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Abstract

In this paper we generalize the idea given by Weger and
Maitra & Sarkar. This generalization is coming from the
concept of x9.31−1997 standard for public key cryptogra-
phy, Section 4.1.2, i.e., there are a number of recommen-
dations for the generalization of the primes of an RSA
modulus. Among them, the ratio of the primes shall not be
close to the ratio of small integers. Also we try to improve
the range of weak keys of RSA cryptosystem for the Gen-
eralized Wiener’s attack given by Blomer & May. We have
shown that the range of weak keys can be extended by
more than 8 times than the range given by Blomer & May.
Further we have shown that for |ap − bq| ≤ N

α
2 where

0 < α ≤ 1, if e satisfies an equation ex + y = mφ(N), for
m > 0. Then N can be factored in( O poly(log N)) times

when 0 < x ≤ 1
6

√
φ(N)

e N
1
2−α

4 and |y| ≤ |ap−bq|
φ(N)N1/4 ex.

Keywords: Continued fractions, coppersmith’s method,
RSA, Wiener’s attack

1 Introduction

The RSA cryptosystem [8, 9] invented by Rivest, Shamir
and Adleman in 1978 is one of the most practical and
popular public key cryptosystem in the history of the
cryptology. The security of RSA depends on mainly two
primes p, q of the same bit size and the integer d satisfy-
ing ed ≡ 1 mod φ(N), where N = pq and (e, φ(N)) = 1.
The key pair (e,N) is called RSA public key. The in-
teger N is called RSA modulus. The integers e and d
are called encryption (public) key and decryption (secret)
key exponent respectively. To reduce the decryption time,
one may wish to use short secret exponent d. This was
cryptanalyzed ed by Wiener [11] in 1990 who observed
that RSA is insecure if d < 1

3N
1
4 . More precisely, he

showed that every public exponent e ∈ Z∗φ(N) which cor-

responds to the secrete exponent d < 1
3N

1
4 , yields the fac-

torization of the modulus in time polynomial in log(N).
Wiener’s method is based on the continued fractions. In
1999, Boneh & Durfee [2] improved Wiener’s bound to

d < N0.292 using lattice reduction technique [3, 6]. In
2000, Weger [10] improved Wiener’s bound to d < N δ,
where δ < 3

4 − β and assuming that φ(N) > 3
4 (N) where

N is, with a small difference between its prime factors
p − q = Nβ , 1

4 ≤ β ≤ 1
2 . A fast RSA-variant that makes

use of special RSA-keys was proposed by Yen et al. [12]in
2001 which is known as YKLM scheme. Due to large de-
cryption exponent d, the Wiener and the Boneh & Dur-
fee attack can not directly be applied to this variants. In
2004, Blomer and May [1] generalized Wiener [11] and
Weger [10] attacks by showing that N can be factorized
in polynomial time, when the public exponent e satisfies

an equation ex + y = 0 mod φ(N) with 0 < x ≤ 1
3

√
φ(N

e

N
3
4

p−q and |y| ≤ p−q

φ(N)N
1
4
ex. In fact, the Blomer & May

attack is applicable in YKLM scheme also. In their arti-
cle [1] Blomer & May introduce the notion of weak keys
in RSA first time. They defined the weak keys as: there
are classes of public keys (N, e) where every element in
the class yields the factorization of N. In the case of the
Wiener attack the class consists of all public key tuples
(N, e) where ed − 1 ≡ 0modφ(N) with d < 1

3N
1
4 . In

2008, Maitra and Sarkar [7] generalized the range of weak
keys given by Blomer & May to the public exponent e
satisfies an equation ex + y = mφ(N), for m > 0 with

