The architecture DUAL has a 
well-defined notion of time. It is measured on a 
continuous scale and frames the occurrence of all sym­
bolic events. (iv) The speed of each DUAL agent is 
defined independently of that of the other agents. Thus 

848 MACHINE LEARNING 



the architecture can be run without any modification on 
parallel hardware. (v) The relationship between symbolic 
speed and connectionist activation is specified without 
recourse to any particular implementation, (v/) Symbolic 
processes can be finely parameterized and the parame­
ters have straightforward interpretation—consumptions 
and efficiency coefficients. 

4 S-LISP: A Language For Variable 
Speed Symbolic Computations 

The DUAL architecture has been fully implemented. All 
programs are written in COMMON LISP using CLOS1. An 
extension of LISP called S-LlSP ('suspendable' LISP) has 
been developed [Petrov, 1998] for the purposes of the 
variable-speed symbolic computations. A rudimentary 
compiler translates S-LlSP programs into 'plain' LISP. 
This section outlines the main features of the language 
and the principles of its implementation. 

S-LISP is an extension of COMMON LISP. Its main dif­
ference from plain LISP is that it supports four additional 
special operators: s-progn, s-eval, s-values, and 
suspended-value-bind. They are 'suspendable' ana­
logs to the respective LISP operators. S-LlSP also supports 
most (but not all) 'plain' LISP primitives such as progn, 
i f , l e t , and setq. The language also supports function 
calls and recursion, which in turn allows for loops. 

s-progn establishes a sequence of symbolic steps to 
be executed at variable speed by the processor of some 
DUAL agent called a host. The complementary suspen­
sion primitive, s-eval , signals that a given S-Lisp form 
is suspendable and announces the amount of energy 
needed for it. The two suspension primitives go together, 
s-eval may appear only within the lexical scope of an 
s-progn; it is an error elsewhere. Conversely, *-progn 
is like an ordinary progn in all respects except the 
treatment of s-eval and the other suspension primitives. 
A very simple S-LlSP program is illustrated below: 

The remaining two suspension primitives, s-values 
and suspended-value-bind, are used to export and 
import values from functions defined via s-progn. 

The implementation of s-progn and s-eval is based 
on delayed evaluation. While the theoretical specification 
of DUAL postulates that symbolic processes run smoothly 
and at variable speed, the implementation carries them 
out in instantaneous jumps. Pauses are imposed between 
the jumps to produce the timing postulated by the theory. 

When a processor begins working on some symbolic 
operation, it does not actually execute it. Instead, it wraps 
it in a closure and stores it on a stack. One such stack is 

1 The foil source code and the accompanying documentation 
are available from the authors upon request. 

maintained for each processor (i.e. DUAL agent). There is 
an energy balance associated with each stack. The energy 
balance is equal to the difference between supplied and 
consumed energy. When the balance is negative, the 
processor waits until it becomes positive. On each con- , 
nectionist cycle, the connectionist machinery increases 
the balance with some small amount depending on the ac­
tivation level and the efficiency coefficient of the host 
After some time, the balance becomes positive and the 
top closure on the stack is popped and executed. 

The S-LlSP compiler analyzes the source code, traps all 
occurrences of and replaces them with 'plain' 
LISP forms that generate closures and arrange them on 
the stack. The stack is established by the enclosing •-
progn form. The top-level loop of the implementation 
checks the stacks of all active DUAL agents and pops die 
ones with positive energetic balance. This scheme also 
supports the parallel work of multiple agents. 

S-LISP programs should be written with care because 
many intuitions from 'plain' LISP are violated. In 
particular, s-progn does not return any useful value. 
This is because a call to s-progn does not execute die 
forms in its body; it delays them. Thus the value that die 
programmer expects will be computed later, long after 
the original call to s-progn is over, s-values must be 
used to export a value out of a suspendable function and 
this value must be bound via suspended-value-bind. 

A mailbox technique is used to transfer suspended 
values through destructive operations executed as side 
effects. A mailbox is a data structure containing a field 
that can be modified destructively. The job of s-values 
is to make a new empty mailbox and to arrange that the 
suspended value (or multiple values) will be stored in it 
when the suspended computation is completed. The job 
of suspended-value-bind is to catch the mailbox, 
open it at the appropriate time, and bind the values to 
local variables accessible within its lexical scope. 

5 Variable-Speed Symbol Processing at 
Work: An Example 

This final section provides an example of variable-speed 
symbolic processing in action. It also illustrates the util­
ity of symbolic/connectionist hybridization. The material 
for the example is taken from actual simulation experi­
ments widi a DuAL-based cognitive model called AMBR 
[Kokinov, 1994a; Petrov, 1998]. In these simulations 
AMBR tries to solve simple everyday problems such as: 
"There is some milk in a teapot There is also a hot plate. 
The goal is to heat the milk." The model solves these 
problems by analogy to previous cases. The long-term 
memory of the system contains a number of past prob-
lems with solutions. It also contains semantic knowledge 
about general regularities in the domain. When faced 
with a new target problem, AMBR attempts to retrieve an 
appropriate source analog, map it to the target, and trans­
fer the solution. Several such retrievals and mappings are 
attempted in parallel and at variable speed. 

