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Abstract 
Boosting is a general method for improving the 
accuracy of any given learning algorithm. This 
short paper introduces the boosting algorithm 
AdaBoost, and explains the underlying theory 
of boosting, including an explanation of why 
boosting often does not suffer from overfitting. 
Some examples of recent applications of boost­
ing are also described. 

Background 
Boosting is a general method which attempts to "boost" 
the accuracy of any given learning algorithm. Boosting 
has its roots in a theoretical framework for studying ma­
chine learning called the "PAC" learning model, due to 
Valiant [37]; see Kearns and Vazirani [24] for a good in­
troduction to this model. Kearns and Valiant [22, 23] 
were the first to pose the question of whether a "weak" 
learning algorithm which performs just slightly bet-
ter than random guessing in the PAC model can be 
"boosted" into an arbitrarily accurate "strong" learning 
algorithm. Schapire [30] came up with the first prov­
able polynomial-time boosting algorithm in 1989. A 
year later, Freund [14] developed a much more efficient 
boosting algorithm which, although optimal in a certain 
sense, nevertheless suffered from certain practical draw-
backs. The first experiments with these early boosting 
algorithms were carried out by Drucker, Schapire and 
Simard [13] on an OCR task. 

AdaBoost 
The AdaBoost algorithm, introduced in 1995 by Freund 
and Schapire [18], solved many of the practical difficul­
ties of the earlier boosting algorithms, and is the fo­
cus of this paper. Pseudocode for AdaBoost is given 
in Fig. 1. The algorithm takes as input a training 
set where each belongs to some 
domain or instance space X, and each label is in 
some label set Y. For most of this paper, we assume 

later, we discuss extensions to the multi-
class case. AdaBoost calls a given weak or base learning 
algorithm repeatedly in a series of rounds  

Given:  
where 

Initialize 
For  

Train weak learner using distribution Dt. 
Get weak hypothesis with error 

Choose  

Update: 

where Zt is a normalization factor (chosen so that 
D t+1 will be a distribution). 

Output the final hypothesis: 

Figure 1: The boosting algorithm AdaBoost. 

One of the main ideas of the algorithm is to maintain 
a distribution or set of weights over the training set. 
The weight of this distribution on training example on 
round t is denoted Initially, all weights are set 
equally, but on each round, the weights of incorrectly 
classified examples are increased so that the weak learner 
is forced to focus on the hard examples in the training 
set. 

The weak learner's job is to find a weak hypothesis 
appropriate for the distribution Dt. 

The goodness of a weak hypothesis is measured by its 
error 

Notice that the error is measured with respect to the 
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Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as reported by 
Schapire et al. [32]. Left, the training and test error curves (lower and upper curves, respectively) of the combined 
classifier as a function of the number of rounds of boosting. The horizontal lines indicate the test error rate of the 
base classifier as well as the test error of the final combined classifier. Right The cumulative distribution of margins 
of the training examples after 5,100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) 
and solid curves, respectively. 

distribution Dt on which the weak learner was trained. 
In practice, the weak learner may be an algorithm that 

can use the weights Dt on the training examples. Alter­
natively, when this is not possible, a subset of the train­
ing examples can be sampled according to Dt, and these 
(unweighted) resampled examples can be used to train 
the weak learner. 

Once the weak hypothesis has been received, Ada-
Boost chooses a parameter as in the figure. Intu-
itively, at measures the importance that is assigned to 
ht. Note that at (which we can assume 
without loss of generality), and that at gets larger as Et 
gets smaller. 

The distribution Dt is next updated using the rule 
shown in the figure. The effect of this rule is to increase 
the weight of examples misclassified by ht, and to de­
crease the weight of correctly classified examples. Thus, 
the weight tends to concentrate on "hard" examples. 

The final hypothesis H is a weighted majority vote of 
the T weak hypotheses where at is the weight assigned 
to ht. 

Schapire and Singer [33] show how AdaBoost and its 
analysis can be extended to handle weak hypotheses 
which output real-valued or confidence-rated predictions. 
That is, for each instance x, the weak hypothesis ht out­
puts a prediction whose sign is the predicted 
label and whose magnitude gives a 
measure of "confidence" in the prediction. 

Analyzing the training error 
The most basic theoretical property of AdaBoost con­
cerns its ability to reduce the training error. Let us 
write the error of as Since a hypothesis that 
guesses each instance's class at random has an error rate 
of 1/2 (on binary problems), thus measures how much 

better than random are predictions. Freund and 
Schapire [18] prove that the training error (the fraction 
of mistakes on the training set) of the final hypothesis 
H is at most 

( i ) 

Thus, if each weak hypothesis is slightly better than ran­
dom so that for some then the training 
error drops exponentially fast. 

