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Abstract 
In order to understand cognitive aspects of au­
tonomous robots, it is fruitful to develop a 
mechanism by which the robot autonomously 
analyzes physical sensor data and construct a 
state space. This paper proposes a coherent 
approach to constructing such a robot orient­
ed state space by statistically analyzing sen­
sor patterns and rewards given as the result of 
task executions. In the state space construc­
tion, the robot creates sensor pattern classifiers 
called Empirically Obtained Perceivers (EOP-
s) which, when combined, represent internal 
states of the robot. A novel feature of this 
method is that the EOP directs attention to se-
lect necessary information, and the state space 
is obtained with the attention control mech­
anism using EOPs. We have confirmed that 
the robot can effectively construct state spaces 
through its vision sensor and execute a naviga­
tion task with the obtained state spaces in a 
complicated simulated world. 

1 Introduction 
Acquisition and utilization of internal representation are 
key issues in realizing intelligent behaviors in comput­
er systems. They are especially difficult for robots that 
process noisy sensory information and interact in the re­
al world. There are two directions for the research. One 
requires the programmer to provide the internal repre-
sentation [10; 3]. Another direction is to develop robots 
with cognitive interests [6]. The purpose is not to devel­
op a robot that can execute complex tasks, but to stress 
the possibility that a robot may learn how to behave 
in the real world. Researchers in cognitive robotics [11] 
focus on cognitive aspects of physical agents - agents 
that learn their internal representation autonomously in 
order to perform tasks. 

Our research direction basically takes the cognitive ap-
proach. In the cognitive approach, the key issue is how 
the robot efficiently obtains necessary information from 
complicated environments through sensors. This paper 
proposes an approach to construct a state space with 

an attention control mechanism that performs nonlinear 
classification of sensory data. The method proposed here 
is rather simple as a method of pattern recognition, but 
it works well in the state space construction by a robot 
in a complicated environment. The key points of this 
paper are as follows: 

1. The proposed method enables the construction of a 
state space from redundant and noisy physical sen­
sory data, such as visual data. 

2. The proposed method efficiently and autonomous­
ly constructs the state space from physical sensory 
data by employing an attention control mechanism. 

We consider, it is interesting and important to illuminate 
and examine the close relationship between state space 
construction and attention control. This paper discusses 
such a key issue in cognitive robotics. 

The task of the robot discussed in this paper is to 
avoid obstacles. While moving, the robot collects data 
sets consisting of an action, sensor information, and a 
reward. Then, the robot develops empirically obtained 
perceivers EOPs statistically analyze the da-
ta sets to classify sensory patterns according to actions 
and rewards to obtain a proper state space for the task. 
In the state space construction, EOPs perform attention 
control. There are two types of attention control: feature 
selection from sensory data and continuous gaze control. 
Each EOP select features in the image consisting of a 
huge amount of pixel data. Further, the application of a 
combination of EOPs constitutes a sequence of changes 
in attention for gaze control. The acquisition of the se­
quence is called visual sequentialization [2]. We have 
confirmed that the robot can construct state spaces for 
avoiding obstacles in a complicated simulated world. 

There are several research approaches that au­
tonomously construct state spaces and reduce its size. 
Nakamura's work deals with physical sensory da­
ta but the feature extraction is based on human intu­
itions. Mahadevan's work based on Q-learning [13] ba-
sically has trouble dealing with physical sensory inputs 
that have huge dimensions. Although the G algorithm 
[4] and [7] address certain problems, they do not 
use complex physical sensory data. While both meth­
ods use statistics, they assume that the sensors generate 
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information that can be directly used to represent the 
state space. In other words, they do not address the 
problem of how to construct the state space from raw 
sensory data. G algorithm's sensory data selection per­
forms a kind of attention control. However, difficulties 
arise when the robot directly deals with physical sensory 
data since simple pattern matching methods cannot be 
applied to complicated sensory data. The purpose of this 
paper is to propose a coherent method for constructing a 
state space from physical sensory inputs and to propose 
a means of attention control for physical sensors in state 
space construction. 

