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Abstract

Re-encryption (or proxy re-encryption) is a very useful
cryptographic primitive which is able to transform a ci-
phertext under one public key into a new ciphertext en-
crypting the same message but under another different
public key. It plays an important role in modern se-
cure communication and information exchange via various
kinds of network infrastructure. In addition to traditional
public-key encryption scheme, re-encryption can also
come into force in other cryptosystems like Identity-Based
Encryption (IBE) and more advanced Functional Encryp-
tion (FE), making the enhanced schemes more powerful
as well as easy-to-use. In this work, we have proposed a
novel identity-based proxy re-encryption (IBPRE) scheme
which to the maximum extent reduces the workloads in
the user side by delivering the re-encryption key (RK)
generation work to the proxy server. Besides, it is like-
wise able to prevent possible bottlenecks for the users, like
re-encryption key management.

Keywords: Fully homomorphic encryption, identity-based
encryption, proxy re-encryption, re-encryptor

1 Introduction

Cryptographic primitives supporting intermediate trans-
formations from one object (ciphertext or signature) to
another without leakage of sensitive information have
found their irreplaceable places in modern Internet era.
The most common application of these primitives may
be proxy re-encryption in e-mail relay. A senior manager
Alice wants to forward an encrypted e-mail from the ex-
ecutive level of the enterprise to her subordinate Bob. Of
course, she is able to decrypt the encrypted e-mail by her
private key SKAlice and then encrypts the plaintext un-
der Bob’s public key PKBob to obtain the corresponding

encrypted e-mail, which will then be sent to Bob. On
the surface, it seems that this method actually achieves
the goal. However, we argue that this trivial solution re-
sults in several shortcomings. The most obvious point is
that the initial ciphertext owner Alice must execute all
these computations herself - including decryption and en-
cryption - to produce the ciphertext for Bob. In some
scenarios, these computation workloads are awfully cum-
bersome.

Another way to solve the above mentioned issue may be
to introduce a proxy to accomplish those transformation
workloads on behalf of the manager Alice, who has usually
been named as delegator in the proxy re-encryption/re-
signature scheme. Accordingly, the term for the proxy
is delegatee, the role of which is commonly played by a
more powerful server. Then if the delegator Alice wants to
largely reduce her computation workloads caused by de-
cryption and encryption, she can generate a re-encryption
key RKAlice→Bob by which anyone is capable of transform-
ing a ciphertext cAlice under her public key to the corre-
sponding ciphertext cBob under Bob’s public key without
any plaintext leakage or private key infringement. Nev-
ertheless, this approach also suffers from some problems,
which we will detail later.

Identity-based encryption is a useful as well as power-
ful primitive envisioned by Shamir [24] in 1984. But due
to the lag of mathematical tools, the first scheme based
on bilinear maps was proposed by Dan Boneh [2] after 17
years. IBE is more natural and convenient for the system
users because when one user U1 wishes to encrypt a mes-
sage to another user U2, she needs not to know the public
key of U2. In contrast, she can just encrypt the message
she wishes to send under a publicly accessible identity cor-
responding to U2. This tremendously cuts down the work
from the management of user certificates. So extending
the re-encryption techniques to identity-based encryption
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schemes and other advanced encryption schemes [3, 11] is
reasonable and necessary.

1.1 Motivation

In the traditional research works on (proxy) re-encryption
from former literatures, researchers use re-encryption in
such a scenario: Alice and Bob are legal users within a
cryptographic system with their own public-private key
pairs. In the real-life scenario, this cryptography system
may be used for an e-mail server or a cloud storage service
provider. Alice wants to grant her e-mail server some
privilege to forward e-mails to Bob for her convenience,
otherwise every time she must decrypt the e-mail and then
encrypt it under Bob’s public key/identity. As we have
stated above, re-encryption is essential in this scenario.