0 < x ≤ 1
6

√
φ(N

e N
1
2− γ

2 and |y| ≤ Nγ

φ(N)N
1
4
ex, where

|ρq − p| ≤ Nγ , γ ≤ 1
2 and ρ (1 ≤ ρ ≤ 2) is known to the

attacker. They have shown that the class of weak keys
identified in [1] can be extended by more than 5 times. In
this paper, we present new class of weak keys in RSA by
extending the rage of weak keys by 8 time given in [1] and
1.5 times given in [7]. Also, In this paper, we present an
extension of Generalized Wiener attack given by Blomer
& May [1] and the attack given by Maitra & Sarkar [7].
Our method combines the Continued fractions & Cop-
persmith’s method. Our approach is more efficient if p

q
is close to a

b with small integers a and b. This is a step
in the direction of the X9.31 − 1997 standard for PKC
(Section 4.12) which requires that the ratio of the primes
shall not be close to the ratio of small integers. Instead of
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considering |ρq − p| ≤ Nγ , assuming a and b is known to
the attacker, here we consider |ap − bq| ≤ 1

16N
α
2 , where

0 < α ≤ 1, and a, b is coming from the concept of p
q shall

not be close to the ratio of small integers. Here a & b have
the same bit length. Also a is coprime to b, a > b. We can
generate the value of a and b by Stern-Brocot Tree [4].

Rest of the sections are as follows. Second section
is a preliminary section where we present the continued
fraction and Coppersmith’s method. Section three is our
main part of the article where we present a class of new
weak keys in RSA by proving that N can be factored

in (O poly(log N)) times when 0 < x ≤ 1
6

√
φ(N)

e N
1
2−α

4

and |y| ≤ |ap−bq|
φ(N)N1/4 ex. Finally we conclude our article in

Section 4.

2 Preliminaries

Continued Fraction: The continued fraction [5] expan-
sion of a real number:

ξ = ao +
1

a1 +
1

a2 +
1

a3 + ...

where aoεZ and aiεN − {O} for i ≥ 1. The numbers
a0, a1, a2, .. are called the partial quotients. In short
we can write ξ = [a0, a1, ...]. For i ≥ 0,the rationales
pi

qi
= [a0, a1, .....ai] are called the convergent of the

continued fraction expansion of ξ. If ξ = a
b is rational

with gcd(a, b) = 1, then the continued fraction expansion
is finite and the continued fraction algorithm finds the
convergent in time O((log b)2).

Coppersmith’s method[3]: At Eurocrypt1996, Cop-
persmith [3] introduced two lattice reduction based tech-
niques to find small roots of polynomial diophantine equa-
tions. The first technique works for modular univariate
polynomials, the second for bivariate integer polynomial
equations. He illustrated his technique for solving bivari-
ate integer polynomial equations with the problem of find-
ing the factors of N = pq if we are given the high order
1
4 log2 N bits of q.

Theorem 1. Let N = pq be an RSA modulus with q <
p < 2q. Given an approximation p̃ of p with |p− p̃| < N

1
4 ,

then N can be factories time polynomial in log N .

3 New Weak keys in RSA

Let us we begin this section with the following proposi-
tion.

Proposition 1. Let |ap−bq| ≤ 1
16N

α
2 , where a ≤ b ≤ 2a,

and 0 < α ≤ 1. Then |p + q − (
√

b
a + 1√

b
a

)
√

N | < 1
8N

α
2 .

Proof. Since

|ap− bq| ≤ 1
16

N
α
2 . (1)

On multiplying p, we get

|ap2 − bpq| ≤ p
1
16

N
α
2

⇒ |p +

√
b

a

√
N ||p−

√
b

a

√
N | ≤ p

1
16a

N
α
2

⇒ |1 +

√
b
aN

p
||p−

√
b

a

√
N | ≤ 1

16a
N

α
2

⇒ |p−
√

b

a

√
N | <

1
16a

N
α
2 <

1
16

N
α
2

(as |1 +

√
b
aN

p
| > 1).