2 State Space Construction 
2.1 Process Flow 

Figure 1 shows the process flow for incrementally con­
structing a state space. In the beginning, the robot does 
not discriminate any sensory data and it has just one 
state. While moving the robot collects data sets, con­
sisting of sensory data, an action, and a reward. These 
data sets are divided into two classes. 

Here, the robot can move along plans if it has a s-
tate space whose size is sufficiently large for planning 
the robot motion. While constructing the state space, 
state transition probabilities can be computed from the 
data sets, and the robot can make plans for going toward 
goal states with standard planning methods by referring 
to the state transition probabilities and rewards assigned 
to states 1. 

For discriminating the two classes, an EOP is obtained 
and the state is split in two. Then, if there are any iden­
tical states, they are coalesced. By iterating the process, 
a state space is incrementally constructed. 

2.2 Data Collection 
The data set consists of the following four components: 

(State, Action, Sensory vector, Reward) 

where State means a state of the robot when it executes 
an Action, acquires sensory information and receives a 
Reward. Sensory vector is one dimensional array of 
sensory inputs. 

The method proposed in this paper can deal with any 
kind of physical sensory data. However, it is instruc­
tive to consider a vision-based robot, since visual data 
contains a very large of information and it is difficult to 
extract what is necessary for the robot to perform its 
task. For the analysis discussed below, 2-D vision da­
ta is simply converted into a one dimensional array, the 
Sensory vector. 

1 Several papers [12] concerning state space construction 
propose to apply Q-learning to assigning Q-values (which 
provide an action policy) during or after constructing the 
state space. However, such relations between states can be 
directly obtained by computing state transition probabilities 
from the data used for constructing the state space. 

Figure 1: Process flow 

In our model, humans cannot directly specify the 
robot's internal states. However, they can express their 
intentions to the robot through rewards. These rewards 
provide the robot's solely motive for learning to classi­
fy its sensory data. Thus, by referring to the rewards, 
the robot constructs its internal state space by itself. 
For reactive robotic: tasks such as obstacle avoidance, 
the robot receives immediate rewards. For deliberative 
tasks such as moving toward goals, delayed rewards are 
used in place of immediate rewards. 

2.3 Sensor Pattern Classification 
Imagine that a robot with an incomplete state space 
moves about in a real environment in which rewards are 
embedded. If the robot receives different rewards when 
executing an action in a given state, the robot finds that 
the state should be appropriately divided into two states. 

Let be the frequency of 
be the number of samples in and 

let and be constant values, where 
and are State, Action, and Sensory vector, and 

Reward, respectively. represent a set of data 
sets of which State and Action are and respec­
tively. The following equations give the conditions for 
dividing (see Figure 2). 

(1) 

(2) 
(3) 

(4) 
where is the number of samples such that 

and is the number of samples such 
that If several are found, the longest is 
selected. In the conditions, (3) means that rare events 
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Figure 2: Divide condition 

are neglected. (4) guarantees enough data to make an 
EOP. The method for clustering seems ad hoc. Of course, 
we can employ other standard clustering methods using 
variance. However, the clustering needed for this ap­
proach is simple and we consider the four parameters 
that we have employed characterize the robot behavior. 

Data sets are divided by through the fol-
lowing procedure for state division: 

1. Take actions in the real world and collect quadruplet 
data Classify them into disparate sets 

2. For each check whether should be divid­
ed. Terminate if no state can be divided. 

3. If should be divided by the threshold as 
shown in Figure 2, define two classes: 

4. Look for an EOP which can discriminate class 0 and 
class 1 in EOPs already acquired. If no proper EOP 
is found, then make a new EOP using class 0 and 
class 1 (see 2.4). If the EOP cannot be construct­
ed because of the classification error, then abort to 
divide and go to 2. 

5. Let us refer to the EOP selected at 4 as 
is divided into new states and by Di­
vide into and for each 

and go to 2. 

2.4 Acquisition of EOPs 
Assuming that sensor patterns classes 0 and 1 are given 
with respect to an action, a discriminant function can be 
obtained in the following manner The discriminant 
function is a function which takes as input a sensory 
vector s, represented as a TV-vector, and outputs a scalar 

value. It is represented as a sum of weighted components 
of a vector x. 

where c is decided so that DF outputs a positive value 
for a sensor pattern in class 1 and a negative value for a 
sensor pattern in class 0. A value for w is determined 
to minimize the error rate [ l ] as follows: 

where is a covariance matrix of class 0 and class 1. 
and are mean vectors of class 1 and class 0, respec­
tively. 

