
International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 331

Privacy-enhanced Designated Confirmer
Signature without Random Oracles

Shengke Zeng1,2 and Hu Xiong1

(Corresponding author: Shengke Zeng)

School of Computer Science and Engineering, University of Electronic Science and Technology of China1

Chengdu, 611731, P. R. China
School of Mathematics and Computer Engineering, Xihua University, Chengdu, 610039, P. R. China2

(Email: zengshengke@gmail.com)
(Received Nov. 9, 2012; revised and accepted Jan. 18, 2013)

Abstract

As an extension of digital signature, designated confirmer
signature (DCS) efficiently realizes the privacy protection
of the signer. In a DCS scheme, the validity of the sig-
nature must be confirmed by the signer or a semi-trusted
third party, called confirmer. Since the DCS signature
is generated by encrypting a standard signature with the
designated confirmer’s public key, only the confirmer can
disavow invalid signatures. Moreover, the confirmer al-
ways can further convert a DCS into an ordinary signature
by decrypting the DCS such that it is publicly verifiable.
This property is necessary in some cases. However, from
the view of the signer, the privacy is leaked if the DCS
is converted into an ordinary signature by the confirmer.
In this work, we propose a new DCS scheme without the
random oracles. Both the signer and confirmer in this
new construction can confirm a valid DCS and disavow
an invalid signature. Furthermore, the authority of the
confirmer is limited. He is designated by the signer to
verify the validity of a signature only when the signer
is unavailable. However, the confirmer cannot convert a
valid DCS into a standard signature. This new property
of DCS is more favorable to the signer.
Keywords: Designated Confirmer Signature, Standard
Model, Privacy-preserving Signature

1 Introduction

Digital signature is a publicly verifiable scheme that any
verifier can be convinced the integrity and authenticity
of a message sent by the signer. Therefore, the validity
of a signature can be shown to anybody. In some cases,
the signer does not want his signature to be verified or
transferred by anyone. Hence he must control the public
verifiability of the signature. Chaum and van Antwerpen
[6] solved this problem by introducing undeniable signa-
ture. In an undeniable signature scheme, the signature

cannot be directly verified by the receiver. The receiver
needs the help of the signer to verify the validity of the
signature and the receiver cannot show the validity of the
signature to others. Hence, the signer can choose the
qualified verifiers (e.g. prepaid customers) to verify his
signature. In order to alleviate the burden of the signer
or when the signer is unavailable, we need a semi-trusted
third party to assist the signer on the verification. To
achieve this goal, Chaum [4] introduced the notion of des-
ignated confirmer signature (DCS). In a DCS scheme, the
signer designates a semi-trusted third party, called con-
firmer to confirm or disavow a signature on behalf of the
signer. Moreover, the confirmer in the DCS scheme can
convert a designated confirmer signature into an ordinary
signature such that it is publicly verifiable. However, the
confirmer cannot forge the signer’s signature.

1.1 Related Work

After the introduction of DCS [4], many constructions of
DCS have been proposed. Okamoto [13] constructed the
first DCS scheme and proved that a DCS scheme is equiv-
alent to the public key encryption. However, the insecu-
rity of [13] was pointed by Michels and Stadler [12] that
the confirmer can forge the signer’s signature. Gentry et
al. [8] presented a DCS scheme by using a commitment
scheme. However, Wang et al. [14] identified that two se-
curity flaws exist in Gentry’s scheme: the confirmer and
the signer can collude together to convince a verifier an
invalid signature and the validity of DCS can be checked
without the confirmer’s help. Wei et al. [16] proposed a
new notion of society-oriented designated confirmer sig-
nature based on threshold cryptography.

Most previous DCS schemes (including above propos-
als) follow the approach that the DCS signature is en-
crypted by using the confirmer’s public key. Therefore,
the signer does not have the capability to disavow an
invalid signature. However, in many applications, it is
necessary for the signer to have the same ability as the

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 332

confirmer to disavow any invalid signatures. Galbraith
and Mao [7] pointed out that DCS schemes should allow
the signer to deny invalid signatures. Motivated by this
observation, Huang et al. [10] proposed a DCS scheme
to support the signer’s disavowal. Their scheme is proven
to be secure without the random oracles. Wang et al.
[15] constructed a DCS scheme with unified verification.
Compared to [10], Wang et al’s scheme [15] is secure under
the random oracles. However, [15] considered the verifi-
cation in the concurrent execution environment. When
transformed into concurrent zero-knowledge setting, the
confirmation and disavowal protocols in [10] are less effi-
cient in both computation and communication than [15].

1.2 Motivation and Contribution

Similar to [10] and [15], most of previous works produce
the DCS signature by encrypting a standard signature
with the designated confirmer’s public key. Therefore, the
confirmer in the DCS model can extract the ordinary sig-
nature produced by the signer. This property is necessary
in some cases. However, the confirmer is a semi-trusted
third party. If the confirmer converts the DCS signa-
ture into ordinary signature without signer’s consent, the
signer’s privacy cannot be protected any more.

