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Abstract

NTRU is a fast public key cryptosystem presented in 1996
by Hoffstein, Pipher and Silverman. It operates in the
ring of truncated polynomials. In NTRU, a public key is
a polynomial defined by the combination of two private
polynomials. In this paper, we consider NTRU with two
different public keys defined by different private keys. We
present a lattice-based attack to recover the private keys
assuming that the public keys share polynomials with a
suitable number of common coefficients.
Keywords: Cryptanalysis, lattice attacks, NTRU cryp-
tosystem

1 Introduction

The NTRU Public Key Cryptosystem is a ring-based
cryptosystem that was first introduced in the rump ses-
sion at Crypto’96 [5]. It is one of the fastest public-key
cryptosystems, offering both encryption (NTRUencrypt)
and digital signatures (NTRUSign). It is a relatively new
cryptosystem that appears to be more efficient than the
current and more widely used public-key cryptosystems,
such as RSA [9] and ElGamal [4]. It is well known that
the security of RSA and ElGamal relies on the difficulty
of factoring large composite integers or computing dis-
crete logarithms. However, in 1994, Shor [11] showed that
quantum computers can be used to factor integers and to
compute discrete logarithms in polynomial time. Since
NTRU does not rely on the difficulty of factoring or com-
puting discrete logarithms and is still considered secure
even against quantum computer attacks, it is a promising
alternative to the more established public key cryptosys-
tems. In [5], Hoffstein, Pipher and Silverman have stud-
ied different possible attacks on NTRU. The brute force
and the meet-in-the-middle attacks may be used against
the private key or against a single message but will not
succeed in a reasonable time. The multiple transmission
attack also will fail for a suitable choice of parameters.
However, we notice that NTRU suggests that the public
key should be changed very frequently, for each transmis-

sion if possible. The most important attack, presented
by Coppersmith and Shamir [3] in 1997 makes use of the
LLL algorithm of Lenstra, Lenstra and Lovász [6]. Cop-
persmith and Shamir constructed a lattice generated by
the public key and found a factorization of the public key
that could be used to break the system if the NTRU pa-
rameters are poorly set.

The NTRU cryptosystem depends on three integer pa-
rameters (N, p, q) and four sets Lf , Lg, Lr, Lm of polyno-
mials of degree N − 1 with small integer coefficients. Let
Zq denote the ring of integers modulo q. The operations
of NTRU took place in the ring of truncated polynomials
Zq[X]/

(
XN − 1

)
. In this ring, the addition of two poly-

nomials is defined as pairwise addition of the coefficients
of the same degree and multiplication, noted “ ∗ ” is de-
fined as convolution multiplication. In NTRU, to create
a public key h, one chooses a private key (f, g) composed
with two polynomials f and g and computes

h = f−1
q ∗ g ∈ Zq[X]/

(
XN − 1

)
,

where f−1
q is the inverse of f in Zq[X]/

(
XN − 1

)
.

In this paper, we consider NTRU with two public keys
h, h′ defined by the private keys (f, g) and (F ′, G′) with

h′ = F ′−1
q ∗G′ (mod q).

Since f is invertible in Zq[X]/
(
XN − 1

)
, then we can

define g′ = f ∗ h′ (mod q) so that

h′ = f−1
q ∗ g′ mod q.

The main objective of this paper is to show how to find
the private key (f, g) when

‖g − g′‖ < min(‖g‖, ‖g′‖).

Using h and h′, we construct a lattice L(h, h′) of dimen-
sion 2N , and applying the lattice basis reduction algo-
rithm LLL, we show that short vectors in L(h, h′) can
be used to find the private polynomials f , g, g′ when
‖g − g′‖ < min(‖g‖, ‖g′‖). Under this condition, it is im-
portant to notice that our method is more efficient than
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the method of Coppersmith and Shamir to recover the
private key (f, g) using the public key h.

We note that when the polynomials g, g′ are gener-
ated randomly and independently, then with overwhelm-
ing probability the condition ‖g − g′‖ < min(‖g‖, ‖g′‖)
is not satisfied. So in practice one can easily avoid this
inequality.

Similarly, assume that h′ = F ′−1
q ∗ G′ (mod q) is in-

vertible in Zq[X]/
(
XN − 1

)
. Then we can define a poly-

nomial f ′ as

f ′ = h′−1
q ∗ g (mod q),

where h′−1
q is the inverse of h′ in Zq[X]/

(
XN − 1

)
. Using

lattice reduction techniques, we show that it is possible to
recover the private key (f, g) assuming that the condition
‖f − f ′‖ < min(‖f‖, ‖f ′‖) is fulfilled.