The error rates of DF are given by the following for­
mulae: 

where and n1 are the number of data sets in class 0 
and 1, respectively. is the number of data sets such 
that in class 0, and ml is the number of data 
such that in class 1. 

Here, the discriminant analysis generally takes much 
computational time for a large number of dimensions of 
the sensory data. Therefore, it is necessary to perform a 
kind of dimensionality reduction to reduce the size of the 
sensory data. However, our policy in this research ap­
proach is that the robot has no access to models based on 
human intuitions for segmenting features, such as lines, 
color regions, and so on. For this problem, our idea is to 
use principal component analysis (PCA) [1], which cal­
culates orthogonal dimensions of maximal variation in 
the data. The Hotelling (aka Karhunen-Loeve) transfor-
m is used to rotate the axes, and only those dimensions 
that account for most of the variation are retained. The 
principle components of the visual data serve as low-level 
quantitative features [8] and represent spatial relation-
s among pixels. Therefore, it is meaningful to refer to 
the principle components for analyzing vision data. Al­
though we do not consider principle component analysis 
is ideal for the data compression, this approach is general 
insofar as it can be applied to any kind of sensory data. 
As better methods, we can consider to apply indepen­
dent component analysis and Wavelet transform, which 
have interesting relations with human visual process. 

The weight vector of a discriminant function repre­
sents the importance of each component of the sensory 
input for the classification. Thus, the weight vector de­
fines attention control for pixel (or feature) selection. 
Several approaches can be considered for the pixel se­
lection with referring to the weight vector. Our method 
employed in this paper is as follows. 

Pick up the maximum and minimum values of absolute 
values of the weights. Then, we divide the range between 
the maximum and minimum values into ten (this num­
ber has been empirically determined) and acquire ten 
threshold values Wi th 
the threshold, the weight values are modified; if the val­
ue is less than the threshold, the weight is set as 0 and 
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the pixel is ignored. Thus, we obtain ten modified dis-
criminant functions 

Next, we check error rates of all modified discrim-
inant functions. The modified discriminant function 

that does not satisfy the following condition 
is discarded. 

where and are error rates of the modified 
discriminant function and they are computed in the same 
way as and 

For the remained discriminant functions, we evaluate 
performance of the threshold values by using the follow­
ing evaluation function. 

where n is the total number of data sets. Then, a thresh-
old that gives the minimum value of the evaluation 
function is selected. 

The original linear discriminant function divides the 
parameter space wi th a hyper plane based on distribu­
tion of data in the parameter space. In this case, outliers 
significantly influence the discrimination. On the other 
hand, performance of the modified discriminant function 
is evaluated based on only the number of misclassified 
data. That is, there is a possibility that the pixel se­
lection using the modified discriminant function ignores 
the outliers. 

By the pixel selection, the discriminant function can 
be represented with a small number of coefficients and fo­
cuses on important sensor components. Further, a com­
bination of modified discriminant functions realizes non-
linear discrimination as discussed later. The efficiency of 
this attention control method is experimentally verified 
in Section 3. The idea of attention control proposed here 
is simple but general, and it can be applied to any kinds 
of sensory data. 

The modified discriminant function cut mi­
nor components off with a threshold value I and outputs 
a positive or negative value for an input data s. Wi th 

we define a logical function EOP as follows: 

By iterating to collect data sets and obtain EOPs, the 
robot may generate a large number of states. In this case, 
identical states may exist. The states can be identified by 
their distribution of rewards across the possible actions. 
Suppose the robot has two actions and each state-action 
pair has a distribution of rewards that it has acquired 
so far. If, for two states, all corresponding actions have 
a similar reward value, the states can be treated as i-
dentical. The identified pair of states is coalesced into a 
single state. The new state is represented by combining 
the EOPs used to represent the previous two states. In 
other words, by iterating the processes of identifying and 
coalescing states, the robot is able to perform a complex, 
nonlinear discrimination of an n-dimensional parameter 
space. 