Let us consider the digitization system of healthcare.
Such system provides comprehensive diagnosis and treat-
ment for remote patients. The sensors monitor the patient
and report the information to the panel doctors. For the
validity of the data, the information should be authenti-
cated by the patient. However, for the privacy of patient,
the authenticated information cannot be verified by oth-
ers. Therefore, the patient produces a DCS signature for
the information and designates a semi-trusted principal
to assist him on the verification when he is unavailable.
Hence, the patient controls the verifiability by choosing
the qualified verifiers (e.g. the panel doctors). However, if
the designated confirmer is malicious, i.e. he threatens the
patient for some economic disputes, he would convert the
DCS signature into an original signature. Consequently,
the privacy of the patient is leaked.

From the view of the signer, the confirmer designated
by him is only to assist him to verify the validity of the
signature for verifiers when he is unavailable. Hence the
signer does not hope this confirmer has the ability to
extract the signature. For this motivation, we modify
the syntax of the traditional DCS slightly. That is the
confirmer cannot convert the DCS signature. In this
work, we propose a new efficient designated confirmer
signature scheme which is secure without the random
oracles. We require that in the new DCS model, both the
signer and the confirmer can perform the confirmation
protocol to confirm the validity of DCS signature and
also can perform the disavowal protocol to deny an
invalid DCS signature. Moreover, in order to protect the
privacy of the signer, the confirmer cannot extract the
ordinary signature from the DCS signature.

Organization. Section 2 introduces the preliminaries. Sec-
tion 3 introduces the model of DCS scheme. Section 4 pro-
poses the new DCS scheme. The performance and prop-
erty comparison are presented in Section 5 and Section
6 gives the formal proofs for the security of our scheme.
The last section is a conclusion.

2 Preliminary

2.1 Bilinear Pairings and BB signature

In this work, we make use of bilinear groups of composite
order, which was introduced by Boneh, Goh and Nissim
[2]. Let n be a composite with factorization n = pq. Then
we have:

• G is a multiplicative cyclic group of order n. Gp is
G’s subgroup of order p and Gq is G’s subgroup of
order q.

• GT is a multiplicative group of order n.

• ê : G × G → GT is an efficiently computable map
with the following properties:

– Bilinearity: ∀u, v ∈ G, a, b ∈ Zn, ê(ua, vb) =
ê(u, v)ab.

– Non-degeneracy: ê(g, g) is the generator of GT

whenever g is the generator of G.
– Computability: ∀u, v ∈ G, ê(u, v) can be com-

puted efficiently.
– GT,p and GT,q are the GT -subgroups of order p

and q respectively.

Let us review the BB signature which was proposed by
Boneh and Boyen [1]. It is a short signature scheme which
is secure against an existential forgery under a weak cho-
sen message attack provided that Strong Diffie-Hellman
assumption is hard (see Definition 1). This signature
scheme is secure in prime order group Gp and also can
be adapted to composite order groups [3]. The BB sig-
nature scheme under the composite order bilinear group
and symmetric pairing version is as follows:

• KeyGen. Given a group tuple (n,G,GT , ê, g), choose
x ∈ Zn. The public key is pk = gx and the private
key is sk = x.

• Signing. Given the private key sk ∈ Zn and a mes-
sage m, compute σ = g

1
x+m ∈ G.

• Verification. Given the public key pk, a message m
and the signature σ, check that ê(σ, pk ·gm) = ê(g, g)
holds or not. If it holds, accept the validity of (m,σ).

In fact, the original BB signature [1] is described in the
asymmetric pairing setting, i.e. ê : G1 × G2 → GT . It is
trivial to use symmetric pairing by letting G = G1 = G2.

Theorem 1. BB signature is unforgeable against weak
chosen message attack if Strong Diffie-Hellman assump-
tion holds.

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 333

2.2 Complexity Assumptions

Definition 1 (Strong Diffie-Hellman Assumption
in Gp). The Strong Diffie-Hellman assmuption in Gp

states that, given η, ηx, ηx2
, · · · , ηxt ∈ Gp as input, there

is no PPT adversary can output a pair (c, η
1

x+c), where
c ∈ Zp.

Definition 2 (Subgroup Decision Assumption). Let
(n,G, GT , ê, g) be the pairing parameters, where n = pq.
The Subgroup Decision assumption states that it is hard
to distinguish a random element in G from a random el-
ement in Gq.

2.3 Zero-knowledge Proofs

Zero-knowledge proof system was first proposed by Gold-
wasser, Micali and Rackoff [9] which allows a prover P
to convince a verifier V about the truth of the statement
without revealing anything beyond the statement itself.
For an NP language L, any statement x ∈ L has a wit-
ness ω that allows one to efficiently verify the membership
of x. All such pairs (x, ω) constitute a binary relation R.
A pair of interactive algorithms 〈P, V 〉 is called an inter-
active proof system for L if V is polynomial-time and the
following two conditions hold:

• Completeness: For every x ∈ L, there exists a string
y (P ’s auxiliary input) such that for every z ∈ {0, 1}∗
(V ’s auxiliary input), Pr[〈P (y), V (z)〉(x) = 1] = 1,
where x is P and V ’s common input.

• Soundness: For every x /∈ L, every inter-
active machine P ∗ and every y, z ∈ {0, 1}∗,
Pr[〈P ∗(y), V (z)〉(x) = 1] = 0.

Generally speaking, we say the interactive proof system
〈P, V 〉 for language L is zero-knowledge if whatever can
be efficiently computed after interacting with P on input
x ∈ L can also be computed from x without any interac-
tion. We say that 〈P, V 〉 is zero-knowledge proof system
if for every PPT interactive algorithm V ∗ there exists a
simulator M such that

• Zero-knowledge: For every x ∈ L, the transcript of
〈P, V ∗〉(x) (the output of the interactive machine V ∗

after interacting with P on common input x) and
M(x) (the output of M on input x) have the identical
distribution.

