
Switching from Bidirectional to Unidirectional Search

Hermann Kaindl
Gerhard Kainz

Siemens AG Osterreich
Geusaugasse 17
A-1030 Vienna

Austria

Roland Steiner
Kranzgasse4/17
A - l 150 Vienna

Austria

Andreas Auer
Penzingerstr. 18/12

A - l 140 Vienna
Austria

Klaus Radda
Weinwurmweg 1/53

A-1220Wien
Austria

Abstract

Recently, we showed that for traditional bidirec­
tional search with "front-to-end" evaluations, it is
not the meeting of search fronts but the cost of
proving the optimality of a solution that is prob­
lematic. Using our improved understanding of the
problem, we developed a new approach to improv­
ing this kind of search: switching to unidirectional
search after the search frontiers meet for the first
time (with the first solution found). This new ap­
proach shows improvements over previous bidirec­
tional search approaches and (partly) also over the
corresponding unidirectional search approaches in
different domains. Together with a special-purpose
improvement for the TSP, this approach showed
better results than the standard search algorithms
using the same knowledge.

1 Introduction
Linear-space search algorithms such as DFBB (depth-first
branch-and-bound) [Lawler and Wood, 1966] or
(iterative-deepening- [Korf, 1985) can solve very difficult
problems because they face no real space limitations. How­
ever, they have large search overheads if there are many dis­
tinct cost values, and if the problem graph is not a tree. So,
whenever sufficient memory is available, traditional best-first
search may be the best choice, since it expands the fewest
nodes among all admissible algorithms using the same cost
function [Zhang and Korf, 19931. Since machines with larger
and larger memories are becoming available, this approach
can be applicable for many problems in practice (e.g., route
planning).

Due to the optimality result of over unidirectional com­
petitors in [Dechter and Pearl, 1985], the question may arise
what to improve here. However, there is some renewed in­
terest in bidirectional heuristic search, which can both ex­
pand fewer nodes and be faster than [Kaindl and Kainz,
1997]. Still, there is some drawback involved with this kind
of search: the big effort for proving the optimality of solu­
tions found. The issue is to satisfy the specific termination
condition of such searches. We address this issue by propos­
ing a new approach that switches to unidirectional search im­
mediately after the bidirectional search finds the first solution.

This paper is organized as follows. In order to make it self-
contained, we sketch some background material on bidirec­
tional heuristic search. Then we propose our new approach
to bidirectional search that switches to unidirectional search
once a solution is found. After describing a more special-
purpose improvement, we finally demonstrate both the prac-
tical relevance of some theoretical bounds derived in [Kaindl
and Kainz, 1997) and the efficiency of our new search ap­
proach through presenting experimental results.

2 Background
First, let us be precise on what constitutes a bidirectional
search. When there is one goal node explicitly given, such
a search proceeds both in the forward direction from the start
node s to t and in the backward direction from t to s [Pohl,
1971). Bidirectional search is possible if for a given node
n the set of parent nodes can be determined for which
there exist operators that lead from to n. Searching back­
wards means generating parent nodes successively from the
goal node t (see, e.g., [Russell and Norvig, 1995]). In other
words, backward search implements reasoning about the op­
erators in the backward direction.

Bidirectional search also works correctly in cases where
the costs of inverse arcs between any two nodes are different:
the backward search implements reasoning in the backward
direction but takes account of the cost of going in the forward
direction. More formally, is the cost
of an optimal path from is the cost
of an optimal path from and is used for notational
convenience only.1 A l l the bidirectional search algorithms
dealt with in this paper work correctly under these conditions
and do not require that the operators are reversible or that the
cost of a path is the same in either direction.

In this paper we focus on the kind of traditional bidirec­
tional search with "front-to-end" evaluations: the heuristic
evaluation functions estimate the cost of an optimal
path to the appropriate endpoint uses as the
target for the forward search, and uses s as the tar­
get for the backward search). So, we do not technically
deal here with those algorithms with "front-to-front" evalu­
ations, that perform a wave-shaping strategy: neither with

1The notation we use in this paper is summarized in the
appendix.