c 

Figure 3: Robot in the simulator 

3 Exper imenta l Results 

3.1 Robo t and Env i ronment 

We have developed a robot simulator and used it to veri­
fy the proposed method. The robot in the simulator has 
an omnidirectional vision sensor. The robot can rotate 
in any of 12 directions and go forward, in other words, 
it has 12 actions. The configuration of the sensor and 
the actions are shown in Figure 3(a) and (b). An ac­
tion consists of a rotation of degrees and a 
forward movement of 15 pixels in the simulated envi­
ronment shown in Figure 4 with some errors (The size 
of the simulated environment in Figure 4 is 640 x 480 
pixels). The actual direction and distance of follow 
the normal distribution whose means are degrees 
and 15 pixels, respectively. The sensor provides edge 
images of pixels as shown in Figure 3(c) at each 
time step; and the robot acquires edge images for the s-
tate space construction by applying Sobel edge operators 
2. The acquired images are compressed by acquiring the 
principle components. In this experimentation, we have 
determined the number of the principle components with 
a accumulated proportion of 0.8. 

3.2 V i s u a l S e q u e n t i a l i z a t i o n 

The robot task in this experiment is obstacle avoidance. 
The robot receives a reward when it collides with 
a wall and 0 otherwise. At the beginning, the robot 
knows nothing about the external world, it has no EOP, 
and its internal state space consists of only one state 

Figure 5 shows a state tree at a time when the 
robot created 9 EOPs. The combination of the EOPs 
represent the states. For example, state is represent-

and is represented as 
Those two states are discrim­

inated by In the image of the EOP, bright and 

2We have tried both of intensity images and edge images. 
As the results, we have found that the edge images are supe­
rior in efficient acquisition of EOPs to the intensity images 
in this simulated worlds. 
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(c) Omnidirectional image 

(a) Structure (b) Actions 



Figure 4: Simulated worlds 

EOFs 

Figure 5: Visual sequentialization 

dark gray areas indicate positive and negative compo-
nents of the weight vector, respectively. 

The tree structure of the state space represents how 
the robot continuously pays its attention in order to iden­
tify the states. In Figure 5, the robot coarsely observes 
with then changes its attention to more detailed 
regions with and This behavior 
called visual sequentialization is how our method con­
structs the state space. 

3.3 Effectiveness of A t t e n t i o n cont ro l 

To evaluate the effectiveness of our proposed method of 
attention control, we have experimented in the complex 
outdoor environment with the reactive robot behavior 
for avoiding obstacles. First, we have given a fixed num­
ber of data sets for verifying effectiveness of the attention 
control method. W i th 10000 data sets collected while the 
robot randomly moves, the robot has constructed a state 
space. In Figure 6, the vertical and horizontal axes in­
dicate the error of pattern classification and the number 
of states, respectively. The error E is defined as: 

Figure 6: Error of pattern classification for 10000 data 
sets 

where are the IDs of state and action, respective­
ly, nv and n are the number of acquired states and the 
number of all acquired data sets, respectively. For the 
obstacle avoidance, is the numbers of data sets that 
have a reward of 0 for an action a in a state s; and is 
the number of data sets that have a reward of - 1 . That 
is, the error represents the normalized number of mis-
classified data sets. In the beginning, the error is large 
since the number of states is small. As the number of 
states increases, the error is reduced. 

Figure 6 shows an interesting behavior of state space 
construction with the attention control. In the begin-
ning, the error of the method using standard discrimi­
nant functions was smaller than the method using the 
attention control. Then the method using the attention 
control method became better at 20 states. 

We analyze these phenomena as follows: In the be­
ginning, the method using attention control suffers clas­
sification error in the attention control for each EOP. 
However, after acquiring some total amount of EOPs, 
the method performs effective nonlinear state division 
by combining the acquired EOPs. 

Another characteristic is shown in Figure 7. The ver­
tical axis indicates the number of nonzero components of 
weight vectors for EOPs. A small number of the nonzero 
components means that the robot refers a small amount 
of pixels in the image to distinguish the states. In oth­
er words, it saves computational time for sensory data 
processing. As shown in Figure 7, the method using s-
tandard discriminant functions needs more than three 
times of sensory data than the method using the atten­
tion control. 