3 Model of DCS

3.1 Syntax

The designated confirmer signature scheme consists
of three parties, the signer S, the verifier V and the
designated confirmer C. Since we disallow the confirmer
C to convert the DCS signature produced by the signer
S, the components of our DCS scheme have a little

difference with the original ones.

Key Generation for S and C [KGens(1k) and
KGenc(1k)]: Under the security parameter k, there is a
probabilistic polynomial time (PPT) algorithm KGens(1k)
outputs a keypair of the signer S: (sks, vks). sks is S’s
signing key and vks is S’s verification key. There is
a PPT algorithm KGenc(1k) outputs a keypair of the
confirmer C: (skc, pkc). skc is C’s private key and pkc is
C’s public key.

DCS Signing [DCSig(m, pkc; sks)]: Given a message m,
C’s public key pkc, the signer S produces a DCS signa-
ture by using his signing key sks: σ ← DCSig(m, pkc; sks).

Confirmation Protocols [Confs,v(m,σ, vks, pkc) and
Confc,v(m,σ, vks)]: Both the signer S and confirmer C can
run the confirmation algorithm with the verifier V to con-
vince him that the DCS signature σ is valid with respect
to the message m under the signer S’s verification key vks.
After performing these protocols, V outputs Accept or ⊥.
The confirmation protocols Confs,v and Confc,v should be
complete and sound.

• Completeness. For all honest S, C and V,
if the DCS σ ← DCSig(m, pkc; sks), then
Accept ← Confs,v(m,σ, vks, pkc) and Accept ←
Confc,v(m,σ, vks) hold with overwhelming probabil-
ity.

• Soundness. For all malicious S′, C′ and
honest V, if σ ← DCSig(m, pkj ; ski), then
Accept ← Confs,v(m,σ, vks, pkc) and Accept ←
Confc,v(m,σ, vks) hold with negligible probability,
where vki 6= vks and pkj 6= pkc.

Disavowal Protocols: [Disas,v(m,σ, vks, pkc) and
Disac,v(m,σ, vks)]: Both the signer S and confirmer C can
run the disavowal algorithm with the verifier V to convince
him that the DCS signature σ is invalid with respect to
the message m under the signer S’s verification key vks.
After performing these protocols, V outputs Accept or ⊥.
The disavowal protocols Disas,v and Disac,v should be
complete and sound.

• Completeness. For all honest S, C and V,
if the DCS σ ← DCSig(m, pkj ; ski), then
Accept ← Disas,v(m,σ, vks, pkc) and Accept ←
Disac,v(m,σ, vks) hold with overwhelming probabil-
ity, where vki 6= vks and pkj 6= pkc.

• Soundness. For all malicious S′, C′ and
honest V, if σ ← DCSig(m, pkc; sks), then
Accept ← Disas,v(m,σ, vks, pkc) and Accept ←
Disac,v(m,σ, vks) hold with negligible probability.

3.2 Security Model

We follow the definitions in [10] and [15] (which both
support the unified verification) to describe the syntax

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 334

of our scheme above. However, in this proposal, we
require that the confirmer C cannot convert a DCS σ
into a publicly verifiable signature σ′, such that any
verifier V can verify the validity of σ′ without the help
of S or C. Therefore, both the syntax and the security
model are updated. In the syntax description, we delete
the Extract algorithm from [10] and [15]. And in the
following security model, we should add the formal
model Inconvertibility to describe the security for the
signer that although C can prove the validity of the
DCS signature σ, he cannot convert σ into a standard
signature σ′.

Let ODCSig be the DCS signature signing oracle when
the attacker A queries a DCS signature w.r.t. message m
under a verification vks and a public key pkc. The oracle
ODCSig returns a DCS signature σ ← DCSig(m, pkc; sks).
Let OConf be a confirmation oracle when A queries the
validity of σ under vks. This oracle takes sks or skc as
its auxiliary input to interact with the verifier to convince
him that σ is valid w.r.t. m under vks. Let ODisa be a
disavowal oracle when A queries the invalidity of a fake
DCS signature σ under vks. This oracle takes sks or
skc as its auxiliary input to interact with the verifier to
convince him that σ is invalid w.r.t. m under vks.

Definition 3 (Security for the
signer-Unforgeability). Let F be a PPT forger.
Upon input vks, skc, pkc, F can access to ODCSig, OS,F

Conf

and OS,F
Disa oracles adaptively. Finally, F outputs a

DCS signature pair (m∗, σ∗) and plays the roles of S
and C to execute the confirmation protocol with the
challenger. F succeeds if m∗ is not queried in ODCSig

and the challenger outputs Accept after performing the
confirmation protocol with F . Let Succunfor(F) denote
the success of F . We say a DCS scheme is secure against
existential forgeability if Pr[Succunfor(F)] is negligible.