1178 SEARCH

the traditional BHFFA [de Champeaux and Sim, 1977] nor
with the more recent approach to non-traditional bidirectional
search called perimeter search [Dillenburg and Nelson, 1994;
Manzini, 1995]. Also the more recently proposed non-
traditional bidirectional search with "front-to-end" evalua­
tions [Kaindl el al., 1995; Kaindl and Kainz, 1997] is not
dealt with in this paper.

So, it is sufficient here to sketch the essentials of tradi­
tional bidirectional search with "front-to-end" evaluations.
We can view such a search essentially as two A*-type
searches in opposite directions.2 These are performed quasi-
simultaneously, i.e., on a sequential machine one node is ex­
panded after another, but the search direction is changed at
least from time to time. The decision for searching in the
forward or backward direction is made anew for each node
expansion, most often according to the cardinality criterion
[Pohl, 1971]: search in the direction with fewer open nodes.

The typical representatives of traditional bidirectional
heuristic search with "front-to-end" evaluations are the two
algorithms BHPA [Pohl, 1971] and BS* |Kwa, 19891. While
BHPA explores part of the search space twice, BS* can avoid
this due to its major improvements over BHPA. 3 Both BHPA
and BS* are admissible if is consistent.4 We assume the
availability of a consistent heuristic evaluation function in
both directions.

Whenever the search frontiers meet at some node n, a so­
lution is found. Its cost is the cost of
the path found by the forward search from s to n, plus the
cost of the path found by the backward search from n to /.
Even when the two parts of such a solution of the forward and
the backward search are optimal, however, the concatenated
solution path is not necessarily optimal. Therefore, such an
algorithm requires a special termination condition for guaran-
teeing optimal solutions. The termination condition of BHPA
is as follows:

(1)

This condition essentially means that the cost of the
best (least costly) complete path from s to t found so far is not
larger than an estimate computed from the in both
search frontiers. If the heuristic used for these estimates is ad-
missible, this path must already be an optimal solution in or-

2The origin is clearly BHPA [Pohl, 19711, which can be intu­
itively viewed to consist of two HPA searches in opposing direc
tions. For admissible but not consistent heuristic functions, the op-
tion to move nodes back from CLOSED to OPEN is important, if a
new better is found. As long as the heuristic function used
is consistent, we can ignore the specific differences for our discus­
sion here.

3These improvements are the following:
(i) nipping: If a node is selected for expansion which is already
closed in the opposite search tree, it can just be closed without ex­
pansion.
(ii) pruning: In the same situation, descendants of this node in the
opposing OPEN list can be removed.

is said to be consistent if for
all nodes m and n. If for any goal node this implies
that is admissible, i.e., the heuristic function never overestimates
the minimal cost.

der to satisfy this termination condition. Implicitly this is also
the condition for successful termination of the improved al­
gorithm BS* [Kwa, 1989], which removes all nodes whose

and terminates when
is empty.

Since understanding this condition is important for this pa­
per, we discuss shortly how it can be achieved (this issue is
dealt with more formally in (Kaindl and Kainz, 1997]). If
there is a solution path from .s to /, BHPA or BS* wil l termi­
nate successfully (i.e., by finding an optimal path) if and only
if both the following conditions are satisfied:

1.an optimal solution must have been found, that is,
and

2. at least in one of the search frontiers d of BHPA or
BS* the minimum /-value must have been raised at
least to the value of an optimal solution C*, that is.

The minimum of are at first the values
and respectively- S i n c e i s consistent they do

not exceed The minimum of increase
only gradually until all the nodes with of at
least one search frontier are expanded (or nipped or pruned by
BS*). Since the maximum of those values is used, only one
of them must become During the search,
always holds, and when an optimal solution is found,

3 Switching to Unidirectional Search

Because of the issue of satisfying the termination condi­
tion, we devised an approach of switching from bidirectional
search to unidirectional search once a solution is found. De­
pending on the concrete instantiation of this approach, the
termination condition may be satisfied earlier, or a different
condition of the unidirectional search algorithm used may ap­
ply directly.

The first instantiation actually amounts to a simple modi­
fication of BS*. When the search frontiers meet for the first
time, the search direction d with

(2)

is selected and kept until the end of the search. According
to this condition, it chooses the O P E N set with the higher
value, and directs the whole effort of the search after the first
meeting towards achieving a minimum in that
OPEN set. In case of equality, the cardinality criterion is used
as a tie-breaker. We call this algorithm Switch-A*.