The paper is organized as follows. In Section 2, we
give motivation for our work. Section 3 gives a brief
mathematical description of NTRU and introduces the
LLL algorithm as well as the attack of Coppersmith and
Shamir on NTRU. In Section 4, we present our new at-
tack on NTRU with two private keys (f, g) and (f, g′) with
‖g− g′‖ < min(‖g‖, ‖g′‖) and compare it with the attack
of Coppersmith and Shamir. In Section 5, we present our
new attack on NTRU when h and h′ are invertible and
‖f − f ′‖ < min(‖f‖, ‖f ′‖). We conclude the paper in
Section 6.

2 Motivation

RSA, the most commonly used public-key cryptosys-
tem [9] has stood up remarkably well to years of extensive
cryptanalysis and is still considered secure by the cryp-
tographic community (see [1] for more details). Various
schemes and digtal signatures are based on the same prob-
lem behind RSA (see e.g. [2] and [13] ). Indeed, RSA
derives its security from the difficulty of factoring large
numbers of the shape N = pq where p, q are large un-
known primes of the same bit-size. In some cases, the
problem can be slightly easier given two RSA modulus
N = pq, N ′ = p′q′. If p = p′, then it is trivial to factor N
and N ′ by computing gcd(N, N ′). However, it is possible
to factor N and N ′ when p and p′ share a certain amount
of bits (see [8, 10]).

The first paper studying NTRU was written by Cop-
persmith and Shamir [3] in 1997. In that paper, they
noted that the best way to attack the NTRU cryp-
tosystem was via the techniques of lattice reduction.
Nevertheless, the security of NTRU is also based on
the following factorization problem: Given a polyno-
mial h ∈ Z[X]/

(
XN − 1

)
, find two short polynomials

f ∈ Z[X]/
(
XN − 1

)
and g ∈ Z[X]/

(
XN − 1

)
such that

h = f−1
q ∗ g (mod q), where f−1

q is the inverse of f in
Zq[X]/

(
XN − 1

)
.

Similarly to RSA with two modulus, consider NTRU
with two public keys h and h′ defined by the same pa-
rameters (N, p, q). Assume that h = f−1

q ∗ g (mod q).

Then, h′ can be expressed as h′ = f−1
q ∗g′ (mod q) where

g′ = f ∗ h′ (mod q). The main contribution of this paper
is to show how to find the private keys (f, g) when g and
g′ satisfy ‖g − g′‖ < min(‖g‖, ‖g′‖).

We notice that lattice-based cryptography is currently
seen as one of the most promising alternatives to cryp-
tography based on number theory. Given recent advances
in lattice-based cryptography (see [7] and [12]), studying
NTRU and related schemes is both useful and timely. In
this direction, our work shows that using the same f or
the same g in generating public keys h, h′ is likely to
reduce the security of NTRU.

3 Mathematical Background

In this section, we give a brief description of the NTRU
encryption and the LLL algorithm for lattice reduction
and the well known attack of Coppersmith and Shamir
on NTRU. Further details can be found in [3] and [5].

3.1 Definitions and Notations

We start by introducing the ring

R = Z[X]/(XN − 1),

upon which NTRU operates. We use ∗ to denote a poly-
nomial multiplication inR, which is the cyclic convolution
of two polynomials. If

f = (f0, f1, · · · , fN−1) =
N−1∑

i=0

fiX
i,

g = (g0, g1, · · · , gN−1) =
N−1∑

i=0

giX
i,

are polynomials of R, then h = f ∗ g is given by h =
(h0, h1, · · · , hN−1), where hk is defined for 0 ≤ k ≤ N −1
by

hk =
∑

i+j≡k mod N

figj

=
k∑

i=0

figk−i +
N−1∑

i=k+1

figN+k−i.

The Euclidean norm or the length of a polynomial f =
(f0, f1, · · · , fN−1) is defined as

‖f‖ =

√√√√
N−1∑

i=0

f2
i .

One more notation is the binary set of polynomials B(d)
defined for a positive integers d by

B(d) = {f(X) =
N−1∑

i=0

fiX
i,

where fi ∈ {0, 1},
N−1∑

i=0

fi = d}.
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In other words, B(d) is the set of polynomials of R with d
coefficients equal to 1 and all the other coefficients equal
to 0.

Different descriptions of NTRU Encrypt and different
proposed parameter sets have been in circulation since
1996. The 2005 instantiation of NTRU is set up by six
public integers N , p, q, df , dg, dr and four public spaces
Lf , Lg, Lm, Lr such that

• N is prime and sufficiently large to prevent lattice
attacks.

