
Agent-Based Computing: Promise and Perils 

Nicholas R. Jennings 
Dept. Electronic Engineering, Queen Mary & Westfield College, 

University of London, London El 4NS, UK. 
n. r . jenn ings@qmw.ac .uk 

Abstract 
Agent-based computing represents an exciting new syn­
thesis both for Artificial Intelligence (AI) and, more 
generally, Computer Science. It has the potential to sig­
nificantly improve the theory and the practice of model­
ling, designing, and implementing complex systems. 
Yet, to date, there has been little systematic analysis of 
what makes an agent such an appealing and powerful 
conceptual model. Moreover, even less effort has been 
devoted to exploring the inherent disadvantages that 
stem from adopting an agent-oriented view. Here both 
sets of issues are explored. The standpoint of this analy­
sis is the role of agent-based software in solving com­
plex, real-world problems. In particular, it wil l be 
argued that the development of robust and scalable soft­
ware systems requires autonomous agents that can com­
plete their objectives while situated in a dynamic and 
uncertain environment, that can engage in rich, high-
level social interactions, and that can operate within 
flexible organisational structures. 

1 Introduction 
An increasing number of computer systems are being viewed 
in terms of autonomous agents. Agents are being espoused 
as a new theoretical model of computation that more closely 
reflects current computing reality than Hiring Machines 
[Wegner, 1997]. Agents are being advocated as the next gen­
eration model for engineering complex, distributed systems 
(Wooldridge, 1997]. Agents are also being used as an over­
arching framework for bringing together the component AI 
sub-disciplines that are necessary to design and build intelli­
gent entities [Russell and Norvig, 1995], Despite this intense 
interest, a number of fundamental questions about the nature 
and the use of agents remain unanswered. In particular: 

what is the essence of agent-based computing? 
what makes agents an appealing and powerful concep­
tual model? 
what are the drawbacks of adopting an agent-oriented 
approach? 

• what are the wider implications for AI of agent-based 
computing? 

These questions can be tackled from many different per­
spectives, ranging from the philosophical to the pragmatic. 
This paper p r o i d s from the standpoint of using agent-
based software to solve complex, real-world problems. How­
ever in the course of this analysis, a number of broader 
points are made about the general direction and emphasis of 
future AI research. 

Building high quality software for complex, real-world 
applications is difficult. Indeed, it has been argued that such 
developments are one of the most complex construction 
tasks humans undertake (both in terms of the number and the 
flexibility of the constituent components and in the complex 
way in which they are interconnected). Moreover, this state­
ment is true no matter what models and techniques are 
applied: it is a consequence of the "essential complexity of 
software" [Brooks, 1995]. Such complexity manifests itself 
in the fact that software has a large number of parts that have 
many interactions [Simon, 1996]. Given this state of affairs, 
the role of software engineering is to provide models and 
techniques that make it easier to handle this complexity. To 
this end, a wide range of software engineering paradigms 
have been devised (e.g. object-orientation [Booch, 1994; 
Meyer, 1988], component-ware [Szyperski, 1998], design 
patterns [Gamma et al.,, 1995] and software architectures 
[Buschmann et al., 1998]). Each successive development 
either claims to make the engineering process easier or to 
extend the complexity of applications that can feasibly be 
built. Although evidence is emerging to support these claims, 
researchers continue to strive for more efficient and powerful 
techniques, especially as solutions for ever more demanding 
applications are sought. 

In this article, it is argued that although current methods 
are a step in the right direction, when it comes to developing 
complex, distributed systems they fall short in three main 
ways: (i) the basic building blocks are too fine grained; (ii) 
the interactions are too rigidly defined; or (iii)insufficient 
mechanisms are available for dealing with organisational 
structure. Furthermore, it will be argued that: agent-oriented 

JENNINGS 1429 



approaches can significantly enhance our ability to model, 
design and build complex (distributed) software systems. 

The remainder of the paper is structured as follows. Sec­
tion 2 discusses the essence of agent-based computing. Sec­
tion 3 makes the case for an agent-oriented approach to 
software engineering. Section 4 provides a brief case study 
to back up the paper's main arguments. Finally, section 5 
outlines an approach for tackling some of the key open prob-
lems that need to be addressed if agent-based computing is 
to reach its full potential. 