But unfortunately, in all of the former literatures,
the authors only consider the scenarios in which re-
encryptions happen between only two users. Al-
though some schemes support multi-use (multi-hop) re-
encryption, the inputs for generating re-encryption keys
are not the same. For instance, the inputs for generating
RKU1→U2

(usually) including {SKU1
, PKU2

, idU1
, idU2

}
for user U1 and U2 are different from the in-
puts for generating RKU3→U4 which usually includes
{SKU3

, PKU4
, idU3

, idU4
} for U3 and U4. This undoubt-

edly results in some inconvenience like re-encryption key
management in the user or the RK generator side. Can
we extract some common part(s) of those inputs for differ-
ent RKs? In addition, inconvenience also exists in other
aspects. For instance, the user may only trust her key gen-
eration server (key generator) but not the proxy; or a cer-
tain user U1 may need to generate plenty of re-encryption
keys for lots of other receivers U2, . . . , Uk, which may be a
bottleneck for U1 both in computation and in storage. All
the above mentioned problems can be solved via such av-
enue: The key generator delegates his master secrete key
MSK to the proxy without any privacy leakage about
MSK. Then the proxy must have some special tech-
niques to deal with the RK generation requirements be-
tween any pair of users. For the performance bottleneck
of one specific user, since the RK generation workloads
are all in the proxy server side, the possible busy user is
then liberated from massive RK generation workloads.

In addition to email forwarding, there are a great many
of other application scenarios for re-encryption in real life.
To just name a few:

1) Key revocation and key update. Re-encryption
is the mainstream technique and one of the most
indispensable building blocks in schemes supporting
key revocation (update). In such a typical scheme,
after the key revocation procedure, the existing ci-
phertexts must be updated accordingly, involving
tens of millions of existing ciphertexts. Without re-
encryption, this ciphertext update procedure is defi-
nitely unbearable.

2) Restricted law enforcement. This is an exam-

ple from [19] in which a law enforcement agency F
wishes to scrutinize classified personal files of a set of
suspect individuals G during a certain period of time.
However, the legal court possessing all the keys can-
not directly pass those keys to F , otherwise it will
permanently obtain the privilege to infringe the pri-
vacy of these citizens. A plausible method is to let
the court transform the ciphertext (with or without
the help of a proxy) under a certain person’s public
key to the ciphertext under F ’s public key when F
has already been granted a warrant. After the war-
rant loses its effect, F will lose its ability to probe
into the classified files immediately.

3) Fine-grained access control. Suppose an accoun-
tant Alice at Department A before was a checker at
Department B within the same corporation. Her pri-
vate key corresponding to her identity is not only as-
sociated with her name “Alice” but also with her job
title, e.g., “Alice||Accountant” or “Alice||Checker”.
Then re-encryption allows for fine-grained access con-
trol so that she is able to deal with some of her final
stage work after she leaved Department B.

1.2 Our Contribution and Main Tech-
nique

Our first contribution is to formalize the notion of homo-
morphic universal re-encryptor for identity-based encryp-
tion (HURE-IBE for short). This primitive is very useful
in a scenario where the users only have limited compu-
tation or storage capability as we have explained above.
Besides, the universality property features the advantage
that a user can gain her re-encryption key quite easily
by just issuing a re-encryption key query containing only
two id’s and the proxy does not need to deal with any
public key or private key relevant information. This is
due to the delegation of part of the master secret key s in
the encrypted form under a fully homomorphic encryption
(FHE) scheme.

Our scheme can not only provide solutions to practical
issues, but also pave the way for follow-up research works.

Another contribution of this work is to put forward the
first HURE-IBE scheme by combining the IBPRE scheme
with an FHE scheme [4, 13]. In addition, although the
proposed scheme in the construction part is instantiated
via Boneh-Franklin IBE scheme, our construction is essen-
tially generic. This means our general methodology can
be applied to other IBPRE schemes, even other public-
key proxy re-encryption schemes, subject to a condition
that there must be a master secret key for the generation
of all these user private keys.

To solve all those problems above mentioned, we have
developed a novel technique to efficiently combine the pos-
sible IBPRE scheme and FHE scheme. A small shortcom-
ing is that the introduction of FHE would decrease the
efficiency of our scheme. But we argue that, on one hand,
the scheme is more convenient than previous ones at the
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cost of a little more computation workloads; on the other
hand, the state of the art FHE scheme is fast enough to
bear the extra cost [23].