A similar property is enjoyed by previous boosting al­
gorithms. However, previous algorithms required that 
such a lower bound be known a priori before boost­
ing begins. In practice, knowledge of such a bound is 
very difficult to obtain. AdaBoost, on the other hand, is 
adaptive in that it adapts to the error rates of the indi­
vidual weak hypotheses. This is the basis of its name — 
"Ada" is short for "adaptive." 

The bound given in Eq. (1), combined with the bounds 
on generalization error given below prove that AdaBoost 
is indeed a boosting algorithm in the sense that it can 
efficiently convert a weak learning algorithm (which can 
always generate a hypothesis with a weak edge for any 
distribution) into a strong learning algorithm (which can 
generate a hypothesis with an arbitrarily low error rate, 
given sufficient data). 

Generalization error 
FVeund and Schapire [18] showed how to bound the 
generalization error of the final hypothesis in terms of 
its training error, the size m of the sample, the VC-
dimension d of the weak hypothesis space and the num-
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Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of 27 benchmark problems as 
reported by Freund and Schapire [16]. Each point in each scatterplot shows the test error rate of the two competing 
algorithms on a single benchmark. The y-coordinate of each point gives the test error rate (in percent) of C4.5 on 
the given benchmark, and the x-coordinate gives the error rate of boosting stumps (left plot) or boosting C4.5 (right 
plot). Al l error rates have been averaged over multiple runs. 

ber of rounds T of boosting. (The VC-dimension is a 
standard measure of the "complexity" of a space of hy­
potheses. See, for instance, Blumer et al. [4].) Specifi­
cally, they used techniques from Baum and Haussler [3] 
to show that the generalization error, with high proba­
bility, is at most 

defined to be 

where denotes empirical probability on the train­
ing sample. This bound suggests that boosting will 
overfit if run for too many rounds, i.e., as T becomes 
large. In fact, this sometimes does happen. However, in 
early experiments, several authors [8, 12, 28] observed 
empirically that boosting often does not overfit, even 
when run for thousands of rounds. Moreover, it was ob­
served that AdaBoost would sometimes continue to drive 
down the generalization error long after the training er­
ror had reached zero, clearly contradicting the spirit of 
the bound above. For instance, the left side of Fig. 2 
shows the training and test curves of running boost­
ing on top of Quinlan's C4.5 decision-tree learning al­
gorithm [29] on the "letter" dataset. 

In response to these empirical findings, 
Schapire et al. [32], following the work of Bartlett [1], 
gave an alternative analysis in terms of the margins of 
the training examples. The margin of example (x, y) is 

It is a number in which is positive if and only if 
H correctly classifies the example. Moreover, the mag­
nitude of the margin can be interpreted as a measure of 
confidence in the prediction. Schapire et al. proved that 
larger margins on the training set translate into a su­
perior upper bound on the generalization error. Specifi­
cally, the generalization error is at most 

for any with high probability. Note that this bound 
is entirely independent of T, the number of rounds of 
boosting. In addition, Schapire et al. proved that boost­
ing is particularly aggressive at reducing the margin (in a 
quantifiable sense) since it concentrates on the examples 
with the smallest margins (whether positive or negative). 
Boosting's effect on the margins can be seen empirically, 
for instance, on the right side of Fig. 2 which shows the 
cumulative distribution of margins of the training ex­
amples on the "letter" dataset. In this case, even after 
the training error reaches zero, boosting continues to in­
crease the margins of the training examples effecting a 
corresponding drop in the test error. 

Attempts (not always successful) to use the insights 
gleaned from the theory of margins have been made 
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Figure 4: Comparison of error rates for AdaBoost and four other text categorization methods (naive Bayes, proba­
bilistic TF-IDF, Rocchio and sleeping experts) as reported by Schapire and Singer [34]. The algorithms were tested 
on two text corpora — Reuters newswire articles (left) and AP newswire headlines (right) — and with varying 
numbers of class labels as indicated on the x-axis of each figure. 

by several authors [6, 20, 26]. In addition, the mar­
gin theory points to a strong connection between boost­
ing and the support-vector machines of Vapnik and oth­
ers [5, 9, 38] which explicitly attempt to maximize the 
minimum margin. 

The behavior of AdaBoost can also be understood 
in a game-theoretic setting as explored by Freund and 
Schapire [17, 19] (see also Grove and Schuurmans [20] 
and Breiman 7]). In particular, boosting can be viewed 
as repeated play of a certain game, and AdaBoost can 
be shown to be a special case of a more general algo­
rithm for playing repeated games and for approximately 
solving a game. This also shows that boosting is related 
to linear programming. 