Remark 1. Unforgeability requires that no adaptive PPT
adversary can forge a valid DCS signature on a fresh mes-
sage on behalf of a signer although it corrupts the con-
firmer C. Similar to [15], the oracles OV,F

Conf and OV,F
Disa

are not necessary to be accessed by F in the above un-
forgeability game since the confirmer can be corrupted
by F . However, the condition that F wins the unforge-
ability game is slightly different with [10] and [15]. Since
in both [10] and [15], they have Extract and Verify al-
gorithms. The validity of the forgery can be checked by
running Extract and Verify algorithms. However, in
our scheme, we remove Extract and Verify algorithms.
The validity of F ’s forgery can be convinced if F plays
as a prover’s (signer or confirmer) role to conduct the
confirmation protocol.

Definition 4 (Security for the
signer-Inconvertibility). Let A be a PPT attacker.
Upon input vks, skc, pkc, A can access to ODCSig,

OS,A
Conf and OS,A

Disa oracles adaptively. Finally, A outputs
an ordinary signature pair (m,σ′). A succeeds if

Veri(m,σ′, vks) = 1, where Veri is an algorithm that
anyone can input the verification key vks to check the
validity of σ′. Let SuccIncon(A) denote the success of A.
We say a DCS scheme is secure against convertibility if
Pr[SuccIncon(A)] is negligible.

Remark 2. Inconvertibility requires that no adaptive
PPT adversary can convert any DCS signature σ into an
ordinary signature σ′ such that σ′ can be verified by any-
one. We note this property is necessary for the signer’s
privacy. In the original DCS schemes, the confirmer has
the capability to extract a DCS signature. However, it is
not secure for the signer if the confirmer converts the DCS
signature into an ordinary signature without signer’s con-
sent. Therefore, in our scheme, we disallow the confirmer
to convert the DCS signature into a publicly verifiable sig-
nature.

Definition 5 (Security for the con-
firmer-Invisibility). Let D be a PPT distinguisher.
Upon input vks and pkc, D can access to ODCSig, OS,D

Conf ,
OC,D

Conf , OS,D
Disa and OC,D

Disa oracles adaptively. Then, D
outputs a fresh message m∗. The challenger tosses a coin
b ∈ {0, 1} and when b = 0, D is given a DCS signature
σ∗ ← DCSig(m∗, pkc; sks); while b = 1, D is given a
random value from the signature space. After given the
challenge DCS signature, D can continue to access the
above oracles except the oracles for σ∗. Finally, D outputs
its guess bit b′. D succeeds if b′ = b. Let SuccInvis(D)
denote the success of D. We say a DCS scheme is secure
against visibility if |Pr[SuccInvis(D)]− 1/2| is negligible.

Remark 3. The invisibility model actually requires that
any verifier cannot check the validity of a DCS signature
without the help from the signer or confirmer. The ad-
versary is disallowed to corrupt S and C and also cannot
query OConf and ODisa oracles for the challenge signa-
ture σ∗. Otherwise, it is trivial for him to get the valid-
ity/invalidity of the DCS signature σ∗.

Definition 6. A designated confirmer signature scheme
is secure if unforgeability, inconvertibility and invisibility
hold.

4 Construction

Setup. Choose two safe primes p, q and compute
n = pq. Choose two multiplicative cyclic groups G, GT

of orders n that are associated to a bilinear pairing
ê : G × G → GT . Gq is the subgroup of G with order
q. g and h are the random generators of G. ĥ is
the generator of Gq. H : {0, 1}∗ → Zn is a collision-
resistant hash function. The system public parameter
para = (G, GT , ê, n, g, h, ĥ,H).

Key Generation KGens(1k) and KGenc(1k).

• For the signer S: Choose random values x, y ← Zn

as his signing key sks and set the corresponding ver-
ification key vks = gxhy.

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 335

• For the confirmer C: His private key is skc = q and
the public key is pkc = ĥ.

DCS Signing DCSig(m, pkc; sks). Suppose m is the
message to be signed. Upon input m, sks and pkc, the
signer S chooses r ← {0, 1}k and computes τ = H(m, r).
Then S returns the designated confirmer signature
σ = (σ1, σ2, σ3, r), where σ1 = g

1
x+τ , σ2 = g

y
x+τ ĥx,

σ3 = ĥ
1

x+τ .

Confirmation Protocols. Both the signer S and the
confirmer C can confirm the validity of a signature σ with
respect to (m, r). The confirmation algorithms for S and
C are as follows.

• The confirmation Confs,v(m, σ, vks, pkc) for the
signer S: S executes a zero-knowledge proof with
any verifier V by using the witness (x, y) for the NP
language Ls:

Ls =
{

(vks, pkc, τ, σ1, σ2) | ê(ĥ, h)x =
ê(g,g)ê(σ2,h)
ê(σ1,vksgτ) ∧ vks = gxhy

}

The common input of S and V is (vks, pkc, τ, σ), where
τ = H(m, r). The auxiliary input of the prover S is
his witness (x, y). After this interaction, V is con-
vinced that σ is valid on the message m under the
signer S’s verification key vks.

• The confirmation Confc,v(m,σ, vks) for the confirmer
C: When C performs the confirmation protocol with
the verifier V, he first checks the consistency of σ1 and
σ3. Then he executes a zero-knowledge proof with V.

1) Check ê(σ1, ĥ) ?= ê(g, σ3). If no, C declares
Failure and quits; Otherwise, C turns to the
step 2);

2) Execute a zero-knowledge proof with V by using
the witness q for the NP language Lc:

Lc =
{

(vks, τ, σ1, σ2) | ê(σ1, vksg
τ)q =

ê(g, g)q ê(σ2, h)q
}

The common input of C and V is (vks, τ, σ),
where τ = H(m, r). The auxiliary input of the
prover C is his witness q. After this interaction,
V is convinced that σ is valid on the message m
under the signer S’s verification key vks.