Similarly, on multiplying q on both sides in Inequality (1),
we have

|apq − bq2| ≤ q
1
16

N
α
2

⇒ |aN − bq2| ≤ q
1
16

N
α
2

⇒ |N − b

a
q2| ≤ q

1
16a

N
α
2

⇒ |
√

b

a
q −

√
N ||

√
b

a
q +

√
N | ≤ q

1
16a

N
α
2

Since |
√

b
a +

√
N
q | > 1, as b

a ≥ 1, finally we have

|q −
√

N
b
a

| <
1

16
√

ab
N

α
2 <

1
16

N
α
2

Hence |p+q−(
√

b
a + 1√

b
a

)
√

N | ≤ |p−
√

b
aN |+|q−

√
N
b
a

| <
1
8N

α
2 .

Theorem 2. Let |ap − bq| ≤ 1
16N

α
2 , with a and b be

small integers and 0 < α ≤ 1, and d = N δ. Then N can
be factored in O(poly(log N)) time when δ < 1

2 − α
4 .

Proof. We know that if |ap− bq| ≤ 1
16N

α
2 , then

|p + q − (

√
b

a
+

1√
b
a

)
√

N | <
1
8
N

α
2

⇒ |φ(N)−N − 1 + (

√
b

a
+

1√
b
a

)
√

N | <
1
8
N

α
2



International Journal of Network Security, Vol.14, No.2, PP. 80–85, Mar. 2012 82

Now, if ed− 1 = kφ(N), then

| e

N − (
√

b
a + 1√

b
a

)
√

N + 1
− k

d
|

≤ | e

N − (
√

b
a + 1√

b
a

)
√

N + 1
− e

φ(N)
|+ | e

φ(N)
− k

d
|

<
|φ(N)− (N − (

√
b/a + 1√

b/a

√
N + 1)|

N − (
√

b/a + 1√
b/a

)
√

N + 1
+

1
d(φ(N)

<
1
4
N

α
2−1 +

1
4d2

,

on assuming N−(
√

b/a+ 1√
b/a

)
√

N +1 > N
2 and φ(N) >

4d. When N
α
2 −1

4 < 1
4d2 , then

| e

N − (
√

b
a + 1√

b
a

)
√

N + 1
− k

d
| <

1
2d2

Therefore by the Legendre theorem, k
d is one of the con-

vergent of the continued fraction of e

N−(
√

b/a+ 1√
b/a

)
√

N+1
.

Now, by setting d = N δ in the inequality N
α
2 −1

4 < 1
4d2 ,

we get δ < 1
2 − α

4 .

Remark: Here the results in [10] and [7] are for the cases
when p− q and 2p− q is small. These results are special
cases of Theorem 1, for a = b = 1 and a = 2, b = 1,
respectively.

Let us briefly summarize the above theorem by the
following algorithm.

Algorithm 1
1: Input: RSA public key (e,N).
2: Output: The secret exponent d.
3: Step 1: Choose two coprime integers a and b which

are less than logN . (The integers a and b can be
generated by Stern-brocot tree.)

4: Step 2: Compute the convergent of e
N− a+b√

ab

√
N+1

.

5: Step 3: For each convergent mi

ni
, solve the equation

x2 − (N + 1 − emi−1
ni

)x + N = 0. If its roots are
positive integers less than N , then return the secret
exponents mi.

6: Step 4: Return(failure).

Recall that in Blomer’s theory [1] (Theorem 2), N
can be factored in polynomial time if ∀ N , e satisfying
ex + y = 0modφ(N), with x ≤ 1