1.3 Related Works

Mambo et al. [21] first found the usefulness of re-
encryption and suggested to use proxy cryptosystem to
replace the trivial decrypt-and-encrypt method for sake
of efficiency. Then proxy re-encryption and re-signature
were conceptualized from a primitive named as atomic
proxy function, which was coined by Blaze et al. [1].
Due to its wide range of application fields, proxy re-
encryption has received much attention after its birth.
For instance, since the earlier scheme for re-encryption
proposed by Blaze et al. is inherently bidirectional, there
are quite a number of works have focused on unidirec-
tional schemes [19, 20]. For the security of the encryp-
tion schemes, chosen ciphertext attack (CCA) security is
very important. Therefore there are also several works on
CCA-secure PRE schemes [5, 16]. In addition, research
on proxy signature schemes [18, 25] is also very active in
cryptographic community.

Due to the significance, powerfulness and convenience
of more advanced encryption schemes like identity-based
encryption, attributed-based encryption [11], and func-
tional encryption [3], re-encryption has also been devel-
oped along this line [6, 9, 14, 22]. Moreover, in re-
cent years, since program obfuscation has a fast progress
in several aspects, e.g., extremely powerful construc-
tions like indistinguishability obfuscation (iO) [10] has
been developed, using obfuscation techniques to enhance
re-encryption schemes is also a promising field. Be-
sides those program obfuscation constructions for gen-
eral programs/functions, special constructions also find
their places due to their high efficiency. So the research
field on re-encryption obfuscation is also very active. The
first re-encryption obfuscation scheme is due to Hohen-
berger et al. [17], who had also proposed a new secu-
rity definition framework for average-case secure obfus-
cation in order to bypass the limitations of obfuscating
deterministic circuits. Then Hada [15] proposed obfus-
cation scheme for encrypted signatures. Chandran et
al. [7] introduced collusion-resistant obfuscation to con-
struct functional re-encryption scheme supporting func-
tion F ’s with a polynomial-size domain.

2 Preliminaries

Definition 1 (Identity-based proxy re-encryption). An
identity-based proxy re-encryption (IBPRE) scheme ΠRE

consists of six probabilistic polynomial time (PPT) algo-
rithms:

- Setup(n) → (params,MSK): On input a security
parameter n, the algorithm outputs the public pa-
rameters params and the master secret key MSK,
which should be kept secret. This algorithm may also

decide the maximum encryption level of the cryp-
tosystem under some conditions. This algorithm is
run by the trust authority.

- KeyGen(params,MSK, id) → SKid: On input an
identity id ∈ {0, 1}∗, the master secret key MSK,
and the public parameters params, the algorithm
outputs a user secret key (decryption key) SKid cor-
responding to the identity id. This algorithm is run
by the trust authority.

- Enc(params, id,m) → cid: On input a plaintext
m ∈ M, an identity id, and the public parameters
params, the algorithm outputs a ciphertext cid which
corresponds to the plaintext m and the identity id.
This algorithm is run by the users.

- Dec(params, SKid, cid) = m: On input a ciphertext
cid which is the encryption of the plaintext m and
the identity id, a user secret key SKid, and the pub-
lic parameters params, the deterministic algorithm
outputs m if decryption succeeds; otherwise, it out-
puts ⊥. This algorithm is run by the users.

- RKGen(params, SKid1
, id1, id2)→ RKid1→id2

: On
input two id’s id1, id2, a user secret key SKid, and
the public parameters params, the algorithm outputs
a re-encryption key RKid1→id2

. This algorithm may
be run by the users or the proxy (server).

- ReEnc(params,RKid1→id2 , cid1) → cid2 : On input
a ciphertext cid1 under identity id1, a re-encryption
key RKid1→id2

, and the public parameters params,
the algorithm outputs a re-encrypted ciphertext cid2

under identity id2. This algorithm may be run by
the users or the proxy (server).

Remark 1. Our scheme is similar but not consistent with
the traditional descriptions. Especially, we will sometimes
omit params and treat it as an implicit input.

Definition 2 (Fully homomorphic encryption). A homo-
morphic encryption scheme ΠHE consists of four PPT al-
gorithms:

- KeyGenHE(n) → (PKHE, SKHE): This is a ran-
domized algorithm which takes as input a security
parameter n, and outputs a public key PKHE and a
secret key SKHE.

- EncHE(PKHE,m) → CTHE(m): This is a random-
ized algorithm which takes as input a public key
PKHE, and a message m ∈ M. It returns a cipher-
text CTHE(m) as its output.