The second instantiation is a variant of Switch-A* that uti-
lizes the Max method for dynamically improving heuristic
values according to I Kaindl and Kainz, 19971. So, we call
it Max-Switch-A*. In order to make good use of this method,
the differences in one frontier used for improving the heuris­
tic values in the other should be as high as possible. There-
fore, it is useful to have reached the next level of ,
for improving the search in the other direction. That is why
Max-Switch-A* docs not change its search direction accord­
ing to the cardinality criterion, but whenever the next level of

KAINDL ET AL. 1179

Figure 1: An example of complementary nodes.

/-values is reached in the current search direction. Also af­
ter the first meeting of the search frontiers, the current search
direction is kept until this condition is fulfilled. In effect, this
amounts to a delay of switching. Only then, the final decision
for the search direction is made by Max-Switch-A*.

The third instantiation can be implemented as follows (we
call it Switch-DFBB-Trans):

1. Perform A*-type searches in opposite directions as in
BHPA or BS*, i.e., change the search direction accord­
ing to the cardinality criterion.

2. When the search frontiers meet for the first time, deter­
mine the search direction d according to condition (2).

3. Switch to and initialize its upper bound
with

4. Perform a search with DFBB-Trans in direction d (uti­
lizing the hash table entries from the previous searches
and starting from the frontier of until its normal
termination condition holds.

This instantiation strives to be faster, since DFBB-Trans
does not have to maintain a priority queue like A*. In ad­
dition, DFBB-Trans does not expand nodes (in the sense of
generating all the children of the expanded node at once), so
it can save the generation of certain nodes that A* generates
during node expansion.

Other instantiations are easy to construct, since in principle
this approach may switch to any unidirectional search. When,
for instance, "plain" DFBB or IDA* is used, only linear stor­
age is needed for the remaining search. Still, the information
already stored in the hash table of the bidirectional search can
be used to improve efficiency (e.g., as in BAI [Kaindl el a/.,
19951).

4 Bidirectional Search for the TSP
We also present here another approach for improving bidirec­
tional search that is more specific for domains where a fixed
number of items is to be sequenced. In the TSP (traveling
salesman problem) these items are the cities. In such a do­
main, it is possible to save the expansion of nodes through
recognizing complementary paths in the search graph. In the
following, we explain this idea specifically for the TSP While
it is possible with some additional book-keeping to apply this
approach to the asymmetric TSP [Steiner, 19961, we explain
here the simpler case of the symmetric TSP.

5DFBB-Trans was first mentioned in [Kaindl el a/., 19951. It
simply utilizes the approach of improving heuristic values through a
transposition table (Reinefeld and Marsland, 19941 in DFBB.

Figure 2: A graph of bidirectional search for a TSP example.

The key idea is to perform a unidirectional search (that
stores nodes) and to interpret every node both as a partial tour
in the forward direction that it represents directly, and con­
currently as a complementary tour in the backward direction.
So, in just one explicitly stored search frontier, implicitly two
frontiers are contained. The search must be able, of course,
to identify those nodes that represent complementary tours —
we call them complementary nodes.

The example in Figure 1 illustrates complementary nodes.
Let us assume that some node represents the best partial
route found so far between some start city A and some cur­
rently visited city, say B, that goes through certain other
cities, e.g., Let us take the set of all these cities,
e.g., and compute its set complement, e.g.,

Then the complementary node is the one that rep­
resents the best partial route found so far between the same
start city ,4 and the same currently visited city, in this exam­
ple 13, that goes through this complementary set of cities, in
this example

Figure 2 illustrates an example of a TSP search that uti-
lizes this idea. The graph in the left part of this figure defines
the problem, and the graph in the right shows a snapshot of a
corresponding search.6 The important point is that the node
ABD is complementary to the node A C D , and so the search
can already recognize the meeting of the corresponding par­
tial tours and therefore a complete solution.

Apart from admissibility, the most important theoretical re­
sult about this approach is dominance over A*. That is, all
the nodes expanded by either BHPA/TSP or BS*/TSP (that
include this approach) must be expanded by A* . The corre­
sponding proofs can be found in [Steiner, 19961.