3N
1
4 and |y| ≤ cN− 3

2 ex,
c ≤ 1 and p − q ≥ cN

1
2 . Here from the above condi-

tion imply that ex+y 6= 0, therefore excluding the trivial
congruences: since c ≤ 1, we see that |y| < ex. This im-
plies that m > 0. Thus we consider ex + y = mφ(N) =
m(pq − p − q + 1) = m(N − p − q + 1). This implies

that e
N − m

x = −m(p+q−1)+y
Nx . If | e

N − m
x | = |m(p+q−1)+y

Nx |
< 1

2x2 , then the fraction m
x is one of the convergent of

e
N . Thus one need to find out the conditions such that
|m(p + q − 1) + y| < N

2x is satisfied. Here notice that,
instead of trying to find m

x among the convergent of e
N ,

a better attempt will be to find m
x among the convergent

of e
φ′(N) , where φ′(N) is a better estimate than N for

φ(N). Following the idea of [10], φ′(N) has been taken
as N − b2√Nc and the continued fraction expression of

e

N − b2√Nc has been considered to estimate m
x in [1]

(Section 4). It has been proved in [1] (Theorem 4, Section
4) that p, q can be found in polynomial time for every N, e

satisfying ex+y = 0modφ(N), with x ≤ 1
3

√
φ(N

e
N

3
4

p−q and
|y| ≤ p−q

φ(N)N
1
4
ex. In [7], it has been shown that the class

of weak keys identified in [1] (Theorem 2) can be extended
by more than five times. Now, here arise a question: can
we further extend the range of weak key? In this article
we try to answer affirmatively. Using the method dis-
cussed in the above Theorem 1 for a = 3 and b = 2, we
extend the range of weak key by more than 8 times than
the range given in [1] and around 1.5 times than the range
given in [7]. Now we start with the following lemma.

Lemma 1. Let ex + y = mφ(N) for m > 0. Then
| e
N− 5√

6

√
N+1

− m
x | < 1

2x2 for x ≤ 57
20N

1
4 when |y| ≤

cN− 3
4 ex, where c ≤ 1 and p− q ≥ cN

1
2 .

Proof. The proof follows from the following steps:

Step 1. Since N − 5√
6

√
N + 1 < φ(N) < N − 2

√
N + 1,

using [7] (Proposition 1). From

N − 5√
6

√
N + 1 < φ(N)

⇒ (p + q) <
5√
6

√
N. (2)

Similarly, from

φ(N) < N − 2
√

N + 1

⇒ 2
√

N < p + q. (3)

Hence from Equations (2)and (3):

(2− 5√
6
)
√

N < p + q − 5√
6

√
N < 0

⇒ |(2− 5√
6

√
N | > |p + q − 5√

6

√
N |

⇒ (
5√
6
− 2)

√
N > |p + q − 5√

6

√
N |.

Step 2. Since |y| ≤ cN− 3
4 ex, we have |y| < xN

1
4 as e <

N and c ≤ 1.
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Step 3. We know from [1], 3
4

ex
φ(N) ≤ m ≤ 5

4
ex

φ(N) . Now,

e

N − 5√
6

√
N + 1

− m

x

=
ex−m(N + 1− 5√

6

√
N)

x(N + 1− 5√
6

√
N)

=
mφ(N)− y −m(N + 1− 5√

6

√
N)

x(N + 1− 5√
6

√
N)

=
m(N + 1− (p + q))− y −mN −m + m 5√

6

√
N

x(N + 1− 5√
6

√
N)

=
m(−p− q + 5√

6

√
N)− y

x(N + 1− 5√
6

√
N)

By Step 1:

| e

N − 5√
6

√
N + 1

− m

x
| <

m( 5√
6
− 2)

√
N + |y|

x(N − 5√
6

√
N) + 1

.

