
A Brief Introduct ion to Boosting

Robert E. Schapire
AT&T Labs, Shannon Laboratory

180 Park Avenue, Room A279, Florham Park, NJ 07932, USA
www. research. att .com/~schapire

schapire@research. att. com

Abstract
Boosting is a general method for improving the
accuracy of any given learning algorithm. This
short paper introduces the boosting algorithm
AdaBoost, and explains the underlying theory
of boosting, including an explanation of why
boosting often does not suffer from overfitting.
Some examples of recent applications of boost­
ing are also described.

Background
Boosting is a general method which attempts to "boost"
the accuracy of any given learning algorithm. Boosting
has its roots in a theoretical framework for studying ma­
chine learning called the "PAC" learning model, due to
Valiant [37]; see Kearns and Vazirani [24] for a good in­
troduction to this model. Kearns and Valiant [22, 23]
were the first to pose the question of whether a "weak"
learning algorithm which performs just slightly bet-
ter than random guessing in the PAC model can be
"boosted" into an arbitrarily accurate "strong" learning
algorithm. Schapire [30] came up with the first prov­
able polynomial-time boosting algorithm in 1989. A
year later, Freund [14] developed a much more efficient
boosting algorithm which, although optimal in a certain
sense, nevertheless suffered from certain practical draw-
backs. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and
Simard [13] on an OCR task.

AdaBoost
The AdaBoost algorithm, introduced in 1995 by Freund
and Schapire [18], solved many of the practical difficul­
ties of the earlier boosting algorithms, and is the fo­
cus of this paper. Pseudocode for AdaBoost is given
in Fig. 1. The algorithm takes as input a training
set where each belongs to some
domain or instance space X, and each label is in
some label set Y. For most of this paper, we assume

later, we discuss extensions to the multi-
class case. AdaBoost calls a given weak or base learning
algorithm repeatedly in a series of rounds

Given:
where

Initialize
For

Train weak learner using distribution Dt.
Get weak hypothesis with error

Choose

Update:

where Zt is a normalization factor (chosen so that
D t+1 will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

One of the main ideas of the algorithm is to maintain
a distribution or set of weights over the training set.
The weight of this distribution on training example on
round t is denoted Initially, all weights are set
equally, but on each round, the weights of incorrectly
classified examples are increased so that the weak learner
is forced to focus on the hard examples in the training
set.

The weak learner's job is to find a weak hypothesis
appropriate for the distribution Dt.

The goodness of a weak hypothesis is measured by its
error

Notice that the error is measured with respect to the

SCHAPIRE 1401

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as reported by
Schapire et al. [32]. Left, the training and test error curves (lower and upper curves, respectively) of the combined
classifier as a function of the number of rounds of boosting. The horizontal lines indicate the test error rate of the
base classifier as well as the test error of the final combined classifier. Right The cumulative distribution of margins
of the training examples after 5,100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden)
and solid curves, respectively.

distribution Dt on which the weak learner was trained.
In practice, the weak learner may be an algorithm that

can use the weights Dt on the training examples. Alter­
natively, when this is not possible, a subset of the train­
ing examples can be sampled according to Dt, and these
(unweighted) resampled examples can be used to train
the weak learner.

Once the weak hypothesis has been received, Ada-
Boost chooses a parameter as in the figure. Intu-
itively, at measures the importance that is assigned to
ht. Note that at (which we can assume
without loss of generality), and that at gets larger as Et
gets smaller.

The distribution Dt is next updated using the rule
shown in the figure. The effect of this rule is to increase
the weight of examples misclassified by ht, and to de­
crease the weight of correctly classified examples. Thus,
the weight tends to concentrate on "hard" examples.

The final hypothesis H is a weighted majority vote of
the T weak hypotheses where at is the weight assigned
to ht.

Schapire and Singer [33] show how AdaBoost and its
analysis can be extended to handle weak hypotheses
which output real-valued or confidence-rated predictions.
That is, for each instance x, the weak hypothesis ht out­
puts a prediction whose sign is the predicted
label and whose magnitude gives a
measure of "confidence" in the prediction.

