
International Journal of Network Security, Vol.19, No.6, PP.899-903, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).05) 899

Further Characterization of H Vectorial
Functions

Yuwei Xu1,2, Chuankun Wu1

(Corresponding author: Yuwei Xu)

State Key Laboratory of Information Security, Institute of Information Engineering1

Chinese Academy of Sciences, Beijing 100093, China

School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China2

(Email: xuyuwei@iie.ac.cn)

(Received June 30, 2016; revised and accepted Sept. 3 & Sept. 25, 2016)

Abstract

Vectorial Boolean bent functions, which possess the
maximal nonlinearity and the minimum differential
uniformity, contribute to optimum resistance against
linear cryptanalysis and differential cryptanalysis. H
vectorial functions is an infinite class of vectorial Boolean
bent functions presented by S. Mesnager. This paper
is devoted to further characterization of the H vec-
torial functions. It is shown that the EA-equivalent
relationships among vectorial Boolean functions may
be characterized by their component functions. As a
result, the EA-equivalent relationships among H vecto-
rial functions induced by many projectively equivalent
o-polynomials of a given o-polynomial are obtained.
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1 Introduction

Vectorial Boolean functions, which are widely used in
block ciphers, stream ciphers and Hash functions, paly
an important role in cryptography [1, 2, 14, 15, 16, 19].
The security of the cryptographic algorithms, adopting
vectorial Boolean functions as nonlinear components, usu-
ally depends on the cryptographic properties of the vec-
torial Boolean functions adopted [12]. The nonlinearity
and the differential uniformity of the adopted vectorial
Boolean functions are two parameters that measure the
resistence of the cryptographic algorithms against linear
cryptanalysis [3, 18] and differential cryptanalysis [4, 17]
respectively. The vectorial Boolean functions possessing
the maximal nonlinearity, which is the optimal nonlin-
earity, are referred to as vectorial Boolean bent functions.
The concept bent of vectorial Boolean functions, which
is an extension of Boolean bent functions [24], was first
considered by Nyberg in [22], where it was shown that
bent (n,m)-functions (i.e., the vectorial Boolean functions

from F2n to F2m) exist if and only if n is even and n ≥ 2m.
Vectorial Boolean bent functions are also named as per-
fect nonlinear functions [11, 22], for the reason possessing
the minimum differential uniformity, which is the opti-
mal differential uniformity. Thus, the study of vectorial
Boolean bent functions are of great significance.

In [20], an infinite class of vectorial Boolean bent func-
tions named asH vectorial functions was presented. More
precisely, it was shown in [20] that, if G is an o-polynomial

on F2k , then the function xG(yx2
k−2) is bent, where

(x, y) ∈ F2k × F2k . In [20], it is proved that H vec-
torial functions induced by the projectively equivalent

o-polynomials G(x), µG(x) + ν, G(µx + ν), xG(x2
k−2)

and (G(x2
s

))2
k−s

are EA-equivalent, where G is an o-
polynomial on F2k , µ ∈ F∗2k and ν ∈ F2k . However,

whether G is an o-polynomial is necessary for xG(yx2
k−2)

to be bent is unknown. And the EA-equivalent relation-
ships among the H vectorial functions induced by other
projectively equivalent o-polynomials is unclear.

This paper shows that, for m | k, the function

Trkm(xG(yx2
k−2)) is bent if and only if G is an o-

polynomial on F2k , where (x, y) ∈ F2k × F2k . This paper
also shows that the EA-equivalent relationships among
vectorial Boolean functions may be characterized by their
component functions. Subsequently, the EA-equivalent
relationships among the H vectorial functions induced
by 27 projectively equivalent o-polynomials are charac-
terized.

The rest of this paper is organized as follows. Section 2
provides some preliminaries for the description of the pa-
per. Section 3 characterizes H vectorial functions. And
Section 4 concludes this paper.

2 Preliminaries

Throughout this paper, let k, m be two positive integers,
F2k denote the Galois field GF (2k) and F∗2k = F2k \ {0}.
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For m | k, the trace function Trkm : F2k → F2m is
defined as

Trkm(x) = x+ x2
m

+ x2
2m

+ · · ·+ x2
( k
m
−1)m

.

In particular, Trk1 (x) is called the absolute trace function
on F2k . Note that the trace function has the well known
properties that Trkm(x) = Trm1 ◦ Trkm(x) and Trkm(x) =
Trkm(x2).

A mapping G : F2k → F2m is referred to as a vecto-
rial Boolean function, which is also known as a (k,m)-
function, a multiple output Boolean function or an S-
box. Particularly, G is a k-variable Boolean function
if m = 1. A (k,m)-function G can be represented as
G = (g1, g2, · · · , gm), where g1, g2, · · · , gm are m Boolean
functions on F2k and called the coordinate functions of G.
Any nonzero linear combination of the coordinate func-
tions is called a component function of G, and can be
represented as Trm1 (λG), where λ ∈ F∗2m .