- DecHE(SKHE,CTHE(m)) = m: This is a determin-
istic algorithm which takes as input a secret key
SKHE, and a ciphertext CTHE(m). It returns the
corresponding plaintext m if the decryption succeeds,
and ⊥ otherwise.
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- EvalHE(PKHE,∆(·),CTHE(m1), . . . ,CTHE(mk)) →
CTHE(∆(m1, . . . ,mk)): This is a randomized al-
gorithm which takes as input a public key
PKHE, a circuit ∆(·), and a bunch of ciphertexts
{CTHE(m1), . . . ,CTHE(mk)}. It outputs a cipher-
text CTHE(∆(m1, . . . ,mk)) which is the encryption
of the circuit output on inputs m1, . . . ,mk.

Remark 2. In this work, we use fully homomorphic en-
cryption as a black box, just like the way in some verifi-
able computation schemes [8, 12] for general circuits. For
verifiable computation schemes for special functions like
polynomial function [26], (proxy) signature scheme other
than FHE might play a more significant role. Besides, for
ease of description, we will sometimes omit the FHE pub-
lic key PKHE in some of the algorithms and notations,
e.g., a ciphertext EncHE(PKHE,m) of the homomorphic
encryption scheme is equivalent to CTHE(m) in this work.

Definition 3 (Bilinear maps). Let G be an algorithm
which takes as input a security parameter n and outputs
a tuple (ê, q, g,G = 〈g〉,GT = 〈ê(g, g)〉) where q is a large
prime numbers, G and GT are two cyclic groups of order
q. A bilinear map ê : G × G → GT has the following
properties:

1) Bilinearity: ∀u, v ∈ G and a, b ∈ Z, we have
ê(ua, vb) = ê(u, v)ab.

2) Non-degeneracy: If g generates G, then ê(g, g)
generates GT .

3) Efficiency: Group operations in G and the bilinear
map ê are both computable in polynomial time.

Assumption 1 (Decisional Bilinear Diffie-Hellman
(DBDH)). The DBDH assumption says that the following
two tuples are computationally indistinguishable.

{g, ga, gb, gc, T = ê(g, g)abc} c≡ {g, ga, gb, gc, T $← GT }

3 IBPRE Constructions

3.1 Our Main IBPRE Scheme

Our main improvement on the traditional IBPRE scheme
is to remove the possible burdensome RK generation
workloads to the proxy whose role has usually been played
by powerful cloud servers, and further cut down the to-
tal workloads. The main idea behind our scheme is that
we use fully homomorphic encryption scheme to protect
the master secret s and at the meantime to permit the
required computations through the evaluation algorithm
EvalHE of the FHE scheme. The construction methodol-
ogy of ours is similar to the general verifiable computation
protocol from Yao’s Garbled Circuit and FHE proposed
by Gennaro et al. [12]. More directly speaking, we use
FHE to ensure the privacy and reusability of the master
secret key. Then the proxy is able to securely and pri-
vately execute the RK generation procedures to respond

to the RK generation requirements from the users with-
out any privacy infringement of the master secret key.

We now provide a formal description of our scheme.
Note that the common part of four algorithms are very
similar to a common Boneh-Franklin IBE scheme except
that there is an FHE system embedded in ours.

- Setup(n) → (params,MSK): The Setup algo-
rithm generates a bilinear map system ê : G ×
G → GT , where G = 〈g〉 and GT = 〈ê(g, g)〉
are both cyclic groups of order q, which is a large
prime implicitly decided by the security parameter
n. The algorithm also chooses two hash functions
H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G, as well
as a fully homomorphic encryption scheme ΠHE =
{KeyGenHE,EncHE,DecHE,EvalHE} with a pair
of FHE keys (PKHE, SKHE). In addition, the algo-
rithm chooses a secret number s uniformly at random
from Z∗q as a part of the master secret key MSK,

namely s
$← Z∗q . The public parameters are

params =
(
ê,G,GT , g, g

s, H1, H2,ΠHE, PKHE

)
and the master secret key is MSK = (s, SKHE). Be-
sides, CTHE(s) and SKHE will be sent to the proxy
and the users, respectively.

- KeyGen(params,MSK, id) → SKid: The Key-
Gen algorithm outputs a user secret key SKid =
H1(id)s for the input identity id ∈ {0, 1}∗.