Analyzing the training error
The most basic theoretical property of AdaBoost con­
cerns its ability to reduce the training error. Let us
write the error of as Since a hypothesis that
guesses each instance's class at random has an error rate
of 1/2 (on binary problems), thus measures how much

better than random are predictions. Freund and
Schapire [18] prove that the training error (the fraction
of mistakes on the training set) of the final hypothesis
H is at most

(i)

Thus, if each weak hypothesis is slightly better than ran­
dom so that for some then the training
error drops exponentially fast.

A similar property is enjoyed by previous boosting al­
gorithms. However, previous algorithms required that
such a lower bound be known a priori before boost­
ing begins. In practice, knowledge of such a bound is
very difficult to obtain. AdaBoost, on the other hand, is
adaptive in that it adapts to the error rates of the indi­
vidual weak hypotheses. This is the basis of its name —
"Ada" is short for "adaptive."

The bound given in Eq. (1), combined with the bounds
on generalization error given below prove that AdaBoost
is indeed a boosting algorithm in the sense that it can
efficiently convert a weak learning algorithm (which can
always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can
generate a hypothesis with an arbitrarily low error rate,
given sufficient data).

Generalization error
FVeund and Schapire [18] showed how to bound the
generalization error of the final hypothesis in terms of
its training error, the size m of the sample, the VC-
dimension d of the weak hypothesis space and the num-

1402 INVITED SPEAKERS

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of 27 benchmark problems as
reported by Freund and Schapire [16]. Each point in each scatterplot shows the test error rate of the two competing
algorithms on a single benchmark. The y-coordinate of each point gives the test error rate (in percent) of C4.5 on
the given benchmark, and the x-coordinate gives the error rate of boosting stumps (left plot) or boosting C4.5 (right
plot). Al l error rates have been averaged over multiple runs.

ber of rounds T of boosting. (The VC-dimension is a
standard measure of the "complexity" of a space of hy­
potheses. See, for instance, Blumer et al. [4].) Specifi­
cally, they used techniques from Baum and Haussler [3]
to show that the generalization error, with high proba­
bility, is at most

defined to be

where denotes empirical probability on the train­
ing sample. This bound suggests that boosting will
overfit if run for too many rounds, i.e., as T becomes
large. In fact, this sometimes does happen. However, in
early experiments, several authors [8, 12, 28] observed
empirically that boosting often does not overfit, even
when run for thousands of rounds. Moreover, it was ob­
served that AdaBoost would sometimes continue to drive
down the generalization error long after the training er­
ror had reached zero, clearly contradicting the spirit of
the bound above. For instance, the left side of Fig. 2
shows the training and test curves of running boost­
ing on top of Quinlan's C4.5 decision-tree learning al­
gorithm [29] on the "letter" dataset.

In response to these empirical findings,
Schapire et al. [32], following the work of Bartlett [1],
gave an alternative analysis in terms of the margins of
the training examples. The margin of example (x, y) is

It is a number in which is positive if and only if
H correctly classifies the example. Moreover, the mag­
nitude of the margin can be interpreted as a measure of
confidence in the prediction. Schapire et al. proved that
larger margins on the training set translate into a su­
perior upper bound on the generalization error. Specifi­
cally, the generalization error is at most

for any with high probability. Note that this bound
is entirely independent of T, the number of rounds of
boosting. In addition, Schapire et al. proved that boost­
ing is particularly aggressive at reducing the margin (in a
quantifiable sense) since it concentrates on the examples
with the smallest margins (whether positive or negative).
Boosting's effect on the margins can be seen empirically,
for instance, on the right side of Fig. 2 which shows the
cumulative distribution of margins of the training ex­
amples on the "letter" dataset. In this case, even after
the training error reaches zero, boosting continues to in­
crease the margins of the training examples effecting a
corresponding drop in the test error.