• p and q are relatively prime.

• q is much larger than p.

• Lf is a set of small polynomials from which the pri-
vate keys are selected.

• Lg is a similar set of small polynomials from which
other private keys are selected.

• Lm is the plaintext space. It is a set of polynomials
m ∈ Zp[X]/(XN − 1) that represent encrypted table
messages.

• Lr is a set of polynomials from which the blinding
value used during encryption is selected.

3.2 The NTRU Encryption Scheme

3.2.1 Key Pair Generation

To create a NTRU key, one randomly chooses a polyno-
mial f ∈ Lf and a polynomial g ∈ Lg. The polynomial
f must satisfy the additional requirement that it has an
inverse f−1

p modulo p and an inverse f−1
q modulo q, that

is

f ∗ f−1
p = 1 (mod p), f ∗ f−1

q = 1 (mod q).

Then the private key is f and the public key is the poly-
nomial

h = f−1
q ∗ g (mod q).

We recall that N , p, q are also public.

3.2.2 Encryption.

To encrypt a message m ∈ Lm, one randomly chooses a
polynomial r ∈ Lr. The ciphertext is the polynomial

e = pr ∗ h + m (mod q).

3.2.3 Decryption

To decrypt an encrypted message e using the private key
f , one computes

a = f ∗ e mod q,

where the coefficients of a lie between −q/2 and q/2. The
message m is then obtained from a by reducing the coef-
ficients of f−1

p ∗ a modulo p.

3.3 The LLL Algorithm

Since lattice reduction is an essential tool for our attack,
let us recall a few facts about lattices and reduced basis.
Let u1, . . . , un ∈ Rm be linearly independent vectors with
n ≤ m. The lattice L spanned by (u1, . . . , un) consists of
all integral linear combinations of u1, . . . , un, that is

L = Zu1 ⊕ · · · ⊕ Zun =

{
n∑

i=1

biui,
∣∣∣ bi ∈ Z

}
.

The set (u1, . . . , un) is called a lattice basis. A lattice can
be conveniently represented by a matrix B whose rows
are the vectors u1, . . . , un. The determinant of the lattice
L is defined as

det(L) =
√

det (BBT ).

Any two bases of the same lattice L are related by some
integral matrix of determinant ±1.

There are several natural computational problems re-
lating to lattices. An important problem is the shortest
vector problem (SVP): given a basis matrix B for L, com-
pute a non-zero vector v ∈ L such that ‖v‖ is minimal.

In 1982, Lenstra et al. [6] introduced the LLL reduction
algorithm which produces an LLL-reduced basis b1, . . . , bn

of L with the following property

‖b1‖ ≤ ‖b2‖ ≤ . . . ≤ ‖bi‖ ≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i ,

for i = 1, . . . , n. With i = 1, this implies that ‖b1‖ sat-
isfies ‖b1‖ ≤ 2

n−1
4 det(L)

1
n . In comparison, a theorem

of Minkowski asserts that any lattice L of dimension n
contains a non-zero vector v with

‖v‖ ≤
√

2n

eπ
det(L)

1
n .

On the other hand, the Gaussian heuristic says that the
length of the shortest non-zero vector is usually approxi-
mately σ(L) where

σ(L) =
√

n

2πe
det(L)

1
n .

3.4 The Attack of Coppersmith and
Shamir on NTRU

In [3] Coppersmith and Shamir presented a lattice at-
tack on NTRU. They defined a lattice determined by the
parameters N , q, h of the system and showed that re-
covering the secret key (f, g) from the public key h is
reduced to finding a shortest vector of the lattice. Let
h = (h0, h1, · · · , hN−1) be the public key. The NTRU
lattice L is the lattice of dimension 2N generated by the
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row vectors of a matrix of the following form

M(L) =
[

lIN H
0 qIN

]

=




l 0 · · · 0 h0 h1 · · · hN−1

0 l · · · 0 hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

0 0 · · · l h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q




.

Since h = f−1
q ∗ g (mod q), then f ∗ h− qu = g for some

u ∈ R and

(f,−u) ∗M(L) = (f,−u) ∗
[

lIN H
0 qIN

]
= (lf, g).

So the vector (lf, g) is a short vector in the NTRU lattice
L, which is with high probability the shortest vector of
L. Hence, an attacker uses lattice reduction algorithms
to find (f, g) from L, then he can recover the private keys.
More precisely, the Gaussian heuristic says that the length
of the shortest non-zero vector is usually approximately
σ(L) where

σ(L) =

√
dim(L)

2πe
(det L)1/ dim(L)

=

√
2N

2πe
(lq)

N
2N

=

√
lqN

πe
.