- Enc(params, id,m) → cid: In order to encrypt a
message m under an identity id, the Enc algorithm

selects r
$← Z∗q uniformly at random and outputs the

ciphertext

cid = (C1, C2) = (gr,m · ê(gs, H1(id))r)

- RKGen(params,CTHE(s), id1, id2) → RKid1→id2 :
To generate a RK from id1 to id2, the RKGen al-
gorithm must generate three parts. It first homo-
morphically runs the FHE evaluation algorithm to
conduct the following evaluation on circuit ∆1 and
the three FHE ciphertexts:

EvalHE

(
∆1,CTHE(id1),CTHE(s),CTHE(id2)

)
=EncHE

(
PKHE, SK

−1
id1
·H2(str(Kid1id2

)||id1 → id2)
)

=EncHE

(
PKHE, SK

−1
id1
·

H2(str(ê(H1(id1), H2(id2))s)||id1 → id2︸ ︷︷ ︸
Constid1→id2

)
)

=CTHE(SK−1id1
·H2(Constid1→id2︸ ︷︷ ︸

X

))

Here some notations in the above formula should
be more detailedly explained. str(·) is a function



International Journal of Network Security, Vol.19, No.1, PP.11-19, Jan. 2017 (DOI: 10.6633/IJNS.201701.19(1).02) 15

that outputs the bit-string representation of its in-
put. And below we will use a simpler notation X
to denote Constid1→id2

. Besides, we will illustrate
circuit ∆1 as the following 3-ary function.

∆1(x1, x2, x3) = (H1(x1)x2)−1·
H2(str(ê(H1(x1), H2(x3))x2 ||x1 → x3))

That is to say, let the three inputs x1, x2, x3 be id1,
s, id2 respectively, we have

∆1(id1, s, id2) = (H1(id1)s)−1·
H2(str(ê(H1(id1), H2(id2))s||id1 → id2))

= SK−1id1
·H2(Constid1→id2

)

= SK−1id1
·H2(X)

The other two parts can be generated by simple IBE
encryption operations on X and then the resulting
two parts of the ciphertext are encrypted by the
FHE algorithm EncHE. So the final re-encryption
key from id1 to id2 is

RKid1→id2
=
(
CTHE(RK1),CTHE(RK2),CTHE(RK3)

)
where we have,

CTHE(RK1) = CTHE(gr
′
)

CTHE(RK2) = CTHE(X · ê(gs, H1(id2))r
′
)

CTHE(RK3) = CTHE(SK−1id1
·H2(X))

Besides, we also denote the first two compo-
nents of the RK, CTHE(RK1) and CTHE(RK2), as
CTHE(Enc(params, id2, X)) because they are actu-
ally an IBE ciphertext of X and randomness r′ re-
gardless of the FHE encryption layer.

- ReEnc(params,RKid1→id2
, cid1

) → cid2
: To pro-

duce a re-encrypted ciphertext for the input cipher-
text cid1 with the form of

cid1
= (C1, C2) = (gr,m · ê(gs, H1(id1))r)

the ReEnc algorithm must generate four parts. It
first runs the FHE evaluation algorithm EvalHE on
the homomorphic encryption of cid1

, and the third
part of the re-encryption key RKid1→id2 to gener-
ate the second part of the re-encrypted ciphertext,
namely,

EvalHE

(
∆2,CTHE(C2),CTHE(C1),CTHE(RK3)

)
=EvalHE

(
∆2,CTHE(m · ê(gs, H1(id1))r),CTHE(gr),

CTHE(SK−1id1
·H2(X))

)
=EncHE

(
PKHE,m · ê(g,H2(X))r

)
=CTHE

(
m · ê(g,H2(X))r

)

The 3-ary circuit ∆2 does the following computation:

∆2(x1, x2, x3) = x1 · ê(x2, x3)

Therefore, when the three inputs x1, x2, x3 are C2,
C1, RK3 respectively

∆2(C2, C1, RK3)

=m · ê(gs, H1(id1))r · ê(gr, SK−1id1
·H2(X))

=m · ê(g,H1(id1))rs · ê(gr, SK−1id1
) · ê(gr, H2(X))

=m · ê(g,H2(X))r

For the other three parts, they can be easily obtained
- actually there is no need to do further computation.
The final re-encrypted ciphertext cRE

id2
is,

cRE
id2

=(C1, C2, C3, C4)

=
(
gr,CTHE(m · ê(g,H2(X))r),CTHE(RK1),

CTHE(RK2)
)

- Dec(params, SKid, cid) = m: Decryption is catego-
rized into two types according to the ciphertext type.