Now,

m( 5√
6
− 2)

√
N + |y|

x(N − 5√
6

√
N + 1)

<
1

2x2
,

if
5
4

ex
φ(N) (

5√
6
−2)

√
N+xN

1
4

x(N− 5√
6

√
N+1)

< 1
2x2 , using Steps 2 and

3. That is, if
5
4 ( 5√

6
−2)

√
N+N

1
4

(N− 5√
6

√
N+1)

< 1
2x2 (since e <

φ(N), e
φ(N) < 1), if

5
4×0.05

√
N

N− 5√
6

√
N+1

< 1
2x2 (since 5√

6
−

2 < 0.05 and 5
4 ( 5√

6
− 2)

√
N + N

1
4 < 5

4 × 0.05
√

N ,

for large N.), if 5
2 × 0.05x2 < N

1
2 + 1

N
1
2
− 5√

6
, if

x2 < 8N
1
2 (for large N), x ≤ 2

√
2N

1
4 , this implies

that x ≤ 2(1.414)N
1
4 ≤ 2.828N

1
4 ≤ 2.85N

1
4 .

This shows that the class of weak keys identified in [1]
(Theorem 2: x ≤ 1

3N
1
4 ) and [7] (Lemma 2, Section 3:

x ≤ 7
4N

1
4 ) can be extended by 57×3

20×1 = 161
20 and 57×4

20×7 = 57
35

respectively, i.e, by more than 8 and 1.5 times. This also
shows that Lemma [1] presents the class of new weak keys
over [1] (Theorem 4, Section 4), when e

φ(N) > ( 20
161c )2 for

20
161 < c < 1√

2
.

Theorem 3. Let |ap − bq| ≤ 1
2Nα where 0 < α ≤ 1.

Suppose e satisfies an equation ex+y = mφ(N), for m >
0. Then N can be factored in O(poly(log(N))) time when

0 < x ≤ 1
6

√
φ(N)

e N
1
2−α

4 and |y| ≤ |ap−bq|
φ(N)N1/4 ex.

Proof. Since ex+y = mφ(N), this implies that m = ex+y
φ(N) .

Using the bound on |y|, we have m ≤ ex
φ(N) (1 + |ap−bq|

φ(N)N
1
4
).

So

| e

N − ( a+b√
ab

)
√

N + 1
− m

x
|

=
|ex−m(N − a+b√

ab

√
N + 1)|

x(N − a+b√
ab

√
N + 1)

=
|m( a+b√

ab

√
N − p− q)|+ |y|

x(N − a+b√
ab

√
N + 1)

(since ex + y = mφ(N))

≤
( ex

φ(N) (1 + |ap−bq|
φ(N)N

1
4
))( a+b√

ab

√
N − p− q) + |ap−bq|

φ(N)N
1
4
ex

x(N − a+b√
ab

√
N + 1)

(using the upper bound of m & y)

=
( e

φ(N) (1 + |ap−bq|
φ(N)N

1
4
))( a+b√

ab

√
N − p− q) + |ap−bq|

φ(N)N
1
4
e

(N − a+b√
ab

√
N + 1)

<
e

φ(N)
2N

α
2 + 2N

2α
2 − 5

4 + N
1
2−α

4

N − a+b√
ab

√
N + 1

(using |ap− bq| ≤ N
α
2 and | a+b√

ab

√
N − p− q| < 2N

α
2 )

<
e

φ(N)
3N

α
2

N − a+b√
ab

√
N + 1

<
e

φ(N)
18N

α
2−1 (assuming N − a+b√

ab

√
N + 1 > N

6 ).

Hence, we get m
x via continued fraction expression of

e
N− a+b√

ab

√
N+1

, if e
φ(N)18N

α
2−1 < 1

2x2 , that is x <

1
6

√
φ(N)

e N
1
2−α

4 . Now, we have to show that the correct
m and x yield the factorization of N . Since ex + y =
m(N−(p+q)+1), this implies that N +1− ex

m = p+q+ y
m

since every parameter on the L.H.S. is now known to us,
we can compute an approximation of p + q, up to some
unknown error term y

m . Since y
m ≤ cN

1
4 , where c is in-

dependent of a, b. Hence, using the technique’s of [1], we
can easily factor N in polynomial time.