2 The Essence of Agent-Based Computing 
The first step in arguing for an agent-oriented approach to 
software engineering is to precisely identify and define the 
key concepts of agent-oriented computing. Here the key def­
initional problem relates to the term "agent". At present, 
there is much debate, and little consensus, about exactly 
what constitutes agenthood. However, an increasing number 
of researchers find the following characterisation useful: 

an agent is an encapsulated computer system that is sit-
uated in some environment, and that is capable of flexi­
ble, autonomous action in that environment in order to 
meet its design objectives [Wooldridge, 1997] 

There are a number of points about this definition that 
require further explanation. Agents are: (i) clearly identifi­
able problem solving entities with well-defined boundaries 
and interfaces; (ii) situated (embedded) in a particular envi­
ronment—they receive inputs related to the state of their 
environment through sensors and they act on the environ­
ment through effectors; (iii) designed to fulfill a specific pur­
pose—they have particular objectives (goals) to achieve; (iv) 
autonomous—they have control both over their internal state 
and over their own behaviour; (v) capable of exhibiting flexi­
ble problem solving behaviour in pursuit of their design 
objectives—they need to be both reactive (able to respond in 
a timely fashion to changes that occur in their environment) 
and proactive (able to opportunistically adopt new goals) 
[Wooldridge and Jennings, 1995]. 

When adopting an agent-oriented view of the world, it 
soon becomes apparent that most problems require or 
involve multiple agents, to represent the decentralised nature 
of the problem, the multiple loci of control, the multiple per­
spectives, or the competing interests. Moreover, the agents 
wil l need to interact with one another, either to achieve their 
individual objectives or to manage the dependencies that 
ensue from being situated in a common environment. These 
interactions can vary from simple information interchanges, 
to requests for particular actions to be performed and on to 
cooperation, coordination and negotiation in order to arrange 
inter-dependent activities. However, whatever the nature of 
the social process there are two points that qualitatively dif­
ferentiate agent interactions from those that occur in other 
software engineering paradigms. Firstly, agent-oriented 

interactions occur through a high level (declarative) agent 
communication language. Consequently, interactions are 
conducted at the knowledge level [Newell, 1982]: in terms of 
which goals should be followed, at what time, and by whom 
(cf. method invocation or function calls that operate at a 
purely syntactic level). Secondly, as agents are flexible prob­
lem solvers, operating in an environment over which they 
have only partial control and observability, interactions need 
to be handled in a similarly flexible manner. Thus, agents 
need the computational apparatus to make context-depen­
dent decisions about the nature and scope of their interac­
tions and to initiate (and respond to) interactions that were 
not foreseen at design time. 

In most cases, agents act to achieve objectives either on 
behalf of individuals/companies or as part of some wider 
problem solving initiative. Thus, when agents interact there 
is typically some underpinning organisational context. This 
context defines the nature of the relationship between the 
agents e.g. they may be peers working together in a team or 
one may be the manager of the other agents. In any case, this 
context influences an agent's behaviour. Thus it is important 
to explicitly represent the relationship. In many cases, rela­
tionships are subject to ongoing change: social interaction 
means existing relationships evolve and new relations are 
created. The temporal extent of relationships can also vary 
significantly, from just long enough to deliver a particular 
service once, to a permanent bond. To cope with this variety 
and dynamic, agent researchers have: devised protocols that 
enable organisational groupings to be formed and disbanded; 
specified mechanisms to ensure groupings act together in a 
coherent fashion; and developed structures to characterise 
the macro behaviour of collectives [Jennings and 
Wooldridge, 1998; Wooldridge and Jennings, 1995]. 

Drawing these points together (figure 1), the essential con­
cepts of agent-based computing are: agents, high level inter-
actions and organisational relationships. 

Figure 1: Canonical view of an agent-based system 

1430 AWARDS 



3 Agent-Oriented Software Engineering 
The most compelling argument that can be made for adopt-
ing an agent-oriented approach to software development is to 
have a set of quantitative data that showed, on a standard set 
of software metrics, the superiority of the agent-based 
approach over a range of other techniques. However such 
data does not exist. Hence arguments must be qualitative in 
nature. 

The structure of the argument that will be used here is as 
follows. On one hand, there are a number of well-known 
techniques for tackling complexity in software. Also the 
nature of complex software systems is (reasonably) well 
understood. On the other hand, the key characteristics of the 
agent-based paradigm have been elucidated. Thus an argu­
ment can be made by examining the degree of match 
between these two perspectives. 