Disavowal. Both the signer S and the confirmer C can
disavow an invalid DCS signature σ w.r.t. (m, r). The
disavowal algorithms for S and C are as follows.

• The disavowal Disas,v(m,σ, vks, pkc) for the signer S:
S executes a zero-knowledge proof with any verifier V
by using the witness (x, y) for the NP language L′s:

L′s =
{

(vks, pkc, τ, σ1, σ2) | ê(ĥ, h)x 6=
ê(g,g)ê(σ2,h)
ê(σ1,vksgτ) ∧ vks = gxhy

}

The common input of S and V is (vks, pkc, τ, σ), the
auxiliary input of the prover S is his witness (x, y).
After this interaction, V is convinced that σ is invalid
on the message m under the signer S’s verification
key vks.

• The disavowal Disac,v(m,σ, vks) for the confirmer C:
When C performs the disavowal protocol with the
verifier V, he first checks the consistency of σ1 and
σ3. Then he executes a zero-knowledge proof with V.

1) Check ê(σ1, ĥ) ?= ê(g, σ3). If no, C declares
Failure and quits; Otherwise, C turns to the
step 2);

2) Execute a zero-knowledge proof by using the
witness q for the NP language L′c:

L′c =
{

(vks, τ, σ1, σ2) | ê(σ1, vksg
τ)q 6=

ê(g, g)q ê(σ2, h)q
}

The common input of C and V is (vks, τ, σ), the
auxiliary input of the prover C is his witness q.
After this interaction, V is convinced that σ is
invalid on the message m under the signer S’s
verification key vks.

Remark 4. Our construction is based on the BB signa-
ture scheme and the BGN commitment scheme [2]. The
public key of BB signature scheme is the partial public key
of our scheme. In other words, BB signature σ1 is a par-
tial signature of DCS and the validity of DCS cannot be
checked directly from the partial signature σ1. We adopt
the BGN commitment scheme to generate σ2. When ĥ is
from Gq, the confirmer can use his private key q to con-
vince the verifier that DCS is valid or not. Therefore, the
confirmation/disavowal protocol is achieved. When ĥ is
from G, g

y
x+τ is perfectly hidden. Therefore, the invisi-

bility is satisfied. σ3 in our scheme is used to convince
the verifier that an attacker cannot make another σ′1 such
that σ′1 6= σ1 but (σ′1)

q = (σ1)q. Otherwise, it fails to meet
the invisibility. Assuming a challenge DCS σ∗ is given.
An attacker D can check the validity of σ∗ by querying
confirmer the validity of σ′1 = σ∗1 ĥs by selecting a random
value s. This query is allowed in the security model of in-
visibility. In case of such attack, σ3 is necessary. When D
makes a confirmation/disavowal query, the confirmer first
checks ê(σ1, ĥ) ?= ê(g, σ3). If yes, the confirmer is con-
vinced that D cannot make another σ′1 such that σ′1 6= σ1

but (σ′1)
q = (σ1)q.

Remark 5. Our scheme is unextractable. The confirmer
cannot convert the DCS into an original signature al-
though he has the private key q. This property is good
for the signer. Suppose in the original DCS scheme, the
confirmer can extract a standard signature from a DCS
signature. If the confirmer is malicious, he would make
use of this capability to threaten the signer that he will

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 336

convert the DCS signature into a publicly verifiable sig-
nature. While in our construction, given the DCS signa-
ture, the confirmer can only use his private key to con-
vince the verifier that DCS is valid/invalid through zero-
knowledge proof. He cannot convert it. Intuitively, the
confirmer computes σq

2 and only to obtain the g
y

x+τ ’s pro-
jection on Gp. We denote it by σ2,p. Therefore, with
the private key q, the confirmer only convinces the veri-
fier that ê(σ1,p, vks,p · gτ

p) = ê(gp, gp)ê(σ2,p, hp). That is
σ1,p, σ2,p and vks,p satisfy the verification equation where
vks,p is vks’s projection on Gp. It is not publicly verifiable
signature under the signer S’s verification key vks.

Remark 6. Zero-knowledge protocol is the necessary tool
in building a DCS scheme. In DCS scheme, we require
that the signer should control the verifiability of a signa-
ture. That means the signer or confirmer convinces the
verifier the validity of a signature but the verifier cannot
convince the others. Therefore, zero-knowledge proof sys-
tem should be applied into the DCS scheme naturally. In
our confirmation/disavowal protocol, the zero-knowledge
proofs can be implemented by running Σ-protocols with
special soundness and perfect special honest-verifier zero-
knowledge (HVZK) for the equality/inequality of discrete
logarithms. It can be constructed by using the techniques
in [5] and [11].

5 Performance and Property
Comparison

To the best of our knowledge, there are two constructions
[10, 15] in the literature support the unified verification.
That is the signer also has the capability to run the dis-
avowal protocol to deny invalid signatures. Therefore, we
compare our scheme with [10, 15].

For the security, Wang’s scheme [15] relies on the ran-
dom oracles while Huang’s scheme [10] and our scheme
are secure without random oracles.