Attempts (not always successful) to use the insights
gleaned from the theory of margins have been made

SCHAPIRE 1403

Figure 4: Comparison of error rates for AdaBoost and four other text categorization methods (naive Bayes, proba­
bilistic TF-IDF, Rocchio and sleeping experts) as reported by Schapire and Singer [34]. The algorithms were tested
on two text corpora — Reuters newswire articles (left) and AP newswire headlines (right) — and with varying
numbers of class labels as indicated on the x-axis of each figure.

by several authors [6, 20, 26]. In addition, the mar­
gin theory points to a strong connection between boost­
ing and the support-vector machines of Vapnik and oth­
ers [5, 9, 38] which explicitly attempt to maximize the
minimum margin.

The behavior of AdaBoost can also be understood
in a game-theoretic setting as explored by Freund and
Schapire [17, 19] (see also Grove and Schuurmans [20]
and Breiman 7]). In particular, boosting can be viewed
as repeated play of a certain game, and AdaBoost can
be shown to be a special case of a more general algo­
rithm for playing repeated games and for approximately
solving a game. This also shows that boosting is related
to linear programming.

Multiclass classification
There are several methods of extending AdaBoost to
the multiclass case. The most straightforward general­
ization [18], called AdaBoost.Ml, is adequate when the
weak learner is strong enough to achieve reasonably high
accuracy, even on the hard distributions created by Ada-
Boost. However, this method fails if the weak learner
cannot achieve at least 50% accuracy when run on these
hard distributions.

For the latter case, several more sophisticated meth­
ods have been developed. These generally work by re­
ducing the multiclass problem to a larger binary prob­
lem. Schapire and Singer's [33] algorithm AdaBoost.MH
works by creating a set of binary problems, for each ex-
ample x and each possible label of the form: "For
example x, is the correct label or is it one of the
other labels?" Freund and Schapire's [18] algorithm
AdaBoost M2 (which is a special case of Schapire and
Singer's [33] AdaBoost,MR algorithm) instead creates
binary problems, for each example with correct label

and each incorrect label of the form: "For example
. is the correct label or

These methods require additional effort in the de­
sign of the weak learning algorithm. A differ­
ent technique [31], which incorporates Dietterich and
Bakiri's [11] method of error-correcting output codes,
achieves similar provable bounds to those of Ada­
Boost.MH and AdaBoost.M2, but can be used with
any weak learner which can handle simple, binary la­
beled data. Schapire and Singer [33] give yet another
method of combining boosting with error-correcting out­
put codes.

Experiments and applications
Practically, AdaBoost has many advantages. It is fast,
simple and easy to program. It has no parameters to
tune (except for the number of round T). It requires no
prior knowledge about the weak learner and so can be
flexibly combined with any method for finding weak hy­
potheses. Finally, it comes with a set of theoretical guar­
antees given sufficient data and a weak learner that can
reliably provide only moderately accurate weak hypothe­
ses. This is a shift in mind set for the learning-system
designer: instead of trying to design a learning algorithm
that is accurate over the entire space, we can instead
focus on finding weaking learning algorithms that only
need to be better than random.

On the other hand, some caveats are certainly in or­
der. The actual performance of boosting on a partic­
ular problem is clearly dependent on the data and the
weak learner. Consistent with theory, boosting can fail
to perform well given insufficient data, overly complex
weak hypotheses or weak hypotheses which are too weak.
Boosting seems to be especially susceptible to noise [10].