5 Experimental Results

Our experiments showed promising results in several do­
mains: mazes (like those used in [Kaindl and Kainz, 1997]),
route planning (like in [Kwa, 1989J), TSP, and 15-Puzzle. In
all these domains, the new "switching" approach gives bet­
ter results than BS* in terms of both generated nodes and
running time. These results are statistically significant. In

()ln this paper we use the minimum spanning tree of the cities not
yet visited as the heuristic function

1180 SEARCH

addition, we gained empirical evidence that the conjecture
in [Kwa, 1989] that BS* would become generally superior
to A* for more difficult problems is invalid. In the follow­
ing, we focus on the domains TSP and 15-Puzzle, which are
also very interesting in regard to the theoretical results pre­
sented in (Kaindl and Kainz, 1997], TSP is a domain where
the "naive" approach of implementing BHPA leads to nearly
twice of the node expansions compared to A*, the theoreti-
cal upper bound. The 15-Puzzle with the Manhattan distance
heuristic, however, is a domain with very few different /-
values, where according to the theory in I Kaindl and Kainz,
1997] comparably many node expansions can be saved by
the traditional approach of bidirectional search using "front-
to-end" evaluations. So, our results are consistent with this
theory and they illustrate that the bounds derived there are
reasonable in practice.

5.1 Euclidean TSP

First we present here our experimental results on the Eu­
clidean TSP These experiments did not attempt to achieve
the best ever results in this particular domain, but they were
intended to compare our new algorithms with the standard
heuristic search algorithms. All the compared algorithms use
no domain-specific knowledge about the Euclidean TSP other
than the minimum spanning tree heuristic. Figure 3 shows
the results for 19-city problems.7 We selected these particu­
lar results for presentation since they are reproducible using
any standard PC with 48MBytes of main memory. On aver­
age, A* generated 73,650 nodes in 7.0 seconds for solving
one problem instance.

On such problem instances, both BHPA (result is rounded
to 200%) and BS* expand close to twice the number of nodes
compared to A*. BS* can save only 1% of the node expan­
sions compared to BHPA. In fact, the naive implementations
explore the same space twice, and so they treat the TSP as
a perfectly A*-symmetric domain as defined in [Kaindl and
Kainz, 1997].

The versions BHPAATSP and BS*/TSP that recognize com­
plementary nodes as described above expand half of the
nodes compared to the "naive" implementations. So, they are

We do not include here results from perimeter search, since ac­
cording to our experiments this approach appears not to work satis­
factorily in this domain (like for maze problems as shown in I Kaindl
and Kainz, 1997]).

slightly better in terms of node expansions than A* (as they
dominate A*'), hut they are actually slower than A*.

The best results in terms of running time achieves Switch-
DFBB Trans as presented above. After 8% of its overall node
generations, it switches to DFBB-Trans. At this time it has on
average found a solution with cost 1.02 x C\ which is used
as the initial upper bound by DFBB-Trans. Note, that due to
its depth-first search DFBB-Trans cannot make use of com­
plementary nodes and really works unidirectionally. While
overall Switch-DFBB-Trans generates more nodes than A*
or BS*/TSP, it is faster than both of them due to the fact that
DFBB-Trans is faster per node searched.

The only other algorithm competing here is DFBB-Trans
itself. However, the initial bound gained through the nearest-
neighbor heuristic is worse than the bound gained through
the bidirectional approach running first, and within the time
required for finding the better bound by Switch-DFBB-Trans,
DFBB-Trans alone cannot achieve such a good bound on its
own.

It is intersting to compare this bidirectional approach with
unidirectional approaches that first find an approximate so­
lution and continue the search until they find an optimal so­
lution IGent and Walsh, 1997; Korf, 19951. For instance, in
the number partitioning problem such an algorithm may of­
ten know from the solution itself that it is already optimal.
Our approach does not need such a domain -specific property.
It gradually raises the minimum f-values of OPENd until the
termination condition (1) is satisfied. While this is time con­
suming, our "switch" approach improves the efficiency.

In summary, Switch DFBB-Trans is better in terms of run­
ning time than all these competitors, which include the stan­
dard search algorithms that have the same knowledge avail­
able. This result is statistically significant. For example, the
probability that the improvement of the running time over
DFBB-Trans is due to chance fluctuation is 0.66 percent ac­
cording to a test that compares the means of the paired sam-
ples of the absolute running times, and it is even much smaller
according to the same test for the data relative to the difficulty
of each instance (0.02 percent) as well as according to the
sign test (0.06 percent).8 In comparison with A*, this chance
is even smaller than 0.05 percent for all these statistic tests.