Before this argument can be made, however, the techniques 
for tackling complexity in software need to be introduced. 
Booch [1994] identifies three such tools: 

Decomposition: The most basic technique for tackling 
large problems is to divide them into smaller, more man­
ageable chunks each of which can then be dealt with in 
relative isolation. This helps tackle complexity because 
it limits the designer's scope; at any given instant only a 
portion of the problem needs to be considered. 
Abstraction: The process of defining a simplified model 
of the system that emphasises some of the details or 
properties, while suppressing others. Again, this tech­
nique works because it limits the designer's scope of 
interest at a given time. Attention can be focused on the 
salient aspects of the problem, at the expense of the less 
relevant details. 
Organisation1: The process of identifying and managing 
the inter-relationships between the various problem 
solving components. The ability to specify and enact 
organisational relationships helps designers tackle com­
plexity in two ways. Firstly, by enabling a number of 
basic components to be grouped together and treated as 
a higher-level unit of analysis (e.g. the individual com­
ponents of a sub-system can be treated as a single unit 
by the parent system). Secondly, by providing a means 
of describing the high-level relationships between vari­
ous units (e.g. a number of components may work 
together to provide a particular functionality). 

Next, the characteristics of complex systems need to be enu­
merated [Simon, 1996]: 

Complexity frequently takes the form of a hierarchy. 
That is, a system that is composed of inter-related sub­
systems, each of which is in turn hierarchic in structure, 

1 Booch [1994] actually uses the term "hierarchy" for this final 
point. However, the more neutral term "organisation" is used here. 

until the lowest level of elementary sub-system is 
reached. The precise nature of these organisational rela­
tionships varies between sub-systems, however some 
generic forms (such as client-server, peer, team, etc.) 
can be identified. These relationships are not static: they 
often vary over time. 

• The choice of which components in the system are 
primitive is relatively arbitrary and is defined by the 
observer's aims and objectives. 

• Hierarchic systems evolve more quickly than non-hier­
archic ones of comparable size. In other words, complex 
systems will evolve from simple systems more rapidly if 
there are stable intermediate forms, than if there are not. 

• It is possible to distinguish between the interactions 
among sub-systems and the interactions within sub-sys­
tems. The latter are both more frequent (typically at 
least an order of magnitude more) and more predictable 
than the former. This gives rise to the view that complex 
systems are nearly decomposable: sub-systems can be 
treated almost as if they are independent of one another, 
but not quite, since there are some interactions between 
them. Moreover, although many of these interactions 
can be predicted at design time, some cannot. 

With these two characterisations in place, the form of the 
argument can be expressed: 

• Show agent-oriented decomposition is an effective way 
of partitioning the problem space of a complex system 
(section 3.1); 

• Show that the key abstractions of the agent-oriented 
mindset are a natural means of modelling complex sys­
tems (section 3.2); 

• Show the agent-oriented philosophy for dealing with 
organisational relationships is appropriate for complex 
systems (section 3.3); 

Having made the case that agents are well suited for engi­
neering complex systems, a number of pragmatic issues that 
will affect whether agents catch on as a software engineering 
paradigm are examined (section 3.4). Finally, the downside 
of agent-oriented developments is discussed (section 3.5). 

3.1 Merits of Agent-Oriented Decomposition 
Complex systems consist of a number of related sub-systems 
organised in a hierarchical fashion. At any given level, sub­
systems work together to achieve the functionality of their 
parent system. Moreover, within a sub-system, the constitu­
ent components work together to deliver the overall func­
tionality. Thus, the same basic model of interacting 
components, working together to achieve particular objec­
tives, occurs throughout the system. 

Given this fact, it is entirely natural to modularise the com­
ponents in terms of the objectives they achieve2. In other 
words, each component can be thought of as achieving one 
or more objectives. A second important observation is that 

JENNINGS 1431 



complex systems have multiple loci of control: "real systems 
have no top" {Meyer, 1988] pg 47. Applying this philosophy 
to objective-achieving decompositions means the individual 
components should localise said encapsulate their own con* 
trol Thus, entities should have their own thread of control 
(i.e. they should be active) and they should have control over 
their own actions (i.e. they should be autonomous). 

For the active and autonomous components to fulfil both 
their individual and collective objectives, they need to inter-
act with one another (recall complex systems are only nearly 
decomposable). However the system's inherent complexity 
means it is impossible to know a priori about all potential 
links: interactions will occur at unpredictable times, for 
unpredictable reasons, between unpredictable components. 
For this reason, it is futile to try and predict or analyse all the 
possibilities at design-time. It is more realistic to endow the 
components with the ability to make decisions about the 
nature and scope of their interactions at run-time. From this, 
it follows that components need the ability to initiate (and 
respond to) interactions in a flexible manner. 