AdaBoost has been tested empirically by many re­
searchers, including [2, 10, 12, 21, 25, 28, 36]. For in­
stance, Freund and Schapire [16] tested AdaBoost on a
set of UCI benchmark datasets [27] using C4.5 [29] as a
weak learning algorithm, as well as an algorithm which

1404 INVITED SPEAKERS

Figure 5: A sample of the examples that have the largest
weight on an OCR task as reported by Freund and
Schapire [16]. These examples were chosen after 4 rounds
of boosting (top line), 12 rounds (middle) and 25 rounds
(bottom). Underneath each image is a line of the form

where d is the label of the example, l\
and l2 are the labels that get the highest and second
highest vote from the combined hypothesis at that point
in the run of the algorithm, and w1 ,w2 axe the corre-
sponding normalized scores.

finds the best "decision stump" or single-test decision
tree. Some of the results of these experiments are shown
in Fig. 3. As can be seen from this figure, even boost-
ing the weak decision stumps can usually give as good
results as C4.5, while boosting C4.5 generally gives the
decision-tree algorithm a significant improvement in per-
formance.

In another set of experiments, Schapire and Singer [34]
used boosting for text categorization tasks. For this
work, weak hypotheses were used which test on the pres­
ence or absence of a word or phrase. Some results of
these experiments comparing AdaBoost to four other
methods are shown in Fig. 4. In nearly all of these exper­
iments and for all of the performance measures tested,
boosting performed as well or significantly better than
the other methods tested. Boosting has also been ap­
plied to text filtering [35] and "ranking" problems [15].

A nice property of AdaBoost is its ability to identify
outliers, i.e., examples that are either mislabeled in the
training data, or which are inherently ambiguous and
hard to categorize. Because AdaBoost focuses its weight
on the hardest examples, the examples with the highest
weight often turn out to be outliers. An example of this
phenomenon can be seen in Fig. 5 taken from an OCR
experiment conducted by Freund and Schapire [16].

References

[1] Peter L. Bartlett. The sample complexity of pattern
classification with neural networks: the size of the
weights is more important than the size of the net­
work. IEEE Transactions on Information Theory,
44(2):525~536, March 1998.

[2] Eric Bauer and Ron Kohavi. An empirical com­
parison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, to ap-
pear.

[3] Eric B. Baum and David Haussler. What size net
gives valid generalization? Neural Computation,
1(1):151-160,1989.

[4] Anselm Blumer, Andrzej Ehrenfeucht, David Haus­
sler, and Manfred K. Warmuth. Leamability and
the Vapnik-Chervonenkis dimension. Journal of the
Association for Computing Machinery, 36(4):929-
965, October 1989.

[5] Bernhard E. Boser, Isabelle M. Guyon, and
Vladimir N. Vapnik. A training algorithm for op-
timal margin classifiers. In Proceedings of the Fifth
Annual ACM Workshop on Computational Learn­
ing Theory, pages 144-152,1992.

[6] Leo Breiman. Arcing the edge. Technical Report
486, Statistics Department, University of California
at Berkeley, 1997.

[7] Leo Breiman. Prediction games and arcing classi­
fiers. Technical Report 504, Statistics Department,
University of California at Berkeley, 1997.

[8] Leo Breiman. Arcing classifiers. The Annals of
Statistics, 26(3):801~849, 1998.

[9] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine Learning, 20(3):273-297,
September 1995.

[10] Thomas G. Dietterich. An experimental comparison
of three methods for constructing ensembles of de­
cision trees: Bagging, boosting, and randomization.
Machine Learning, to appear.

[11] Thomas G. Dietterich and Ghulum Bakiri. Solv­
ing multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Re-
search, 2:263-286, January 1995.

[12] Harris Drucker and Corinna Cortes. Boosting deci­
sion trees. In Advances in Neural Information Pro­
cessing Systems 8, pages 479-485, 1996.

[13] Harris Drucker, Robert Schapire, and Patrice
Simard. Boosting performance in neural networks.
International Journal of Pattern Recognition and
Artificial Intelligence, 7(4):705-719, 1993.

[14] Yoav Freund. Boosting a weak learning algo­
rithm by majority. Information and Computation,
121(2):256~285, 1995.

[15] Yoav Freund, Raj Iyer, Robert E. Schapire, and
Yoram Singer. An efficient boosting algorithm for
combining preferences. In Machine Learning: Pro­
ceedings of the Fifteenth International Conference,
1998.