8 For more details on the statistic tests used we refer the interested
reader to [Kaindl and Smetana. 19941.

KAINDL ET AL. 1181

5.2 15-PuzzIe
Now let us have a look on specific experimental results for
finding optimal solutions to a set of (sliding-tile) 15-Puzzle
problems.9 We compare algorithms that achieve the best
published results in this domain with IDA* and BS* as
well as Switch-A* and Max-Switch-A* (as presented above).
A l l the compared algorithms use no domain-specific knowl­
edge about the puzzle other than the Manhattan distance
heuristic.10 The main storage available on a Convex C3220
was up to 256 Mbytes.

Within this given amount of storage. A* , BHPA, BS* and
Max-BAI-Trans IKaindl and Kainz, 19971 can store a max-
imum of 5 million nodes in our implementations. BIDA*
[Manzini, 1995] requires more storage per node, so it can
store a maximum of 1 million perimeter nodes within 256
Mbytes.11

While Max-BAI-Trans and BIDA* can find optimal so­
lutions to all of the given instances, the traditional best-
first searches cannot (with this amount of storage and the
Manhattan distance as the only knowledge source): A* solves
34 and BS* 59 from the given set of 100 problem instances
(for BHPA we did not gather the complete data since they
would be clearly worse than those of BS*).

Switch-A* solves 63 instances of this set under these con­
straints, so in this regard it is better than both A* and BS*. On
the set of 34 problem instances solvable by A* , Switch-A*
just expands 42.3% of the nodes expanded by A* and needs
55.5% of its time. Max-Switch-A* solves 79 problems of the
set of 100 instances.

On the set of 56 problem instances solvable by both BS*
and Switch-A*, the latter expands 93.1% of the nodes ex­
panded by BS* and needs 93.6% of its time.12 On average,
Switch-A* finds the first solution after 7%; of its overall time,
and the average cost of these solutions is 1.06 x C*. For the
overall data see Table 1. This table shows that on this set
of instances, our new algorithm Switch-A* is as good as the
best published approaches so far IKaindl and Kainz, 1997;
Manzini, 19951.13 While the precise mean data might even
suggest a slight improvement, statistic tests tell us that there

9We used the set of 100 instances from I Korf, 19851.
10With much improved heuristic functions, much more efficient

searches result [Culberson and Sehaeffer, 1996] and even solving
24-Puzzle instances has become feasible IKorf and Taylor, 1996).

1 'Since a given machine has a fixed storage size, it would not be
fair to compare algorithms with the same number of nodes when
these require different amounts of storage. However, BIDA* has
an optimum in running time for a smaller perimeter size that does
not even require that available amount of storage IKaindl and Kainz,
1997].

1 2A* cannot be compared on this set. Just to give an idea of the
overall difficulty of this problem set, note that BS* generates some
2.25 million nodes on average, which needs slightly less than 90
seconds on a Convex C3220.

13BIDA*'s result here is worse than the data reported in (Manzini,
1995]. This is primarily due to the use of a different machine and
a different implementation that is based on the very efficient code
of IDA* for the puzzle provided to us by Korf that we are using.
In such an implementation the overhead especially of wave shaping
shows up more clearly even when using the runtime optimizations
described in [Manzini, 1995]. While we had no access to the im-

Table 1: Comparison on the 15-Puzzle (results relative to BS*
in %).

BS*
IDA*
BIDA* (depth 16)
Max-BAI-Trans
Switch-A*
Max-Switch-A*

Nodes generated
100.0
1628.4
19.6
108.2
93.1
62.1

Running time
100.0
206.2
112.1
94,4
93.6
78.8

is a high chance fluctuation. So, we cannot reject the null
hypothesis that Switch-A* and Max-BAI-Trans are equally
good. In fact, the difference amounts to less than 1% (in ef­
fect, less than 1 second) per problem instance on average.