The policy of deferring to run-time decisions about compo­
nent interactions facilitates the engineering of complex sys­
tems in two ways. Firstly, problems associated with the 
coupling of components are significantly reduced (by deal-
ing with them in a flexible and declarative manner). Compo-
nents are specifically designed to deal with unanticipated 
requests and they can spontaneously generate requests for 
assistance if they find themselves in difficulty. Moreover 
because these interactions are enacted through a high-level 
agent communication language, coupling becomes a knowl­
edge level issue. At a stroke, this removes syntactic concerns 
from the types of errors caused by unexpected interactions. 
Secondly, the problem of managing control relationships 
between the software components is significantly reduced. 
All agents are continuously active and any coordination that 
is required is handled bottom-up through inter-agent interac­
tion. Thus, the ordering of the system's top-level goals is no 
longer something that has to be rigidly prescribed at design 
time. Rather, it becomes something that is handled in a con­
text-sensitive manner at run-time. 

From this discussion, it is apparent that a natural way to 
modularise a complex system is in terms of multiple, inter­
acting, autonomous components that have particular objec­
tives to achieve. In short, agent-oriented decompositions aid 
the process of developing complex systems. 

3.2 Suitabil ity of Agent-Oriented Abstractions 
A significant part of the design process is finding the right 
models for viewing the problem. In general, there will be 

1 Indeed the view that decompositions based upon functions/ 
actions/processes are more intuitive and easier to produce than 
those based upon data/objects is even acknowledged within the 
object-oriented community [Meyer, 1988] pg 44. 

multiple candidates and the difficult task is picking the most 
appropriate one. When designing software, the most power­
ful abstractions are those that minimise the semantic distance 
between the units of analysis that are intuitively used to con­
ceptualise the problem and the constructs present in the solu­
tion paradigm. In the case of complex systems, the problem 
to be characterised consists of sub-systems, sub-system com-
ponents, interactions and organisational relationships. Tak-
ing each in turn: 

• Sub-systems naturally correspond to agent organisa-
tions. They involve a number of constituent components 
that act and interact according to their role within the 
larger enterprise. 

• The suitability of viewing sub-system components as 
agents has already been made (section 3.1). 

• The interplay between the sub-systems and between 
their constituent components is most naturally viewed in 
terms of high level social interactions; "at any given 
level of abstraction, we find meaningful collections of 
entities that collaborate to achieve some higher level 
view" [Booch, 1994] pg 34. This view accords precisely 
with the treatment of interaction afforded by the agent-
oriented approach. Agent systems are invariably 
described in terms of "cooperating to achieve common 
objectives", "coordinating their actions" or "negotiating 
to resolve conflicts". 

• Complex systems involve changing webs of relation­
ships between their various components. They also 
require collections of components to be treated as a sin­
gle conceptual unit when viewed from a different level 
of abstraction. Here again the agent-oriented mindset 
provides suitable abstractions. A rich set of structures is 
typically available for explicitly representing and man­
aging organisational relationships. Interaction protocols 
exist for forming new groupings and disbanding 
unwanted ones. Finally, structures are available for 
modelling collectives. The latter point is especially use­
ful in relation to representing sub-systems since they are 
nothing more than a team of components working 
together to achieve a collective goal. 

3.3 Need for Flexible Management of Changing 
Organisational Structures 
Organisational constructs are first-class entities in agent sys­
tems. Thus explicit representations are made of organisa­
tional relationships and structures. Moreover, agent-based 
systems have the concomitant computational mechanisms 
for flexibly forming, maintaining and disbanding organisa­
tions. This representational power enables agent-oriented 
systems to exploit two facets of the nature of complex sys­
tems. Firstly, the notion of a primitive component can be var­
ied according to the needs of the observer. Thus at one level, 
entire sub-systems can be viewed as singletons, alternatively, 
teams or collections of agents can be viewed as primitive 

1432 AWARDS 



components, and so on until the system eventually bottoms 
out. Secondly, such structures provide a variety of stable 
intermediate forms, that, as already indicated, are essential 
for the rapid development of complex systems. Their avail-
ability means individual agents or organisational groupings 
can be developed in relative isolation and then added into the 
system in an incremental manner; This, in turn, ensures there 
is a smooth growth in functionality. 

3.4 Software Engineer ing Pragmatics 

Having made the case for an agent-oriented approach to 
designing and building complex systems, the next step is to 
determine whether it wil l catch on as a software engineering 
paradigm. This question is important because the history of 
computing is littered with good technologies that were never 
widely adopted. Two key pragmatic issues are relevant here: 
(i) the degree to which agents represent a radical departure 
from current software engineering thinking and (ii) the 
degree to which existing software can be integrated with 
agents. In general, take-up is more likely if agents are consis­
tent with the trends of software engineering (evolution rather 
than revolution) and if legacy software can be incorporated 
in a straightforward and clean manner (a brown field versus a 
green field scenario). 