• Condition 1: If the input ciphertext is a nor-
mal IBE ciphertetx with the form of cid =
(C1, C2) = (gr,m · ê(gs, H1(id))r), the decryp-
tion algorithm will just do the Boneh-Franklin
IBE decryption calculation, namely,

m = DecIBE(C1, C2) = C2/ê(C1, SKid)

• Condition 2: If the input ciphertext is
a re-encrypted ciphertext with the form of
cRE
id = (C1, C2, C3, C4) =

(
gr,CTHE(m ·

ê(g,H2(X))r),CTHE(RK1),CTHE(RK2)
)
, the

decryption algorithm will in addition invoke the
FHE decryption algorithm to obtain the plain-
text encrypted under PKHE. More specifically,
it first decrypts CTHE(RK1), CTHE(RK2) to
obtain X. And then it uses X like a “private
key” to decrypt the former two parts in the
type-II ciphertext.

X = DecIBE(DecHE(C3),DecHE(C4))

m = DecHE(C2)/ê(C1, H2(X))

3.2 Two Variants to Resist Possible FHE
Key Leakage

Note that in our settings, we make a moderate assump-
tion that a legal user will not intentionally or unintention-
ally leak the private homomorphic decryption key SKHE

to any parties, especially to the proxy. This assumption
is indeed realistic since in real life the role of a proxy
server is frequently played by the cloud computing units
of those Internet giants like Amazon’s AWS or Microsoft’s
Azure whose commercial reputations are of vital impor-
tance. Nevertheless, we still provide two countermeasures
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to cope with this issue, which give rise to two variants of
our main construction. As the main aim of our scheme is
to largely reduce the workload in the user side, the two
variants will lose some advantages as tradeoffs compared
with the main construction in a bid to achieve a higher
security goal. Bellow we briefly illustrate the two coun-
termeasures as well as their pros and cons in comparison
to the scheme in Section 3.1.

- Variant I. (Deprive of the full decryption
power from a single user)

The most direct avenue to deal with possible private
homomorphic decryption key leakage is to make a
shift in the beginning that the trust authority does
not share SKHE to every user. Instead, it has two
alternative strategies. The first one is to conduct
the outermost homomorphic decryption procedures
completely by itself. The main merit is that it has
actually solved the FHE private key leakage prob-
lem. Nevertheless, potential decryption bottleneck in
the authority side might be introduced. The second
strategy is to share SKHE to a threshold number of
users, following the similar vein of the first strategy,
namely, incapacitating a single user for her decryp-
tion ability. The shortcomings for this method is that
the collaboration of more than one user is a must for
conducting a decryption operation.

- Variant II. (Introduce distinct FHE key pairs
to the system for different users)

An alternative way to deal with possible private ho-
momorphic decryption key leakage is decentraliza-
tion. More specifically, the trust authority does not
control over the homomorphic encryption system any
more. On the contrary, a different homomorphic key
pair per user will be used in the RKGen proce-
dure to replace the global homomorphic encryption-
decryption key pair. Accordingly, other related pro-
cedures like ReEnc should also be modified. In this
way, once an FHE key pair for user Ui is compro-
mised, the only victim is just user Ui, which rules
out deliberate FHE key leakage. However, we point
out that this change will also lead to inefficiency (due
to the involvements of more FHE key pairs) and in-
convenience.

4 Security and Efficiency

We first provide mathematical deductions for the correct-
ness of our scheme.

Correctness. The correctness is guaranteed by the fol-
lowing formulas.

Condition 1:

C2/ê(C1, SKid) =
m · ê(gs, H1(id))r

ê(gr, H1(id)s)
= m

Condition 2:

DecIBE(DecHE(C3),DecHE(C4))

=DecIBE(RK1, RK2)

=RK2/ê(RK1, SKid)

=X

DecHE(C2)/ê(C1, H2(X)) =
m · ê(g,H2(X))r

ê(gr, H2(X))
= m

Security. Then it goes to the security proof. Actually,
our proof of security is mainly divided into two parts. The
first part is to prove that the bare scheme Π′HURE without
the fully homomorphic encryption scheme ΠHE is secure
and then prove that the full scheme is secure. In fact, due
to the extensive research on FHE, we just need to prove
the security of the bare scheme.