Max-Swilch-A*, however, improves the performance on
these problems. It expands only 62.1 % of the nodes expanded
by BS*, but due to the overhead of applying the Max tech­
nique, it needs 78.8% of its time. Still, this result is better
than the results of the previously best methods BIDA* and
Max-BAI-Trans both in terms of the mean and the median
values. It is statistically significant according to the sign test
and a test that compares the means of the paired samples of
the absolute running times.

Still, the question may arise, whether the application of the
Max technique directly in BS* could not be better. This ap­
plication was also studied in [Kainz, 1996] and achieved im­
provements, but for a good utilization of this technique the
search direction should stay constant at least for a while. Fi­
nally, it turned out that the switching approach presented in
this paper is the limit of what can be achieved by the applica­
tion of Max in the context of BS*.

The major issue with this approach is that it was not able
to solve all the problem instances. However, machines with
larger and larger memories are becoming available now. In
contrast to several approaches to memory-bounded search
like M A * [Chakrabarti et al., 1989], MREC [Sen and Bagchi,
1989], SMA* [Russell, 19921 and ITS [Ghosh et al., 19941,
our approach showed clear improvements in running time
over IDA*.

Moreover, using much improved heuristic functions like
those developed by [Culberson and Sehaeffer, 1996; Korf and
Taylor, 1996] would make it possible to run Switch-A* and
Max-Switch-A* even with smaller available memory. We
conjecture that also Switch-A* would be better under these
conditions than both BIDA* and Max-BAI-Trans, since these
approaches perform dynamic improvements of the heuristie
during their search, which may not be as effective for such
improved heuristics as it is for the Manhattan distance heuris­
tic.

plementation by Manzini, in E-mail communication with him we
were given some hints about it, and there was agreement about the
overall effect on the relative running times due to the different im­
plementations of IDA*. The data for BIDA* and Max-BAI-Trans in
this table are also not exactly those reported in [Kaindl and Kainz,
1997], since not all of the problem instances are included.

1182 SEARCH

6 Conclusion
The major problem of traditional bidirectional search with
"front-to-end" evaluations as exemplified by BHPA and BS*
is the cost of satisfying the termination condition. So, we
addressed this problem and developed a new approach to im­
proving this kind of search: switching to unidirectional search
after the search frontiers meet for the first time (with the first
solution found). This new approach shows improvements
over previous bidirectional search approaches and partly also
over the corresponding unidirectional search approaches in
different domains.

Appendix, Glossary of Notation

Start node and goal node, respectively.
Current search direct ion index; when search
is in the fo rward direction d = 1, and when
in the backward direction d=2.
Cost of an opt imal path f rom s to t.
Cost of an opt imal path f rom m to n if d = 1,
or f rom n to m if d = 2.
Cost of an opt imal path f rom .s? to n if d = 1,
or f rom n to t if d = 2.
Cost of an opt imal path from n to t if d — 1,
or f rom s to n if d = 2.
Estimates of and respectively.
Static evaluation function:
Cost of the best (least costly) complete path
found so far f rom s to t.
The set of open nodes in search direction d.
The set of closed nodes in search direction d.

References
[Chakrabarti et al., 1989] P.P. Chakrabarti, S. Ghose, A. Acharya.

and S.C. DcSarkar. Heuristic search in restricted memory. Artifi-
cial intelligence, 41(2): 197-221, 1989.

[Culberson and Schaeffer, 1996] J. Culberson and J. Schaeffer.
Searching with pattern databases. In G. McCalla, editor, Ad­
vances in Artificial Intelligence, pages 402-416. Springer-Verlag.
Berlin, 1996.

[de Champeaux and Sim, 1977] D. de Champeaux and L. Sim. An
improved bidirectional heuristic search algorithm. J. ACM,
24(2):177-191, 1977.

iDechter and Pearl, 1985] R. Dechter and J. Pearl. Generalized
best-first strategies and the optimality of ,4*. J. ACM, 32(3):505-
536, 1985.

iDillenburg and Nelson, 1994] J.F. Dillenburg and PC. Nelson.
Perimeter search. Artificial Intelligence, 65(1): 165-178, 1994.

[Gent and Walsh, 1997] I.P Gent and T. Walsh. From approximate
to optimal solutions: constructing pruning and propagation rules.
In Proc. Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97), pages 1396-1401. San Francisco, CA:
Morgan Kaufmann Publishers, 1997.

iGhosh et al., 1994] S. Ghosh, A. Mahanti, and D.S. Nau. ITS: an
efficient limited-memory heuristic tree search algorithm. In Proc.
Twelfth National Conference on Artificial Intelligence (AAAI-
94), pages 1353-1358. Menlo Park, CA: A A A I Press / The MIT
Press, 1994.