PETROV AND KOKINOV 849 



AMBR, like all DUAL-based models, consists entirely 
of DUAL agents. They carry out all representational and 
computational functions in the system. The long-term 
memory is just a population of interacting agents. Some 
of than, the so-called concept-agents, represent classes 
of objects such as mi lk, water, and l i q u i d . These 
agents form the backbone of AMBR'S semantic memory. 
There are also instance-agents standing for individual 
instances such as mi lk -8 . The agents form coalitions to 
represent propositions (e.g. in-6 (mi lk -8 , teapot-3)) 
and episodes. Finally, hypothesis-agents are created 
during the problem-solving process to represent tentative 
correspondences such as milk-8<->water-3. 

Note that these are not passive data structures. Rather, 
each agent is a semi-autonomous entity that heavily inter­
acts with its peers. For instance, the agent mi lk sends 
symbolic messages and connectionist activation to the 
agent l i q u i d . The symbolic processor of l i q u i d then 
handles and re-sends these messages at variable speed 
according to the principles discussed above. 

For the sake of concreteness, the example here concen­
trates on one of the several computational mechanisms 
used in AMBR. The marker passing mechanism stems 
from the semantic network tradition (see [Hendler, 1988] 
for an overview). In its most basic form it is a tool for 
answering the question: "Given two nodes in a semantic 
network, is there a path connecting them?" The under­
lying idea is simple—the two nodes of origin are marked. 
They then mark their neighbors, which in turn mark 
further. If the two 'waves' of markers intersect, a path is 
found. AMBR uses these intersections to build hypotheses 
about similarity-based correspondences between instance 
agents. Consider the following coalition: 

The words in the figure denote agents. The lines denote 
interactions, usually bi-directional. The agents at the bot­
tom row are instances; all others are concepts. Note that 
m i l k treats two different agents as 'parents'. 

Marker passing in AMBR goes hand in hand with 
spreading activation. Suppose mi lk-8 is a newly created 
agent participating in the representation of the target 
problem and that all other agents in the figure are 
dormant (i.e. with zero activation) in the long-term mem­
ory. Mi lk -8 , being related to the goal, is a strong activa­
tion source. It spreads this activation to the agents refer­
enced in its micro-frame. One such agent is the parent 
concept mi lk . This input from mi lk -8 brings its acti­
vation level above the critical threshold and it enters the 
working memory (WM) of AMBR. In turn, m i l k activates 
other agents. The coalition gradually enters the WM: 

Note that the two branches of the hierarchy receive un­
equal amounts of activation. This is due to both perma­
nent and transient factors. The permanent factors reflect 
domain knowledge and are embodied in the 'weights' of 
die interactions. For example, m i l k may send more acti­
vation to beverage than to da i ry-prod. The transient 
factors are due to goal-related, context, and priming ef-
fects. In the above example, the target problem involves 
a teapot that indirectly activates l i q u i d via the 
l i qu id -bo lde r agent (not shown in the figure). Al l 
these factors vary across and within problem-solving 
episodes. The pattern of activation over the population of 
agents changes dynamically, as the estimated relevance 
of each agent varies. 

The stage is now ready for the marker-passing mecha­
nism per se. Whenever an instance-agent enters die work­
ing memory it sends a marker to its parent concepts). 
The concept-agents in turn spread the markers to their 
superclass(es). Each marker carries a reference to the 
instance-agent that originated it as well as a color tag in­
dicating whether the origin is a target agent. The follow­
ing transcript illustrates the marker passing process: 

When two markers of different colors meet in some 
concept-agent, the latter detects the intersection and 
initiates a sequence of interactions with various agents 
that ultimately results in creating a new hypothesis. In 
our example this would be milk-8<->wat#r-3. Alter­
native hypotheses (e.g. milk-8<->broad-l23) are 
being constructed in parallel. The respective agents, how­
ever, are less active and hence handle their markers more 
slowly. The net effect is that the population of agents as 
a whole explores various paths in parallel at speed pro­
portional to their dynamically estimated 'promise'. In a 
different context, die same agent mi lk -8 could be 
mapped to another instance-agent retrieved from some 
other past episode. There is a vast number of possibilities 
but only a few of them are considered in any given case. 

One of the biggest issues in marker-passing systems is 
the attenuation of the marking. Without such attenuation 
there would be too many intersections, most of which are 

850 MACHINE LEARNING 



useless and overwhelm the useful ones. Several attenu­
ation strategies have been explored over the years (re­
viewed by [Hendler, 1988]): limitation of the number of 
links each marker can traverse, checks of die outbranch-
ing factor of 'promiscuous nodes', etc. In AMBR there is 
no need for any ad-hoc attenuation mechanism as it fol­
lows naturally from the architectural principles of DUAL. 
Two such attenuation factors are relevant here: (i) The 
markers cannot reach the agents that have been left 
totally inactive by the spreading activation mechanism. 
(if) Marker passing, as any other symbolic activity in the 
architecture, depends on the speed of the symbolic proc­
essors handling the markers. As a consequence, the 
markers move rapidly through the 'promising' portions 
of the semantic memory and then slow down as they 
reach the periphery of the area delineated by activation 
levels. The net effect of these and other similar factors is 
that marker intersections are reported in a temporal order 
reflecting their potential usefulness for the particular task 
and the particular context. 