We then analyze the communication and computa-
tion costs among the three constructions. Since inherited
from the shortness of “multi-generator” instantiation of
programmable hash function, the verification key of the
signer in Huang’s scheme involves 162 elements of the bi-
linear group G (whose order is prime p and it is about 20
bytes for 80-bit security). In Wang’s scheme, the signer’s
verification key requires 1 element of the bilinear group G
and the verification key of signer in our scheme requires
1 element of the bilinear group G (whose order is RSA
composite n and it is about 1024 bits for 80-bit security).
For the size of the DCS signature, the DCS signature in
Huang’s DCS scheme contains 3 elements of G, in Wang’s
scheme needs 2 elements of G and 2 elements of Zp and
in our scheme needs 3 elements of G and a randomness
r. During the generation of DCS signature, both [10] and
[15] take 3 exponentiations and our scheme takes 4 expo-
nentiations.

Finally, let us discuss the properties of the three

schemes. All the three schemes support the unified ver-
ification. Since the DCS signatures in [10] and [15] are
produced using the encryption format, the confirmer can
extract the original signature by decrypting the DCS sig-
nature using his private key. Therefore, we say [10] and
[15] cannot meet the property of inconvertibility. While
our scheme uses the BGN commitment to generate the
DCS signature, the confirmer has the capability to con-
firm/disavow valid/invalid signatures but cannot extract
them. Therefore, our scheme achieves inconvertibility.

Detailed comparison is shown is Table 1.

Remark 7. Since we adopt the bilinear group for com-
posite order n, it seems our DCS signature takes much
larger size than [10] and [15]. It is also the weakness of
constructions built on the composite order group.

6 Security

Unforgeability. Unforgeability essentially states that
no PPT forger F can generate a DCS signature on be-
half of the signer S on a fresh message m∗ even though
it can access to ODCSig, OS,F

Conf and OS,F
Disa oracles adap-

tively. Additionally, F owns the private-public keypair
(skc, pkc) of the confirmer C and F cannot query ODCSig

on m∗. Our unforgeability is reduced to the security of
BB signature which is based on the Strong Diffie-Hellman
assumption without the random oracles. Formally,

Theorem 2. Our scheme is unforgeable if BB signature
scheme is secure against existential forgery and the zero-
knowledge protocol for the language Ls satisfies soundness
and zero-knowledge.

Proof. In the unforgeability game, F is the forger who
violates the unforgeability of our DCS scheme. C is F ’s
challenger whose goal is to forge a BB signature under
the composite order group. C is given the group order
n and its factorization n = pq; the description of the
group G and the BB signature public key (g, gx), where
g is the generator of G. C randomly chooses s1 ← Zn,
s2 ≡ 0 mod p and y ← Zn. C sets h = gs1 , ĥ = gs2 and
vks = gxhy. C gives g, h, vks = gxhy, skc = q, pkc = ĥ to
F . C’s simulation for F is as follows.

ODCSig(m, vks, pkc). When F queries DCS signing
oracles on (m, vks, pkc), C queries its BB signature
challenger to return a BB signature on message (m, r):
σBB = g

1
x+τ , where τ = H(m, r). Then C produces

σ2 = σy
BBĥx = σy

BB(gx)s2 , σ3 = σs2
1 . The DCS signature

σ = (σ1, σ2, σ3, r) is as the reply of ODCSig(m, vks, pkc),
where σ1 = σBB .

OS,F
Conf (m, r, σ, vks, pkc). When F makes such queries,

C checks the validity of DCS signature σ by verifying
ê(ĥ, gx)s1

?= ê(g,g)ê(σ2,h)
ê(σ1,vks·gτ) , where τ = H(m, r). If yes,

C uses the trapdoor s1 to simulate the language Ls;
Otherwise, C turns to run OS,F

Disa(m, r, σ, vks, pkc). Since

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 337

Table 1: Comparison with [10] and [15]
Size Computation

Scheme vks sks pks skc DCS DCS ROM InCon UV

[10] 162G 1Zp 1G 1Zp 3G 3e No No Yes
[15] 1G 1Zp 1G 1Zp 2G+2Zp 3e Yes No Yes
Ours 1G 2Zn 1G 1|q| 3G+k 4e No Yes Yes

e: Exponentiation; InCon: Inconvertiability; UV: Unified Verification;
|q| .= 510bits; k: Security Parameter.

zero-knowledge protocol for the language Ls satisfies
the zero-knowledge, there exists a simulator (by using
the trapdoor) can simulate the transcript communicated
between the signer and verifier without the witness and
the simulated transcript is indistinguishable from the
real proof. Therefore, the view of F in C’s simulation for
OS,F

Conf (m, r, σ, vks, pkc) equals to the real ones. Other-
wise, it violates the zero-knowledge of ZK proof system.
Therefore, C’s simulation for OS,F

Conf (m, r, σ, vks, pkc) is
perfect although it has no witness x.

OS,F
Disa(m, r, σ, vks, pkc). When F makes such queries, C

uses the trapdoor s1 to simulate the language L′s as the
description of performing OS,F

Conf (m, r, σ, vks, pkc).