A (k,m)-function G can be uniquely represented in
the univariate polynomial representation as G(x) =∑2k−1
i=0 aix

i, where ai ∈ F2k . The algebraic degree of G,
denoted by deg(G), is defined as deg(G) = max{wt(i) :
0 ≤ i ≤ 2k−1, ai 6= 0}, where wt(i) denotes the Hamming
weight of i, i.e., the number of 1’s of i in its 2-adic repre-
sentation. G is called an affine vectorial Boolean function
if deg(G) ≤ 1. Particularly, a linear vectorial Boolean
functions is a affine vectorial Boolean functions with al-
gebraic degree 1 and constant term null, or with algebraic
degree 0 (i.e., constant function). For m | k, G can also
be represented in a non-unique way as

G(x) = Trkm(P (x)), P (x) ∈ F2k [x].

An (n,m)-function F with n = 2k can be uniquely
represented in the bivariate polynomial representation
as F (x, y) =

∑
0≤i1,i2≤2k−1 ai1,i2x

i1yi2 , where (x, y) ∈
F2k × F2k and ai1,i2 ∈ F2k . The algebraic degree of F is
deg(F ) = max{wt(i1)+wt(i2) : 0 ≤ i1, i2 ≤ 2k−1, ai1,i2 6=
0}. For m | k, F can also be represented non-uniquely as

F (x, y) = Trkm(P (x, y)), P (x, y) ∈ F2k [x, y].

The nonlinearity of a k-variable Boolean function g,
denoted by nl(g), is defined as nl(g) = ming′∈Ak

d(g, g′),
where Ak is the set of all the k-variable affine Boolean
functions and d(g, g′) is the Hamming distance between
g and g′, i.e., the cardinality of the set {x ∈ F2k :
g(x) 6= g′(x)}. The nonlinearity of g can be measured
by nl(g) = 2k−1 − 1

2 maxω∈F
2k
Wg(ω), where Wg(ω) =∑

x∈F
2k

(−1)g(x)+Tr
k
1 (ωx) is the Walsh transform of g. The

Walsh spectrum of g is the set {Wg(ω) : ω ∈ F2k}. The
well known Parseval’s equation

∑
ω∈F

2k
(Wg(ω))2 = 22k

implies that nl(g) ≤ 2k−1 − 2
k
2−1. An n-variable Boolean

function f with n even is referred to as a Boolean bent
function if and only if nl(f) = 2n−1 − 2

n
2−1.

The nonlinearity of a (k,m)-function G, denoted
by nl(G), is defined as nl(G) = min{nl(Trm1 (λG)) :

λ ∈ F∗2m}. The nonlinearity of G can be measured by
nl(G) = 2k−1 − 1

2 maxω∈F
2k

maxλ∈F∗
2m
WG(ω, λ), where

WG(ω, λ) =
∑
x∈F

2k
(−1)Tr

m
1 (λG(x))+Trk1 (ωx) is the Walsh

transform of G. The Walsh spectrum of G is the set
{WG(ω, λ) : ω ∈ F2k , λ ∈ F∗2m}. The Parseval’s equa-
tion also implies that, for the (k,m)-function G, nl(G) ≤
2k−1 − 2

k
2−1. An (n,m)-function F with n even is re-

ferred to as a vectorial Boolean bent function if and only
if nl(F ) = 2n−1 − 2

n
2−1. The bent property of vectorial

Boolean functions can be characterized by their compo-
nent functions.

Definition 1. An (n,m)-function F with n even is bent
if and only if all of its component functions are Boolean
bent functions (i.e., Trm1 (λF ) is bent for every λ ∈ F∗2m).

The extended affine equivalence (EA-equivalence)
and the Carlet-Charpin-Zinoviev equivalence (CCZ-
equivalence) are two greatly useful tools to study the
existence, constructions and various properties of vec-
torial Boolean functions. Although EA-equivalence is a
particular case of CCZ-equivalence [6, 9], the two con-
cepts of equivalent relations are coincident in some spe-
cial cases [5], such as Boolean functions [6] and vectorial
Boolean bent functions [7]. Note that the nonlinearity is
an EA-invariant parameter [9]. Here, we recall the defini-
tion of EA-equivalence.

Definition 2 ([5, 9, 23]). Let G, G′ be two (k,m)-
functions and

G′ = A3 ◦G ◦A2 +A1.

The corresponding concepts of equivalence between G
and G′ are called:

• Linear equivalence, if A3 and A2 are two linear per-
mutations on F2m and F2k respectively, and A1 is
null.

• Affine equivalence, if A3 and A2 are two affine per-
mutations on F2m and F2k respectively, and A1 is
null.

• Extended affine equivalence (EA-equivalence), if A3

and A2 are two affine permutations on F2m and F2k

respectively, and A1 is an affine (k,m)-function.

We recall the definition of o-polynomials.