It is worthwhile to stress that the global marker 
passing is a dynamic emergent process. A whole coali­
tion of DUAL agents is needed to cooperatively produce 
the final result. Each individual agent does local marker 
passing only. The overall result is determined by a multi­
tude of factors (or 'pressures') each of which has rela­
tively minor impact on its own. Moreover, the strength 
of these factors varies dynamically in response to various 
external and internal events. The variable-speed symbolic 
processing and the energetic analogy presented in this 
paper are instrumental for these desirable properties. 

References 
[Anderson, 1983] John R. Anderson. The Architecture of 
Cognition. Cambridge, Massachusetts, Harvard Univer­
sity Press, 1983. 

[Anderson and Lebiere, 1998] John R. Anderson and 
Christian Lebiere. The Atomic Components of Thought. 
Lawrence Erlbaum Associates, Mahwah, NJ, 1998. 

[Dinsmore, 1992] Dinsmore. The Symbolic and Connec-
tionist Paradigms: Closing the Gap. Lawrence Erlbaum 
Associates, Hillsdale, New Jersey, 1992. 

[French, 1995] Robert French. The Subtlety of Sameness: 
A Theory and Computer Model of Analogy-Making. MIT 
Press, Cambridge, Massachusetts, 1995. 

[Hendler, 1988] James Hendler. Integrating Marker-
Passing and Problem-Solving: A Spreading-Activation 
Approach to Improved Choice in Planning. Lawrence 
Erlbaum Associates, Hillsdale, New Jersey, 1988. 

[Hofstadter, 1983] Douglas Hofstadter. The architecture 
of Jumbo. In Ryszard Michalski, Jaime Carbonell, and 
Thomas Mitchell, editors. Proceedings of the Inter­

national Machine Learning Workshop, pages 161-170, 
Urbana, Illinois, University of Illinois, 1983. 

[Hofstadter, 1995] Douglas Hofstadter and the Fluid 
Analogies Research Group. Fluid Concepts and Creative 
Analogies. New York, Basic Books, 1995. 

[Just and Carpenter, 1992] Marcel Just and Patricia 
Carpenter. A capacity theory of comprehension: Individ­
ual differences in working memory. Psychological 
Review, 99(1):122-149,1992. 

[Kokinov, 1994a] Boicho Kokinov. A hybrid model of 
reasoning by analogy. In Keith Holyoak and John 
Barnden, editors. Advances in Connectionist and Neural 
Computation Theory. Vol. 2: Analogical Connections. 
Ablex, Norwood, New Jersey, 1994. 

[Kokinov, 1994b] Boicho Kokinov. The DUAL cognitive 
architecture: A hybrid multi-agent approach. Proceedings 
of the Eleventh European Conference on Artificial Intelli­
gence. John Wiley & Sons, Ltd., 1994. 

[Kokinov, 1997] Boicho Kokinov. Micro-level hybridiza­
tion in the cognitive architecture DUAL. In R. Sun and F. 
Alexandre, editors. Connectionist-Symbolic Integration: 
From Unified to Hybrid Architectures. Lawrence Erl­
baum Associates, Hillsdale, New Jersey, 1997. 

[Kokinov et al, 1996] Boicho Kokinov, Vasil Nikolov, 
and Alexander Petrov. Dynamics of emergent computa­
tion in DUAL. In A. Ramsey, editor. Artificial Intelli­
gence: Methodology, Systems, Applications. IOS Press, 
Amsterdam, 1996. 

[Mitchell, 1993] Meianie Mitchell. Analogy-Making as 
Perception. Bradford Books, Cambridge, MA, 1993. 

[Newell, 1973] Allen Newell. Production systems: 
Models of control sturctures. In W. Chase, editor. Visual 
Information Processing, pages 463-526. Academic Press, 
New York, 1973. 

[Newell, 1990] Allen Newell. Unified Theories of Cog­
nition. Harvard University Press, Cambridge, MA, 1990. 

[Newell and Simon, 1976] A. Newell and Herbert Simon. 
Computer science as empirical inquiry: Symbols and 
search. Communications of the ACM, 19:113-126. 1976. 

[Petrov, 1998] Alexander Petrov. A Dynamic Emergent 
Computational Model of Analogy-Making Based on 
Decentralized Representations. Ph.D. Thesis. New Bul­
garian University. Sofia, Bulgaria, 1998. 

[Sun and Alexandre, 1997] Ron Sun and F. Alexandre, 
editors. Connectionist-Symbolic Integration: From Uni­
fied to Hybrid Architectures. Lawrence Erlbaum Associ­
ates, Hillsdale, New Jersey, 1997. 

PETROV AND KOKINOV 851 