Finally, F challenges fresh (m∗, r∗) and outputs a DCS
signature σ∗ = (σ∗1 , σ∗2 , σ∗3 , r∗) w.r.t. (m∗, r∗). Assum-
ing F wins the unforgeability game, which means that
F plays the roles of the signer and confirmer to perform
the confirmation protocol to convince the challenger C
that the language Ls which states ê(ĥ, h)x = ê(g,g)ê(σ2,h)

ê(σ1,vksgτ) .
Due to the soundness of the confirmation protocol, the
equation ê(σ∗1 , vksg

τ∗)ê(ĥ, h)x = ê(g, g)ê(σ∗2 , h) must
hold, where τ∗ = H(m∗, r∗). C furthermore checks
if ê(σ∗1 , hy)ê(gx, h)s2 = ê(σ∗2 , h) holds, then C obtains
ê(σ∗1 , gxgτ∗) = ê(g, g) which means C produces a valid
BB signature forgery σ∗1 w.r.t. fresh (m∗, r∗) under the
verification key vks = gx.

Invisibility. Generally speaking, invisibility states that
no PPT distinguisher D can check the validity of a DCS
signature without the help of the signer S or the con-
firmer C. During the invisibility game, D can access to
ODCSig, OS,D

Conf , OC,D
Conf , OS,D

Disa and OC,D
Disa oracles adap-

tively. However, after given the challenge DCS signa-
ture σ∗, D cannot query OConf (m, r, σ∗, vks, pkc) and
ODisa(m, r, σ∗, vks, pkc). Of course, F cannot corrupt
both signer and confirmer. Otherwise, it is trivial for
D to check the validity of σ∗ by using the private key of
the signer or confirmer. Our invisibility relies on the Sub-
group Decision assumption (see Definition 2). Formally,

Theorem 3. Our scheme is invisible if Subgroup Deci-
sion assumption holds and the zero-knowledge proof sys-
tem for the language Lc satisfies zero-knowledge.

Proof. Assuming D is a PPT distinguisher against the
invisibility of our DCS scheme. C is D’s challenger whose

goal is to solve the subgroup decision assumption. C is
given a group element ĥ and tries to decide if ĥ is from
the group G whose order is composite n = pq or from the
subgroup Gq of G.

After obtaining the description of the group G, C
randomly chooses generators g, h of G. C gives the
public parameter para of the DCS scheme to D:
para = (G, GT , ê, n, g, h, ĥ,H).

For the key generation algorithm KGens(1k), C ran-
domly chooses x, y as the signer’s signing key sks, and
vks = gxhy; For the key generation algorithm KGenc(1k),
C sets ĥ as the confirmer’s public key pkc. Finally, C
gives (vks, pkc) to D.

It is trivial to simulate the DCS signing algorithm
DCSig(m, pkc; sks). C produces the DCS signature by
using the signer’s signing key (x, y).

It is also trivial for C to complete the signer’s confir-
mation/disavowal simulation since C has the witness
(x, y) to perform the zero-knowledge protocol for the
language Ls/L′s. However, for the confirmer’s con-
firmation/disavowal simulation, C does not have the
factorization q of n. Therefore, it cannot use the witness
q to generate the zero-knowledge proof for Lc/L′c. C’s
simulation for confirmation/disavowal is as follows.
When (m,σ, vks, pkc) is queried, C checks the validity of
the tuple (m,σ, vks, pkc) by using (x, y). If it is valid with
respect to m under vks, C simulates the zero-knowledge
proof for the language Lc without the witness q. There-
fore, a simulated proof for Lc is performed between the
prover C and the verifier D. If it is invalid with respect
to m under vks, C simulates the zero-knowledge proof
for the language L′c without the witness q. Therefore, a
simulated proof for L′c is performed between the prover
C and the verifier D. Due to the zero-knowledge of
zero-knowledge protocol, the simulated proof for Lc or
L′c is indistinguishable by D. In other words, D has
the same view in the simulated confirmation/disavowal
protocol and the real confirmation/disavowal protocol.
Therefore, C’s simulation of confirmation/disavowal
protocol is perfect.

Finally, D chooses a fresh message m∗. C tosses a coin
b ∈ {0, 1}. If b = 0, C generates a challenge DCS σ∗ fol-

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 338

lowing the DCSig algorithm. If b = 1, C randomly chooses
a signature σ∗R from the signature space. D also can make
ODCSig, OS,D

Conf , OC,D
Conf , OS,D

Disa and OC,D
Disa queries ex-

cept OConf (m∗, σ∗, vks, pkc) and ODisa(m∗, σ∗, vks, pkc).
Now, let us discuss the advantage that D wins in the in-
visibility game. If ĥ is chosen uniformly from Gq, D’s
environment is exactly as specified in the real game. If ĥ
is chosen uniformly from G, the advantage that D wins
invisibility game is negligible even if D is computationally
unbounded since g

y
x+τ is perfectly hidden in σ2. There-

fore, if the advantage that D breaks invisibility is non-
negligible, it shows that ĥ is from Gq. Therefore, D’s suc-
cess implies subgroup decision assumption is solved.