Hence, in order to maximize the probability of breaking
the NTRU system using lattice reduction, the attacker
should choose l to minimize the ratio

c =
‖(lf, g)‖

σ(L)
=

√
l2‖f‖2 + ‖g‖2√

lqN
πe

.

This occurs for l = ‖g‖/‖f‖ which leads to

c =

√
2πe‖g‖‖f‖

qN
. (1)

The ratio c measures how much smaller the key is com-
pared to the expected smallest vector. If c is very small
then we expect a lattice reduction algorithm as LLL to
have an easier time finding it.

4 The New Attack when ‖g−g′‖ <

min(‖g‖, ‖g′‖)
4.1 The New Lattice

Let

h(X) =
N−1∑

i=0

hiX
i, h′(X) =

N−1∑

i=0

h′iX
i,

be two NTRU public keys created by the private poly-
nomials (f, g) and (F ′, G′) with the same parameters
(N, p, q, df , dg, dr, dm), that is

h = f−1
q ∗ g (mod q),

h′ = F ′−1
q ∗G′ (mod q).

Let g′ = f ∗ h′ (mod q). Then

h′ = f−1
q ∗ g′ (mod q).

For a positive constant l, define the lattice

L(h, h′)
= {(lv, w) ∈ R2 :
where w = v ∗ (h− h′) (mod q)}.

This is a 2N -dimension lattice spanned by the matrix

M(h, h′) =
[

lIN H −H ′

0 qIN

]
,

where H −H ′ is the circulant matrix



h0 − h′0 h1 − h′1 · · · hN−1 − h′N−1

hN−1 − h′N−1 h0 − h′0 · · · hN−2 − h′N−2
...

...
. . .

...
h1 − h′1 h2 − h′2 · · · h0 − h′0


 .

The matrix M(h, h′) has the following property.

Proposition 1. Let h, h′ be two NTRU public keys. As-
sume that

f ∗ h = g + qu, f ∗ h′ = g′ + qu′.

Then the vector (lf, g − g′) is in the lattice L(h, h′) and

(f,−u + u′) ∗M(h, h′) = (lf, g − g′).

Proof. Assume that f ∗ h = g + qu and f ∗ h′ = g′ + qu′.
Substracting the two equalities, we get

f ∗ h− f ∗ h′ = f ∗ (h− h′) = g − g′ (mod q).

This implies that the vector (lf, g−g′) is in L(h, h′). Next,
we have

(f,−u + u′) ∗M(h, h′)

= (f,−u + u′) ∗
[

lIN H −H ′

0 qIN

]

= (lf, g − g′).

This terminates the proof.

4.2 The Gaussian Heuristics

For a random lattice L, the Gaussian heuristic says that
the length of the shortest non-zero vector is approximately

σ(L) =

√
dim(L)

2πe
detL1/ dim(L).
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The dimension and determinant of L(h, h′) are given by

dim(L(h, h′)) = 2N, det(L(h, h′)) = lNqN .

Hence for the lattice L(h, h′), we have

σ(L(h, h′)) =

√
lNq

πe
.

Let us define the ratio

c1 =
‖(lf, g − g′)‖
σ(L(h, h′))

.

So c1 is the ratio of the length of the target vector to
the length of the expected shortest vector. The smaller
the value of c1, the easier it will be to find the target
vector. Thus, the idea to increase the chances of LLL to
find (lf, g− g′) is to choose l such that ‖(lf, g− g′)‖ is as
small as possible compared to σ(L(h, h′)). In L(h, h′), we
have

‖(lf, g − g′)‖ =
√

l2‖f‖2 + ‖g − g′‖2.
It turns out that we should choose

l =
‖g − g′‖
‖f‖ .

This implies that the ratio c1 satisfies

c1 =

√
2πe‖g − g′‖‖f‖

qN
.

Let us compare the ratio c1 and the ratio c as defined
by (1) in the the attack of Coppersmith and Shamir. Our
attack will be more efficient when c1 < c. This leads to
the following condition

‖g − g′‖ < min(‖g‖, ‖g′‖).

5 The New Attack when ‖f−f ′‖ <

min (‖f‖, ‖f ′‖)
5.1 The New Lattice

Let h = f−1
q ∗ g (mod q) and h′ = F ′−1

q ∗ G′ (mod q)
be two NTRU public keys with the same parameters
(N, p, q, df , dg, dr, dm). In this section, we assume that
h, h′ are invertible in Zq[X]/

(
XN − 1

)
. Let hq and h′q

be their inverses. Define f ′ = g ∗ h′q. We have

g ∗ hq = f (mod q), g ∗ h′q = f ′ (mod q).