Proof. The proof is constructed by contradiction. Sup-
pose there is an adversary A who has a non-negligible
advantage in attacking the scheme Π′HURE, then we can
construct another adversary A′ to succeed in attacking
the DBDH problem with a non-negligible advantage.

Suppose A′ receives a tuple 〈g, ga, gb, gc, T 〉 from the
challenger C, which may be a DBDH tuple with T =

ê(g, g)abc or a random tuple with T
$← GT . To take ad-

vantage of A, adversary A′ must prepare parameters and
respond to the queries by A. We then illustrate how A′
finishes these steps.

Setup: Adversary A′ first establishes the system
parameters as params = (ê,G = 〈g〉,GT =
〈ê(g, g)〉, g, ga, H1, H2). There are two points worth
mentioning. First, there is no need to include the
homomorphic encryption scheme as well as the pub-
lic key PKHE of this scheme into params, since here
we just consider the security of the bare scheme as
stated above. Second, although the adversary does
not know a, she can still use ga to replace gs of the
original scheme, since ga is already in the tuple. Be-
side, the adversary A′ also maintains a table T to
record the responses.

Simulate hash queries: To simulate H1 : {0, 1}∗ → G,
the adversary A′ responds as follow. On an input
identity id, if id = id∗, which is the challenge identity,

the response is h← (gc)z, where z
$← Z∗q ; otherwise,

the response is just h← gz, where z
$← Z∗q . To simu-

late H2 : {0, 1}∗ → G, the adversary A′ just returns
a random element in G. After each query, the cor-
responding results e.g., {idi, hi, zi} must be included
into the table T . Besides, we underline that when-
ever an id query comes, the adversary A′ must first
look up the table T to find out if id has already been
queried. If so, A′ should locate the existing tuple at
the table and return the corresponding content. This
is also the case for key queries.
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Simulate key queries: On a user secret key query for
idi, the adversary A′ first generates the correspond-
ing tuple {idi, hi, zi} as stated above. Subsequently,
it returns SKidi

= (ga)zi as the response, which will
then be added up to the tuple in table T . For a re-
encryption key query id1 → id2, if this query will
lead to a trivial decryption of the challenge cipher-
text, the adversary A′ returns

RKid1→id2
=
(
(gb)r, T rz2 ·X, gx

)
where r, x

$← Z∗q and X is computed as stated in the
scheme - actually, it can be selected uniformly at ran-
dom. Note that this RK is not correctly formed, but
the adversary A can not detect this. If a RK query
will not lead to a trivial decryption of the challenge
ciphertext, the adversary A′ returns

RKid1→id2
=
(
gr, X·ê(ga, H1(id2))r, (ga)−z1 ·H2(X)

)
another form of which is

(
Enc(id2, X), SK−1id1

·
H2(X)

)
.

Formalize challenge ciphertext: In this step, the ad-
versary A′ receives two equal-length message m0, m1

as inputs from A. To formalize the challenge cipher-
text c∗, the adversary A′ first evaluates {id∗, h∗, z∗}
if the hash query of id∗ has not been issued previ-
ously. Then A′ flips a random coin f ∈ {0, 1} and
returns c∗ = (gb, T z∗ ·mf ).

Note that after the generation of challenge ciphertext
c∗, additional queries are also permitted conditioned on
two requirements: First, the total number of queries is
bounded by a fixed value which we do not explicitly state
here. And second, any query which will lead to a trivial
decryption for c∗ is prohibited.

We argue that although some components are not cor-
rectly formed, the adversary A can not detect this, mean-
ing that the adversary A can not distinguish the simula-
tion by A′ without the secret s (but with ga) from a real
execution by a real challenge C who possesses the secret s.
Therefore, from her point of view, these two procedures
are computationally identical. For ease of description,
just take the two kinds of RK’s as an example. Since r is

a random element, it is easy to see that (gb)r
c≡ gr and it

is the same for either T rz2 ·X and X · ê(ga, H1(id2))r, as
well as gx and (ga)−z1 ·H2(X).

At the end of all the interactions between adversary
A′ and A, A must return her guess to A′. The lat-
ter will make a choice on whether T = ê(g, g)abc or

T
$← GT according to the guess bit f ′ returned by A.