[16] Yoav Freund and Robert E. Schapire. Experiments
with a new boosting algorithm. In Machine Learn­
ing: Proceedings of the Thirteenth International
Conference, pages 148-156, 1996.

SCHAPIRE 1405

[17] Yoav Freund and Robert E. Schapire. Game the-
ory, on-line prediction and boosting. In Proceedings
of the Ninth Annual Conference on Computational
Learning Theory, pages 325-332,1996.

[18] Yoav Preund and Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55(1): 119-139, August 1997.

[19] Yoav Freund and Robert E. Schapire. Adaptive
game playing using multiplicative weights. Games
and Economic Behavior, to appear.

[20] Adam J. Grove and Dale Schuurmans. Boosting
in the limit: Maximizing the margin of learned en­
sembles. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 1998.

[21] Jeffrey C. Jackson and Mark W. Craven. Learning
sparse perceptrons. In Advances in Neural Informa-
tion Processing Systems 8, pages 654-660,1996.

[22] Michael Kearns and Leslie G. Valiant. Learning
Boolean formulae or finite automata is as hard
as factoring. Technical Report TR-14-88, Harvard
University Aiken Computation Laboratory, August
1988.

[23] Michael Kearns and Leslie G. Valiant. Crypto­
graphic limitations on learning Boolean formulae
and finite automata. Journal of the Association for
Computing Machinery, 41(l):67-95, January 1994.

[24] Michael J. Kearns and Umesh V. Vazirani. An In-
troduction to Computational Learning Theory. MIT
Press, 1994.

[25] Richard Maclin and David Opitz. An empirical eval­
uation of bagging and boosting. In Proceedings of
the Fourteenth National Conference on Artificial In-
telligence, pages 546-551, 1997.

[26] Llew Mason, Peter Bartlett, and Jonathan Baxter.
Direct optimization of margins improves general­
ization in combined classifiers. Technical report,
Deparment of Systems Engineering, Australian Na­
tional University, 1998.

[27] C. J. Merz and P. M. Murphy. UCI repos­
itory of machine learning databases, 1998.
www.ics.uci.edu/-mlearn/MLRepository.html.

[28] J. R. Quinlan. Bagging, boosting, and C4.5. In
Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 725-730, 1996.

[29] J. Ross Quinlan. C4-5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[30] Robert E. Schapire. The strength of weak learnabil-
ity. Machine Learning, 5(2): 197-227,1990.

[31] Robert E. Schapire. Using output codes to boost
multiclass learning problems. In Machine Learning:
Proceedings of the Fourteenth International Confer-
ence, pages 313-321, 1997.

1406 INVITED SPEAKERS

[32] Robert E. Schapire, Yoav Freund, Peter Bartlett,
and Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651-1686, October
1998.

[33] Robert E. Schapire and Yoram Singer. Improved
boosting algorithms using confidence-rated predic­
tions. In Proceedings of the Eleventh Annual Con­
ference on Computational Learning Theory, pages
80-91,1998. To appear, Machine Learning.

[34] Robert E. Schapire and Yoram Singer. BoosTex-
ter: A boosting-based system for text categoriza­
tion. Machine Learning, to appear.

[35] Robert E. Schapire, Yoram Singer, and Amit Sing-
hal. Boosting and Rocchio applied to text filtering.
In SIGIR '98: Proceedings of the 21st Annual Inter­
national Conference on Research and Development
in Information Retrieval, 1998.

[36] Holger Schwenk and Yoshua Bengio. Training meth­
ods for adaptive boosting of neural networks. In
Advances in Neural Information Processing Systems
10, pages 647-653, 1998.

[37] L. G. Valiant. A theory of the learnable. Commu­
nications of the ACM, 27(11):1134-1142, November
1984.

[38] Vladimir N. Vapnik. The Nature of Statistical
Learning Theory. Springer, 1995.

*

http://www.ics.uci.edu/-mlearn/MLRepository.html