We have performed another experimentation in a more 
realistic situation. In this experimentation, the robot 
incrementally constructs a state space while collecting 
data sets and makes an EOP in a state when 

1. 10 data sets for both classes, class 0 and class 1, are 
acquired, 
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Figure 7: The number of nonzero components of the 
weight vectors 

Figure 8: Error of pattern classification in incremental 
state space construction 

2. or the number of data sets in the class that has a 
smaller number of data sets than the other becomes 
10 % of the other. 

The error of the attention control method was small-
er than the method using standard discriminant func­
tions as shown in Figure 8. In Figure 8, we could not 
find the similar phenomena to Figure 6, in which perfor­
mance of the two methods is reversed. In the incremen­
tal construction, nonlinearity of the sensory data space 
is stronger since the robot needs to move by referring 
to the incomplete state space. We, therefore, consider 
that the method not using attention control could not 
represent good performance in the beginning. Figure 9 
shows a more impressive result. The method using the 
attention control was better than seven times. We con­
sider that, in the incremental state space construction, 
outliers are often acquired since the robot acquire data 
sets while randomly moving and the method of the pixel 
selection efficiently filters them out. 

In this experimentation, we could verify the attention 
control method. Performance of the attention control 
method is better for the incremental state space con­
struction than for the state space construction with a 
fixed number of data sets. In the incremental state s-
pace construction, nonlinearity of the sensory data space 
is strong; and our method is suitable to deal with such 
a complex classification problem. Further, our method 
significantly reduces pixel data needed for the state s-
pace construction. This means how the method works 
well as an attention control method. 

4 Discussion and Conclusion 

In this paper, we have proposed a coherent method for 
constructing a state space using attention control from 
physical sensory data. In addition to the approach's co­
herency, the proposed method has the following interest­
ing point: 

• It constructs a state space from a huge amount of 
physical sensory data. 

• The EOP realizes a simple and general method of 
attention control. 

• A combination of EOPs controls continuous changes 
in visual attention and represents a state. 

• Attention control with the EOPs efficiently con­
structs a state space. 

Finally, we discuss remaining problems and future di­
rections for our research approach. One problem is how 
to determine the threshold for the attention control. In 
this paper, we have determined the threshold based on 
performance of each EOP. However, an EOP influences 
performance of other EOPs obtained after the EOP. 
That is, the threshold should be adjusted by taking al-
1 related EOPs in account. This threshold control is 
expected to construct a state space that has a more rea­
sonable abstraction hierarchy. 

In this paper, the EOPs have been made under the 
assumption that actions are already defined, but some 
tasks may require more precise actions and others can 
be done with coarser actions. In order to change the 
granularity, it is necessary to detect coarse actions or to 
identify similar actions. It maybe possible to segment 
actions with a method similar to that used above for 
sensory data segmentation. 

This paper has discussed with a single simple robot 
task. However, a robot needs several tasks, for example 
avoiding obstacles, moving toward goals, following other 
robots and so on. A problem is how to implement the 
tasks in our approach. As one of the promising solutions, 
we consider to employ subsumption architecture [3]. The 
idea is to prepare an independent state space for each 
robot task and connect the modules with a hierarchical 
network. Another solution is to develop an abstract state 
space where we consider a robot behavior as an action. 
In other words, this idea is to construct a state space 
for representing relations between robot behaviors. The 
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Figure 9: Nonzero components in incremental state s-
pace construction 

later idea is more ideal, however it has a difficult problem 
of simultaneous construction of state spaces in different 
abstraction levels. 

The method proposed in this paper obtains a state s-
pace for a given task and environment. To extend this 
method, we must consider how to obtain a general state 
space which can be used in other environments. Imagine 
if we place our robot in a different room and reconstruct 
the state space. It is expected that newly created EOP-
s will indicate the difference between the current room 
and the previous room, and EOPs that are commonly 
used indicate more general information. The final goal 
of our research approach is to obtain a general internal 
representation of a robot behaving in a class of environ­
ments. 
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