A number of trends become evident when examining the 
evolution of programming models from machine languages, 
to procedural and structured programming, to object-based 
and declarative programming, onto component-ware, design 
patterns, and software architectures. Firstly, there has been 
an inexorable move from languages that have their concep­
tual basis determined by the underlying machine architec­
ture, to languages that have their key abstractions rooted in 
the problem domain. Here the agent-oriented world view is 
perhaps the most natural way of characterising many types 
of problem. Just as the real-world is populated with objects 
that have operations performed on them, so it is equally full 
of active, purposeful agents that interact to achieve their 

objectives3. Indeed, many object-oriented analyses start 
from precisely this perspective: "we view the world as a set 
of autonomous agents that collaborate to perform some 
higher level function" [Booch, 1994] pg. 17. Secondly, the 
basic building blocks of the programming models exhibit 
increasing degrees of localisation and encapsulation [Paru-
nak, 1999]. Agents follow this trend by localising purpose 
inside each agent, by giving each agent its own thread of 
control, and by encapsulating action selection. Thirdly, ever 
richer mechanisms for promoting re-use are being provided. 
Here, the agent view also reaches new heights. Rather than 
stopping at re-use of sub-system components (design pat­
terns and component-ware) and rigidly pre-ordained interac­
tions (application frameworks), agents enable whole sub­
systems and flexible interactions to be re-used. In the former 
case, agent designs and implementations are re-used within 

and between applications. Consider, for example, the class of 
agent architectures that has beliefs (what the agent knows), 
desires (what the agent wants) and intentions (what the agent 
is doing) at its core. Such Belief-Desire-Intention architec­
tures have been used in a wide variety of applications includ­
ing air traffic control, process control, fault diagnosis and 
transportation [Chaib-draa, 1995; Jennings, 1995; Jennings 
and Wooldridge, 1998]. In the latter case, flexible patterns of 
interaction such as the Contract Net Protocol (an agent with 
a task to complete advertises this fact to others who it 
believes are capable of performing it, these agents may sub­
mit a bid to perform the task if they are interested, and the 
originator then delegates the task to the agent that makes the 
best bid) and various forms of resource-allocation auction 
(e.g. English, Dutch, Viekrey) have been re-used in signifi­
cant numbers of applications. In short, agent-oriented tech­
niques represent a natural progression of current software 
engineering thinking and, for this reason, the main concepts 
and tenets of the approach should be readily acceptable to 
software engineering practitioners. 

The second factor in favour of a rapid take up of agents is 
that their adoption does not require a revolution in terms of 
an organisation's software capabilities. Agent-oriented sys­
tems are evolutionary and incremental as legacy (non-agent) 
software can be incorporated in a relatively straightforward 
manner [Jennings et al., 1993]. The technique used is to 
place wrapping software around the legacy code. The wrap­
per presents an agent interface to the other software compo­
nents and thus from the outside it looks like any other agent. 
On the inside, the wrapper performs a two-way translation 
function: taking external requests from other agents and 
mapping them into calls in the legacy code, and taking the 
legacy code's external requests and mapping them into the 
appropriate set of agent communication commands. This 
ability to wrap legacy systems means agents may initially be 

* Although there are some similarities between object- and agent-
oriented approaches (e.g. both adhere to the principle of informa­
tion hiding and recognise the importance of interactions), there are 
also a number of important differences. Firstly, objects arc gener­
ally passive in nature: they need to be sent a message before they 
become active. Secondly, although objects encapsulate state and 
behaviour realisation they do not encapsulate behaviour activation 
(action choice). Thus, any object can invoke any publicly accessible 
method on any other object. Once the method is invoked, the corre­
sponding actions are performed. Thirdly, object-orientation fails to 
provide an adequate set of concepts and mechanisms for modelling 
complex systems: for such systems "we find that objects, classes 
and modules provide an essential yet insufficient means of abstrac­
tion" [Booch, 1994] pg 34. Individual objects represent too fine a 
granularity of behaviour and method invocation is too primitive a 
mechanism for describing the types of interactions that take place. 
Finally, object-oriented approaches provide only minimal support 
for specifying and managing organisational relationships (basically 
relationships are defined by static inheritance hierarchies). 

JENNINGS 1433 



used as an integration technology. However, as new require-
ments are uncovered, so bespoke agents may be developed 
and added. This feature enables a complex system to grow in 
an evolutionary fashion (bated on stable intermediate 
forms), while adhering to the important principle that there 
should always be a working version of the system available. 