Multiclass classification 
There are several methods of extending AdaBoost to 
the multiclass case. The most straightforward general­
ization [18], called AdaBoost.Ml, is adequate when the 
weak learner is strong enough to achieve reasonably high 
accuracy, even on the hard distributions created by Ada-
Boost. However, this method fails if the weak learner 
cannot achieve at least 50% accuracy when run on these 
hard distributions. 

For the latter case, several more sophisticated meth­
ods have been developed. These generally work by re­
ducing the multiclass problem to a larger binary prob­
lem. Schapire and Singer's [33] algorithm AdaBoost.MH 
works by creating a set of binary problems, for each ex-
ample x and each possible label of the form: "For 
example x, is the correct label or is it one of the 
other labels?" Freund and Schapire's [18] algorithm 
AdaBoost M2 (which is a special case of Schapire and 
Singer's [33] AdaBoost,MR algorithm) instead creates 
binary problems, for each example with correct label 

and each incorrect label of the form: "For example 
. is the correct label or  

These methods require additional effort in the de­
sign of the weak learning algorithm. A differ­
ent technique [31], which incorporates Dietterich and 
Bakiri's [11] method of error-correcting output codes, 
achieves similar provable bounds to those of Ada­
Boost.MH and AdaBoost.M2, but can be used with 
any weak learner which can handle simple, binary la­
beled data. Schapire and Singer [33] give yet another 
method of combining boosting with error-correcting out­
put codes. 

Experiments and applications 
Practically, AdaBoost has many advantages. It is fast, 
simple and easy to program. It has no parameters to 
tune (except for the number of round T). It requires no 
prior knowledge about the weak learner and so can be 
flexibly combined with any method for finding weak hy­
potheses. Finally, it comes with a set of theoretical guar­
antees given sufficient data and a weak learner that can 
reliably provide only moderately accurate weak hypothe­
ses. This is a shift in mind set for the learning-system 
designer: instead of trying to design a learning algorithm 
that is accurate over the entire space, we can instead 
focus on finding weaking learning algorithms that only 
need to be better than random. 

On the other hand, some caveats are certainly in or­
der. The actual performance of boosting on a partic­
ular problem is clearly dependent on the data and the 
weak learner. Consistent with theory, boosting can fail 
to perform well given insufficient data, overly complex 
weak hypotheses or weak hypotheses which are too weak. 
Boosting seems to be especially susceptible to noise [10]. 

AdaBoost has been tested empirically by many re­
searchers, including [2, 10, 12, 21, 25, 28, 36]. For in­
stance, Freund and Schapire [16] tested AdaBoost on a 
set of UCI benchmark datasets [27] using C4.5 [29] as a 
weak learning algorithm, as well as an algorithm which 
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Figure 5: A sample of the examples that have the largest 
weight on an OCR task as reported by Freund and 
Schapire [16]. These examples were chosen after 4 rounds 
of boosting (top line), 12 rounds (middle) and 25 rounds 
(bottom). Underneath each image is a line of the form 

where d is the label of the example, l\ 
and l2 are the labels that get the highest and second 
highest vote from the combined hypothesis at that point 
in the run of the algorithm, and w1 ,w2 axe the corre-
sponding normalized scores. 

finds the best "decision stump" or single-test decision 
tree. Some of the results of these experiments are shown 
in Fig. 3. As can be seen from this figure, even boost-
ing the weak decision stumps can usually give as good 
results as C4.5, while boosting C4.5 generally gives the 
decision-tree algorithm a significant improvement in per-
formance. 

In another set of experiments, Schapire and Singer [34] 
used boosting for text categorization tasks. For this 
work, weak hypotheses were used which test on the pres­
ence or absence of a word or phrase. Some results of 
these experiments comparing AdaBoost to four other 
methods are shown in Fig. 4. In nearly all of these exper­
iments and for all of the performance measures tested, 
boosting performed as well or significantly better than 
the other methods tested. Boosting has also been ap­
plied to text filtering [35] and "ranking" problems [15]. 

A nice property of AdaBoost is its ability to identify 
outliers, i.e., examples that are either mislabeled in the 
training data, or which are inherently ambiguous and 
hard to categorize. Because AdaBoost focuses its weight 
on the hardest examples, the examples with the highest 
weight often turn out to be outliers. An example of this 
phenomenon can be seen in Fig. 5 taken from an OCR 
experiment conducted by Freund and Schapire [16]. 
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