Note 1. The result of [1] (Theorem 4, Section 4)
states that N can be factorized in polynomial time
if e satisfies the relation ex + y = 0 mod φ(N), with

0 < x ≤ 1
3

√
φ(N)

e
N

3
4

φ(N)N
1
4

and |y| ≤ p−q

φ(N)N
1
4
ex. In our re-

sult p−q is replaced by ap−bq where a is coprime to b and
a ≥ 1. Thus the results of this section present new weak
keys other than those presented in [1]. The result of [1]
works efficiently when p − q is upper bounded and our
works gives better results when |ap−bq| is upper bounded.

Note 2. Our result is also better than [7]. Since the result
of [7] (Theorem 4, Section 3) works efficiently when |ρq−p|
is upper bounded and our works gives better results when
|ap− bq| is upper bounded. Now we estimate the number
of weak keys, the method is same as in [1]. First we use
the existing result, i.e, lower bound theory which is as
follows.
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Lemma 2. [1] (Lemma 6.) Let f(N, e), g(N, e) be func-
tions such that f2(N, e)g(N, e) < φ(N, e), f(N, e) ≥ 2
and g(N, e) ≤ f(N, e). The number of public keys
e ∈ Z∗φ(N), e ≥ φ(N)

4 that satisfy an equation ex + y =
0 mod φ(N) for x ≤ f(N, e) and |y| ≤ g(N, e)x is at least
f(N,e)g(N,e)
8 log log2(N2)

− O(f2(N, e)N ε), where ε > 0 is arbitrarily
small for N suitably large. Hence, before presenting our
estimate using similar analysis in [1], we define the class
of weak keys as presented in [1].

Definition 1. Let C be a class of RSA public keys N, e.
The size of the class C is defined by

sizeC(N) = |{eεZ∗φ(N)|(N, e)εC}|.
C is called weak if:

1) sizeC(N) = Ω(Nγ) for γ > 0.

2) There exists a probabilistic algorithm A that on every
input (N, e)εC outputs the factorization of N in time
polynomial in log(N).

The elements of a weak class are called weak keys.

Theorem 4. Let |ap − bq| = N
1
4 + γ with 0 < γ ≤ 1

4 ,
further, let C be weak class that is given by the pub-
lic key tuples N, e defined in Theorem 1 with the ad-
ditional restrictions that eεZ∗φ(N) and e ≥ φ(N)

4 . Then

sizeC(N) = Ω(N
3
4 ).

Proof. Here f(N, e) = 1
6

√
φ(N)

e N
1
2−α

4 , g(N, e) =
|ap−bq|

φ(N)N1/4e. It can be easily checked that these settings
fulfill the requirements of Lemma 2:

f2(N, e)g(N, e) < φ(N),
f(N, e) ≥ 2, and
g(N, e) ≤ f(N, e).

Hence we can apply Lemma 2. Since g(N, e) =
Ω(Nγ), the term f2(N,e)g(N,e)

8 log log2(N2)
dominates the error term

O(f2(N, e)N ε). Using f2(N, e)g(N, e) = Ω(N
3
4 ), we get

the estimate.

4 Conclusion.

In this paper we generalize the idea of Weger [10] for
a = b = 1 and [7] fora = 2, b = 1, where a and b be
small integers.We provide new weak keys over the work
of Blomer & May [1] and Maitra & Sarkar[7] and to the
best of our knowledge the range of weak keys identified
in our paper have not been presented earlier. In Lemma
I we used the value of a = 3, b = 2 from the idea given
in Theorem 1 to set N − 5√

6

√
N + 1 as a better estimate

of φ(N).Here one question can be arisen (has been men-
tioned many times in the past research), whether exists a
better method to evaluate the estimated value of φ(N)? If
any how we find the better estimate of φ(N) the boundary

of the Wiener attack can be raised again as the accuracy
of the estimate of φ(N). Using the notion of weak keys,
as defined by [1], the results of this paper show that this
set of RSA public keys is a class of new weak keys.
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