Inconvertibility. The confirmer C cannot convert the
DCS signature σ into an original signature σ′. In-
tuitively, for a DCS signature σ = (σ1, σ2, σ3, r) =
(g

1
x+τ , g

y
x+τ ĥx, ĥ

1
x+τ , r), C must obtain g

y
x+τ from σ2 such

that (g
1

x+τ , g
y

x+τ) is publicly verifiable under the veri-
fication key vks, i.e. by checking ê(g

1
x+τ , vks · gτ) =

ê(g, g)ê(g
y

x+τ , h). However, C cannot get g
y

x+τ from σ2

even though he has the private key q. C raises σ2 to
power q to remove ĥx and only to obtain g

y
x+τ
p , which

equals to g
y

x+τ ’s projection on Gp. Therefore, with q,
C only convinces the verifier that ê(σ1,p, vks,p · gτ

p) =
ê(gp, gp)ê(σ2,p, hp), where vks,p is vks’s projection on Gp.
It is not publicly verifiable signature under the signer’s
verification key vks.

7 Conclusion

In this paper, we construct a new designated confirmer
signature without random oracles. This new construction
achieves the full verification. That is, it enables the signer
to deny any invalid signatures. Different from the tradi-
tional DCS schemes, our scheme disallows the confirmer
(a semi-trusted third party) to convert a DCS signature
into a publicly verifiable signature. This property is good
for the signer’s privacy. Our scheme combines BB signa-
ture and BGN commitment to achieve it. However, our
DCS signature takes a large size due to the composite or-
der of the group. It is significant to realize inconvertibility
without bilinear group of composite order.

Acknowledgments

This work is supported by Fundamental Research Funds
for the Central Universities (No.ZYGX2011J068) and the
NSFS (No.61133016 and No.61003230).

References

[1] D. Boneh and X. Boyen, “Short signatures without
random oracles,” in Eurocrypt ’04, pp. 56–73, Inter-
laken, Switzerland, 2004.

[2] D. Boneh, E. J. Goh, and K. Nissim, “Evaluating
2-dnf formulas on ciphertexts,” in Theory of Cryp-
tography Conference, pp. 325–341, Cambridge, MA,
USA, 2005.

[3] N. Chandran, J. Groth, and A. Sahai, “Ring signa-
tures of sub-linear size without random oracles,” in
International Colloquium on Automata, Languages
and Programming (ICALP ’07), pp. 423–434, Wro-
claw, Poland, 2007.

[4] D. Chaum, “Designated confirmer signatures,” in
Eurocrypt ’94, pp. 86–91, Perugia, Italy, 1995.

[5] D. Chaum and T. P. Pedersen, “Wallet databases
with observers,” in Crypto ’92, pp. 89–105, Santa
Barbara, USA, 1993.

[6] D. Chaum and H. van Antwerpen, “Undeniable sig-
natures,” in Crypto ’89, pp. 212–216, Santa Barbara,
USA, 1990.

[7] S. D. Galbraith and W. Mao, “Invisibility and
anonymity of undeniable and confirmer signatures,”
in Cryptographers’ Track at the RSA (CT-RSA ’03),
pp. 80–97, San Francisco, USA, 2003.

[8] C. Gentry, D. Molnar, and Z. Ramzan, “Efficient des-
ignated confirmer signatures without random oralces
or general zero-knowledge proofs,” in Asiacrypt ’05,
pp. 662–681, Chennai, India, 2005.

[9] S. Goldwasser, S. Micali, and C. Rackoff, “The
knowledge complexity of interactive proofs,” in ACM
Symposium on Theory of Computing (STOC ’85),
pp. 291–304, Providence, Rhode Island, USA, 1985.

[10] Q. Huang, D. S. Wong, and W. Susilo, “A new
construction of designated confirmer signature and
its application to optimistic fair exchange,” in
Pairing-based Cryptography (Pairing ’10), pp. 41–61,
Ishikawa, Japan, 2010.

[11] K. Kurosawa and S. H. Heng, “3-move undeniable
signature scheme,” in Eurocrypt ’05, pp. 181–197,
Aarhus, Denmark, 2005.

[12] M. Michels and M. A. Stadler, “Generic construc-
tions for secure and efficient confirmer signature
scheme,” in Eurocrypt ’98, pp. 406–421, Espoo, Fin-
land, 1998.

[13] T. Okamoto, “Designated confirmer signatures and
public-key encryption are equivalent,” in Crypto ’94,
pp. 61–74, Santa Barbara, USA, 1994.

[14] G. Wang, J. Baek, D. S. Wong, and F. Bao, “On
the generic and efficient constructions of secure des-
ignated confirmer signatures,” in Public Key Cryp-
tography (PKC ’07), pp. 43–60, Beijing, China, 2007.

[15] G. Wang, F. Xia, and Y. Zhao, “Designated con-
firmer signatures with unified verification,” in IMA
International Conference on Cryptography and Cod-
ing (IMACC ’11), pp. 469–495, Oxford, UK, 2011.

[16] B. Wei, F. Zhang, and X. Chen, “A new type of
designated confirmer signatures for a group of indi-
viduals,” International Journal of Network Security,
vol. 7, no. 2, pp. 293–300, 2008.

Shengke Zeng is an Assistant Professor at the School
of Mathematics and Computer Engineering, Xihua

International Journal of Network Security, Vol.16, No.5, PP.331-339, Sept. 2014 339

University. She received her Ph.D degree from University
of Electronic Science and Technology of China (UESTC)
in 2013. Her research interests include: Cryptography
and Network Security.

Hu Xiong is an Assistant Professor at the School of Com-
puter Science and Engineering, University of Electronic
Science and Technology of China (UESTC). He received
his Ph.D degree from University of Electronic Science and
Technology of China, 2009. His research interests include:
Cryptography and Network Security.