If f ′ = f , namely, adversary A succeeds in attacking
the bare scheme, then A′ will return 1, indicating that
T = ê(g, g)abc is belonging to a DBDH tuple; otherwise,

A′ will return 0, indicating that T
$← GT is belonging to

a random tuple.

To see how it works, we will discuss according to the
value of T . When T = ê(g, g)abc, the challenge ciphertext
has the following form:

c∗ = (gb, T z∗ ·mf ) = (gb, ê(g, g)abcz
∗
·mf )

= (gb, ê(ga, gcz
∗
)b ·mf )

= (gb,mf · ê(ga, H1(id∗))b)

In other word, it is a correctly formed ciphertext. So in
this game, the adversaryA has a non-negligible advantage
ε in distinguishing whether c∗ is the encryption of m0 or
the encryption of m1.

When T
$← GT , the challenge ciphertext has the fol-

lowing form (r is a random element selected from Z∗q ,
which makes rz∗ a random element in Z∗q . And R is thus
a random element selected from GT ):

c∗ = (gb, T z∗ ·mf ) = (gb, ê(g, g)rz
∗
·mf )

= (gb,mf ·R)

Since R is a random element in GT , the probability for
adversary A′ to successfully guess the bit f is just 1

2 ,
i.e., the advantage for her is 0. So in terms of whether
adversary A succeeds in the Π′HURE game, adversary A′
can also have a non-negligible advantage in distinguishing
a DBDH tuple from a random tuple.

Efficiency. The main advantage of our scheme is the
universality property mentioned before, which has never
been achieved in any other PRE schemes. To this end,
we sacrifice some efficiency as the tradeoffs. Nevertheless,
our scheme has gained advantages in communication com-
plexity aspects since the user-specific private information
is no longer needed to send.

Below we will provide the readers with a simplified
analysis of the efficiency, namely we roughly divide var-
ious operations in IBPRE schemes into three categories
according to an approximate and empirical evaluation cri-
terion.

1) T1: Hash operations, including hash operations H1(·)
and H2(·).

2) T2: Group operations, including operations in both
G and GT as well as FHE operations.

3) T3: Bilinear pairing operations.

Then the detailed comparisons of computation complexity
between our scheme and the most relevant scheme [14] are
described in Table 1.

The main reason why we do not take into consideration
the efficiency of Setup and KeyGen is that these two al-
gorithms are run by the trust authority while in reality we
care more about the efficiency of the users as well as the
proxy. Besides, they are not the core factors for a cryp-
tosystem since the number of running time of them are far
less than that of the left four algorithms. For the fourth
row of Table 1, {0 (3T2)} means that in our scheme, the
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Table 1: Comparison of computation complexity

Our scheme Scheme of [14]
Enc T1 + 3T2 + T3 T1 + 3T2 + T3

RKGen T1 + 8T2 + T3 2T1 + 5T2 + T3
ReEnc 0 (3T2) T2 + T3
Dec(1) T2 + T3 T2 + T3
Dec(2) 5T2 + 2T3 2T2 + 2T3

user does not need to do any computation and therefore
3T2 is merely for the proxy while {T2 +T3} is for the user
in their scheme. For the fifth and sixth row, Dec(1) means
the normal IBE decryption and Dec(2) means the decryp-
tion of a re-encrypted ciphertext. From Table 1 we can see
that our scheme only introduces bearable additional com-
putation workload to some of the algorithms like Dec(2)

while ours performs better in ReEnc. Besides, the spe-
cial property like universality can only be achieved by our
scheme. So in general, ours is of significant usefulness in
both theoretical research on re-encryption and some real-
life applications.

5 Conclusion and Future Work

In this work, we have introduced a new type of identity-
based proxy re-encryption scheme, which is different from
as well as superior over the former schemes in some as-
pects. Specifically, Our scheme enjoys a good feature that
there is only very little resource needed in the user side.
Besides, potential bottlenecks like re-encryption manage-
ment are also avoided. However, our scheme also has
some limitations, e.g., the introduction of homomorphic
encryption decreases the efficiency of the scheme and the
scheme is not suitable for multi-hop re-encryptions. We
will continue working on enhancing our scheme and con-
structing more powerful ones.
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