Let

hq(X) =
N−1∑

i=0

hq,iX
i, h′q(X) =

N−1∑

i=0

h′q,iX
i,

be the representations of hq(X) and h′q(X) in
Zq[X]/

(
XN − 1

)
. For a positive constant l, define the

2N dimension lattice

Lq(h, h′)
=

{
(lv, w) ∈ R2 : w = v ∗ (

hq − h′q
)

(mod q)
}

.

The lattice is generated by the row vectors of the matrix
Mq(h, h′) given below

Mq(h, h′) =
[

lIN Hq −H ′
q

0 qIN

]
,

where Hq −H ′
q is the circulant matrix




hq,0 − h′q,0 · · · hq,N−1 − h′q,N−1

hq,N−1 − h′q,N−1 · · · hq,N−2 − h′q,N−2
...

. . .
...

hq,1 − h′q,1 · · · hq,0 − h′q,0


 .

The matrix Mq(h, h′) has the following property.

Proposition 2. Let h, h′ be two NTRU public keys and
hq, h′q their inverses in Zq[X]/

(
XN − 1

)
. Assume that

g ∗ hq = f + qv, g ∗ h′q = f ′ + qv′.

Then the vector (lg, f − f ′) is in the lattice Lq(h, h′) and

(g,−v + v′) ∗Mq(h, h′) = (lg, f − f ′).

Proof. Assume that g ∗hq = f + qv and g ∗h′q = f ′+ qv′.
Then g ∗ hq = f (mod q) and g ∗ h′q = f ′ (mod q). This
gives g ∗ (hq − h′q) = f − f ′ (mod q) and it follows that
the vector (lg, f − f ′) is in Lq(h, h′). More precisely,

(g,−v + v′) ∗Mq(h, h′)

= (g,−v + v′) ∗
[

lIN Hq −H ′
q

0 qIN

]

= (lg, f − f ′).

This terminates the proof.

5.2 The Gaussian Heuristics

We can apply the the Gaussian heuristic to the lattice
Lq(h, h′). The shortest non-zero vector is approximately

σ(Lq(h, h′))

=

√
dim(Lq(h, h′))

2πe
detLq(h, h′)1/ dim(Lq(h,h′))

=

√
lNq

πe
.

To compare the length of the target vector (lg, f − f ′)
to the length of the expected shortest vector σ(Lq(h, h′)),
we consider the ratio

c2 =
‖(lg, f − f ′)‖
σ(Lq(h, h′))

.

In order to increase the chances of LLL to find the vector
(lg, f − f ′), the attacker chooses the balancing constant l
to make c2 as small as possible. For the lattice Lq(h, h′),
we have

‖(lg, f − f ′)‖ =
√

l2‖g‖2 + ‖f − f ′‖2.
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Hence the optimal choice for l is

l =
‖f − f ′‖
‖g‖ .

which leads to

c2 =

√
2πe‖f − f ′‖‖g‖

qN
.

To increase the chance of this attack to find (lg, f − f ′)
comparatively to the attack of Coppersmith and Shamir,
we should have c2 < c where c is the constant defined
by (1). This gives the condition

‖f − f ′‖ < min (‖f‖, ‖f ′‖) .

6 Conclusion

We have shown that choosing two NTRU public keys
h = f−1

q ∗ g (mod q) and h′ = F ′−1
q ∗ G′ (mod q) could

be insecure in some cases. Rewriting h′ as h′ = f−1
q ∗ g′

(mod q), where g′ = f ∗ h′ (mod q), we have shown, that
using lattice reduction techniques, it is possible to find
the private key (f, g) when ‖g−g′‖ < min (‖g‖, ‖g′‖). We
have shown that the same techniques apply when h′ is in-
vertible modulo q and ‖f − f ′‖ < min (‖f‖, ‖f ′‖). Here
f ′ is defined by the equality f ′ ∗ h′ = g (mod q). For
implementations of NTRU key pair generation we recom-
mend to build in a check for ‖g−g′‖ > min (‖g‖, ‖g′‖) and
‖f − f ′‖ > min (‖f‖, ‖f ′‖). This is very easy to imple-
ment, and will only in extremely rare cases imply that the
key pair is to be rejected. The main reason is that when
f , g, F ′ and G′ are generated randomly, the probability
that g and g′ = f ∗h′ (mod q) share an important amount
of monomials is negligible. Similarly, the probability that
f and f ′ = g ∗ h′−1 (mod q) share an important amount
of monomials is also negligible.
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