3.5 The Downside 
Having highlighted the potential benefits of agent-oriented 
software engineering, this sub-section seeks to pinpoint 
some of the inherent difficulties associated with agent-based 
systems. These problems are directly attributable to the char-
acteristics of agent-oriented software and are, therefore, 
intrinsic to the approach. (These complement the more prag­
matic problems that are often associated with agent-oriented 
projects [Wooldridge and Jennings, 1998].) Naturally, since 
robust and reliable agent systems have been built, designers 
have found means of circumventing these problems. How­
ever, at this time, such solutions tend to be made on a case by 
case basis. 

Much of the power of agents derives from the fact that they 
are situated problem solvers: they act in pursuit of their 
design objectives while maintaining an ongoing interaction 
with their environment. However such situatedness makes it 
difficult to design software capable of maintaining a balance 
between proactive and reactive behaviour. Leaning too much 
towards the former risks the agent undertaking irrelevant or 
infeasible tasks (as circumstances have changed). Leaning 
too much towards the latter means the agent may not fulfill 
its objectives (since it is constantly responding to short-term 
needs). Striking a balance requires context sensitive decision 
making which, in turn, means there can be a significant 
degree of unpredictability about which objectives the agent 
will pursue in which circumstances and which methods will 
be used to achieve the chosen objectives. 

Although agent interactions represent a hitherto unseen 
level of sophistication and flexibility, they are also inherently 
unpredictable in the general case. As agents are autonomous, 
the patterns and the effects of their interactions are uncertain. 
Firstly, agents decide, for themselves at run-time, which of 
their objectives require interaction in a given context, which 
acquaintances they will interact with in order to realise these 
objectives, and when these interactions will occur. Hence the 
number, pattern and timing of interactions cannot be pre­
dicted in advance. Secondly, there is a de-coupling, and a 
considerable degree of variability, between what one agent 
first requests through an interaction and how the recipient 
ultimately responds. The request may be immediately hon­
oured as it is, refused completely, or modified through some 
form of social interchange. In short, both the nature (a sim­
ple request versus a protracted negotiation) and the outcome 
of an interaction cannot be determined at the onset. 

The final source of unpredictability in agent-oriented sys­
tem design relates to the notion of emergent behaviour. It has 

long been recognised that interactive composition—collec-
tions of processes (agents) acting side-by-side and interact­
ing in whatever way they have been designed to interact 
[Milner, 1993}—results in behavioural phenomena that can-
not be deconstructed solely in terms of the behaviour of the 
individual components. This emergent behaviour is a conse­
quence of the interaction between components. Given the 
sophistication and flexibility of agent interactions, it is clear 
that the scope for unexpected individual and group behaviour 
is considerable. 

4 Agents for Business Process Management 
This section describes an agent-based system developed for 
managing a British Telecom (BT) business process [Jennings 
et a/., 1996]. The particular process is providing customers 
with a quote for installing a network to deliver a particular 
type of telecommunications service. This process has a num­
ber of traits that are commonly found in corporate-wide busi­
ness processes. In particular, the process is dynamic and 
unpredictable (it is impossible to give a complete a priori 
specification of all activities), it has a high-degree of natural 
concurrency, and there is a need to respect departmental and 
organisational boundaries. 

In more detail, the following departments are involved: the 
customer service division (CSD), the design division (DD), 
the surveyor department (SD), the legal division (LD) and 
the various organisations that provide the out-sourced ser­
vice of vetting customers (VCs). The process is initiated by a 
customer contacting the CSD with a set of requirements. In 
parallel to capturing the requirements, the CSD gets the cus-
tomer vetted. If the customer fails the vetting procedure, the 
quote process terminates. Assuming the customer is satisfac­
tory, their requirements are mapped against the service port­
folio. If they can be met by an off-the-shelf item then an 
immediate quote can be offered. In the case of bespoke ser­
vices, however, the process is more complex. CSD further 
analyses the customer's requirements and whilst this is 
occurring LD checks the legality of the proposed service. If 
the desired service is illegal, the quote process terminates. If 
the requested service is legal, the design phase can start. To 
prepare a network design it is usually necessary to dispatch a 
surveyor to the customer's premises so that a detailed plan of 
the existing equipment can be produced. On completion of 
the network design and costing, DD informs CSD of the 
quote. CSD, in turn, informs the customer. The business pro­
cess then terminates. 