IKaindl and Kainz, 1997] H. Kaindl and G. Kainz. Bidirectional
heuristic search reconsidered. Journal of Artificial Intelligence
Research (JAIR), 7:283-317, 1997.

IKaindl and Smetana, 1994] H. Kaindl and H. Smetana. Experi­
mental comparison of heuristic search algorithms. In AAAI-94
Workshop on Experimental Evaluation of Reasoning and Search
Methods, pages 11-14, 1994.

IKaindl et ai, 1995] H. Kaindl, G. Kainz, A. Leeb, and H.
Smetana. How to use limited memory in heuristic search. In
Proc. Fourteenth International Joint Conference on Artificial In­
telligence (IJCAI-95), pages 236-242. San Francisco, CA: Mor­
gan Kaufmann Publishers, 1995.

[Kainz, 1996] G. Kainz. Neue Algorithmen fur die bidirektionale
heuristische Suche. Doctoral dissertation, Technische Universitat
Wien, Vienna, Austria, 1996.

[Korf and Taylor, 1996] R.E. Korf and L.A. Taylor. Finding opti­
mal solutions to the Twenty-Four Puzzle. In Proc. Thirteenth
National Conference on Artificial Intelligence (AAAI-96), pages
1202-1207. Menlo Park, CA: A A A I Press / The MIT Press,
1996.

I Korf, 19851 R.E. Korf. Depth-first iterative deepening: An opti­
mal admissible tree search. Artificial Intelligence, 27(1):97—109,
1985.

[Korf, 1995] R.E. Korf. From approximate to optimal solutions:
a case study of number partitioning. In Proc. Fourteenth Inter­
national Joint Conference on Artificial Intelligence (IJCAI-95),
pages 266-272. San Francisco, CA: Morgan Kaufmann Publish­
ers, 1995.

[Kwa, 1989] J.B.H. Kwa. BS*: An Admissible Bidirectional
Staged Heuristic Search Algorithm. Artificial Intelligence,
38(2):95 109, 1989.

lLawler and Wood, 1966] E.L. Lawler and D. Wood. Branch-and-
bound methods: a survey. Operations Research, 14(4):699-719,
1966.

fManzini, 19951 G. Manzini. BIDA*: an improved perimeter
search algorithm. Artificial Intelligence, 75(2):347-360, 1995.

IPohl, 1971] I. Pohl. Bi-directional search. In Machine Intelligence
6, pages 127-140, Edinburgh, 1971. Edinburgh University Press.

[Reinefeld and Marsland, 1994) A. Reinefeld and T.A. Marsland.
Enhanced iterative-deepening search. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMl), 16(12):701-709,
July 1994.

I Russell and Norvig, 1995] S.J. Russell and P. Norvig. Artificial In­
telligence: A Modern Approach. Prentice Hall, Englewood Cliffs,
NJ, 1995.

[Russell, 1992] S. Russell. Efficient memory-bounded search meth­
ods. In Proc. Tenth European Conference on Artificial Intelli­
gence (ECAI-92), pages 1-5. Chichester, England: Wiley, 1992.

[Sen and Bagchi, 1989] A.K. Sen and A. Bagchi. Fast recursive for­
mulations for best-first search that allow controlled use of mem­
ory. In Proc. Eleventh International Joint Conference on Artifi­
cial Intelligence (IJCAI-89), pages 297-302. San Francisco, CA:
Morgan Kaufmann Publishers, 1989.

[Steiner, 1996] R. Steiner. Back jumping in Zustandsraumen und
bidirektionale Suche beim TSP. Diplomarbeit, Technische Uni­
versitat Wien, Vienna, Austria, 1996.

[Zhang and Korf, 19931 W. Zhang and R.E. Korf. Depth-first vs.
best-first search: new results. In Proc. Eleventh National Confer­
ence on Artificial Intelligence (AAAI-93), pages 769-775. Menlo
Park, CA: A A A ! Press /The M I T Press, 1993.

KAINDL ET AL 1183