Following the principles of agent-oriented decomposition, 
the system's autonomous problem solving entities were iden­
tified (figure 2). Thus, each department is represented by an 
agent, as is each individual within a department. Since all 
these entities are active problem solvers with their own 
objectives, this mapping is both natural and intuitive. To 
achieve their individual objectives, agents need to interact 

1434 AWARDS 



with one another. In this case, all interactions take the form 
of negotiations about which services the agents will provide 
to one another and under what terms and conditions [Faratin 
et al., 1998]. The nature of these negotiations varies depend­
ing on the context and the prevailing circumstances: negotia-
tions between BT internal agents are more cooperative than 
those involving external organisations, and negotiations 
where time is plentiful differ from those where time is short. 
Thus, for example, to get a customer vetted, the CSD agent 
negotiates (in a competitive manner) simultaneously with all 
the VC agents to determine which of them can perform this 
service the quickest. This interaction involves generating a 
series of proposals and counter-proposals and if it is success­
ful it ultimately results in a mutually agreeable contract. 
Generally speaking, the flexible nature of the interactions 
means the negotiators can tailor their behaviour to the pre­
vailing circumstances. Thus, they can both vary the amount 
of utility they expect from an agreement and relax their con­
straints in a context dependent manner. 

Figure 2: Agent system for managing the quote process 

Direction of arrow indicates the consumer of the service 
labelling the arrow. 

The final system design task is to characterise the organisa­
tional inter-relationships. Here, the following classes are 
applicable: collections of agents being grouped together as a 
single conceptual unit (e.g. the individual designers and law­
yers in DD and LD respectively), audiority relationships 
(e.g. the DD agent is the manager of the SD agent), peers 
within the same organisation (e.g. the CSD, LD, and DD 

agents) and customer-subcontractor relationships (e.g. the 
CSD agent and the various VC agents). Explicitly represent­
ing such relationships is important because it provides a 
means of clustering collections of agents so they can be dealt 
with as a single conceptual unit and because it has a signifi­
cant impact on the negotiation behaviour of the participants. 

5 Discussion 
This paper has sought to justify the claim that agent-based 
computing has the potential to provide a powerful suite of 
metaphors, concepts and techniques for conceptualising, 
designing and implementing complex (distributed) systems. 
However, against this promise lies the perils that: (i) there is 
insufficient know-how about building agents that can engage 
in flexible social interactions; (ii) the means by which social­
ity impacts upon individual and collective behaviour is not 
well understood; and (iii) the way in which organisational 
relationships impact upon the behaviour of individuals and 
societies needs to be clarified. 

One means of tackling these fundamental issues is to fol­
low an approach that proved successful in elucidating the 
foundational principles and structures of individual (asocial) 
agents. Newell's [1982] knowledge level analysis provided 
the seminal characterisation of intelligent agents—it stripped 
away implementation and application specific details to 
reveal the core of asocial problem solvers. Since the aim here 
is to do the same for social agents, Newell's basic approach 
can be re-used. Thus a new computer level needs to be 
defined. This level can be called the Social Level [Jennings 
and Campos, 1997]. It should sit immediately above the 
knowledge level and it should provide the social principles 
and foundations for agent-based systems. The primary bene-
fit of developing a social level description is that it enables 
the overall system's behaviour and key conceptual structures 
to be studied without the need to delve into the implementa-
tion details of the individual agents or the specifics of partic­
ular interaction protocols. Thus prediction of the behaviour 
of the social agents and of the overall system can be made 
more easily. 

To this end, a preliminary version of the social level will be 
outlined (following Newell's general nomenclature): 

• The system (the entity to be described at that level) is an 
agent organisation. 

• The components of an agent organisation (the primitive 
elements from which it is built up) are the agents them­
selves and the channels through which they interact. 
Interactions occur because of the inherent dependencies 
that exist between the agents (either through the envi­
ronment or as a consequence of their adopted goals) 
[Jennings, 1993]. Thus dependencies are also a primi­
tive component. The final component is the organisa­
tional relationships that hold between the agents. 

JENNINGS 1435 



• Composition laws define how the components are 
assembled to form the system. In this case, the agents 
undertake particular roles in the organisation. These 
roles define the objectives of the agents and their organi­
sational relationships, the channels through which they 
interact, and the patterns of their interaction. Accompa-
nying the roles are the organisation's rules that define 
the laid down procedures or the emergent norms. These 
rules specify, among other things, who can adopt which 
roles and under what terms and conditions, what should 
happen if roles are violated, and how role conflicts 
should be handled. 

• Behaviour laws determine how the system's behaviour 
depends upon its composition and on its components' 
behaviour. These laws indicate how the agents within 
the organisation should balance their individualistic 
objectives with those that stem from being part of the 
organisation. Here no single law is universally best; 
rather, there is a continuous spectrum from the purely 
selfish to the altruistic. 

• The medium is the elements the system processes to 
obtain the behaviour it was designed to achieve. In this 
case, it is the social knowledge that each agent main-
tains about the agent organisation and its role therein. 
This includes, among other things, its social and organi-
sational obligations, its mechanisms for influencing 
other agents and its mechanisms for altering the organi-
sational structure. 

References 
[Booch, 1994] G. Booch. Object-oriented analysis and 

design with applications. Addison Wesley, 1994. 

[Brooks, 1995] F. P. Brooks. The mythical man-month. Add­
ison Wesley, 1995. 

[Buschmann et al, 1998] F. Buschmann, R. Meunier, H. 
Rohnert, P. Sommerlad and M. Stahl. A System of Pat-
terns. Wiley, 1998. 

[Chaib-draa, 1995] B. Chaib-draa. Industrial applications of 
distributed A l . Comms. of ACM 38(11):47-53, 1995. 

[Faratin et al, 1998] P. Faratin, C. Sierra, and N. R. Jen­
nings. Negotiation Decision Functions for Autonomous 
Agents. Int. J. of Robotics and Autonomous Systems 24(3-
4): 159-182, 1998. 

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson and J. 
Vlissides. Design Patterns. Addison Wesley, 1995. 

[Jennings, 1993] N. R. Jennings. Commitments and Conven­
tions: The Foundation of Coordination in Multi-Agent 
Systems. The Knowledge Engineering Review 8(3):223-
250, 1993. 

(Jennings; 1995] N. R. Jennings. Controlling cooperative 
problem solving in industrial multi-agent systems. Artifi­
cial Intelligence 75(2); 195.240,1995. 

[Jennings and Campos, 19971 N.R. Jennings and J. R. Cam­
pos. Towards a Social Level Characterisation of Socially 
Responsible Agents. IEE Proc. on Software Engineering, 
144(1):11-25,1997. 

[Jennings et al., 1996] N. R. Jennings, P. Faratin, M. J. John­
son, T. J. Norman, P. O'Brien and M. E. Wiegand. Agent-
based business process management, lnt J. of Cooperative 
Information Systems 5(2&3): 105-130,1996. 

[Jennings et al, 1993] N. R. Jennings,L- Varga, R. P. Aarnts, 
J. Fuchs, and P. Skarek. Transforming stand-alone expert 
systems into a community of cooperating agents. Int J. of 
Engineering Applications ofAI 6(4):317-331,1993. 

[Jennings and Wooldridge, 1998] N. R. Jennings and M. 
Wooldridge (eds.) Agent technology: foundations, applica­
tions and markets. Springer Verlag, 1998. 

[Newell, 1982] A. Newell. The Knowledge Level. Artificial 
Intelligence 18:87-127,1982. 

[Meyer, 1988] B. Meyer. Object-oriented software construc­
tion. Prentice Hall, 1988. 

[Milner, 1993] R. Milner. Elements of interaction. Comms. 
of ACM 36(1):78~89, 1993. 

[Parunak, 1999] H. V. D. Parunak. Industrial and practical 
applications of DAI. In G. Weiss, editor, Multi-Agent Sys­
tems, MIT Press, 377-421, 1999. 

[Russell and Norvig, 1995] S. Russell and P. Norvig. Artifi­
cial intelligence: a modern approach. Prentice Hall, 1995. 

[Simon, 1996] H. A. Simon. The sciences of the artificial. 
MIT Press, 1996. 

[Szyperski, 1998] C. Szyperski. Component Software. Addi­
son Wesley, 1998. 

[Wegner, 1997] P. Wegner. Why interaction is more powerful 
than algorithms. Comms. of ACM 40(5):8O-91, 1997. 

I Wooldridge, 1997] M. Wooldridge. Agent-based software 
engineering. IEE Proc Software Engineering 144:26-37, 
1997. 

[Wooldridge and Jennings, 1995] M. Wooldridge and N. R. 
Jennings. Intelligent agents: theory and practice. The 
Knowledge Engineering Review 10(2): 115-152, 1995. 

[Wooldridge and Jennings, 1998] M. J. Wooldridge and N. 
R. Jennings. Pitfalls of Agent-Oriented Development. 
Proc 2nd Int. Conf on Autonomous Agents, Minneapolis, 
USA, 385-391, 1998. 

1436 AWARDS 