Definition 3 ([10]). A permutation polynomial G on F2k

is called an oval polynomial (o-polynomial), if the function

x ∈ F2k 7→
{

G(x+γ)+G(γ)
x , if x 6= 0

0, if x = 0

is a permutation on F2k for every γ ∈ F2k .

In the end of this section, we recall two useful lemmas.

Lemma 1 ([10]). The function Trk1 (xG(yx2
k−2)) is bent

if and only if G is an o-polynomial on F2k , where (x, y) ∈
F2k × F2k .
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Lemma 2 ([10]). Let G be an o-polynomial on F2k . For

every λ ∈ F∗2k , Trk1 (xG(yx2
k−2)) and Trk1 (λxG(yx2

k−2))
are EA-equivalent, where (x, y) ∈ F2k × F2k .

3 Further Characterization of H
vectorial functions

In [20], S. Mesnager shown that, if G is an o-polynomial

on F2k , then the function xG(yx2
k−2) is bent, (x, y) ∈

F2k × F2k , which is referred to as H vectorial functions.
Here we give the following conclusion.

Theorem 1 (H vectorial functions). Let m | k. Then the
function

Trkm(xG(yx2
k−2))

is bent if and only if G is an o-polynomial on F2k , where
(x, y) ∈ F2k × F2k .

Proof. According to Lemma 1, the necessity is obvious.
Assume G is an o-polynomial on F2k . According to

Lemma 2, for any λ1, λ2 ∈ F∗2m , the bent properties

of Trk1 (λ1xG(yx2
k−2)) and Trk1 (λ2xG(yx2

k−2)) are the
same. According to Definition 1 and Lemma 1, the suffi-
ciency holds.

Proposition 2 in [20] showed that, the func-

tion xG(yx2
k−2) is EA-equivalent to every one of

µxG(yx2
k−2) + ν), xG(µyx2

k−2 + ν), yG(y2
k−2x) and

x(G(y2
s

x2
k+2s−2))2

k−s

, where G is an o-polynomial on
F2k , s ∈ N, µ ∈ F∗2k and ν ∈ F2k . That is, S. Mesnager’s
H vectorial functions induced by the projectively equiva-

lent o-polynomials G(x), µG(x)+ν, G(µx+ν), xG(x2
k−2)

and (G(x2
s

))2
k−s

are EA-equivalent. Recall that two o-
polynomials G and G′ are called projectively equivalent [8]

ifGα = G(x)+G(0)
G(1)+G(0) andG′α = G′(x)+G′(0)

G′(1)+G′(0) define equivalent

hyperovals. However, the proof of Proposition 2 in [20]
is based on special forms of the four projectively equiva-

lent o-polynomials µG(x) + ν, G(µx+ ν), xG(x2
k−2) and

(G(x2
s

))2
k−s

, which is not suitable for the general case.
Here, we introduce a new technique for studying the

EA-equivalent relationships among the H vectorial func-
tions induced by projectively equivalent o-polynomials.
That is, the EA-equivalent relationships among vectorial
Boolean functions may be characterized by their com-
ponent functions. By this means, the EA-equivalent
relationships among H vectorial functions induced by
more projectively equivalent o-polynomials of a given o-
polynomial can be characterized.

Lemma 3. Let G, G′ be two (k,m)-functions. Then there
exist some affine (k,m)-function A1 and some affine per-
mutation A2 on F2k such that G′ = G ◦ A2 + A1 if and
only if Trm1 (G) and Trm1 (G′) are EA-equivalent.

Proof. The necessity is obvious. In the following, we
prove the sufficiency.

By Definition 2, Trm1 (G) and Trm1 (G′) are EA-
equivalent if and only if there exist some affine permu-
tation A2 on F2k and some k-variable affine Boolean
function g such that Trm1 (G′(x)) = Trm1 (G(A2(x))) +
g(x). For the k-variable affine Boolean function g, there
exists some affine function P (x) ∈ F2k [x] such that
g(x) = Trk1 (P (x)) = Trm1 ◦ Trkm(P (x)). Let A1(x) =
Trkm(P (x)). Then A1 is an affine (k,m)-function.
Thus, Trm1 (G′(x)) = Trm1 (G(A2(x))) + Trm1 (A1(x)), i.e.,
Trm1 (G′(x)+G(A2(x))+A1(x)) ≡ 0. Then G′ = G◦A2 +
A1.

Following from the discussions in [10, 8], we divide 27
projectively equivalent o-polynomials into four classes.

Lemma 4. Let G be an o-polynomial on F2k . Denote

τ1 = G(x), τ2 = G−1(x), τ3 = (xG(x2
k−2))−1, τ4 =

(x+ xG(x2
k−2 + 1))−1, and

Sτ1 = {G(x), (G(x2
s

))2
k−s

, µG(x) + ν,G(µx+ ν),

xG(x2
k−2), G(x+ 1) + 1, x(G(x2

k−2 + 1) + 1),

x+ (x+ 1)G(x(x+ 1)2
k−2),

(x+ 1)G((x+ 1)2
k−2) + 1},

Sτ2 = {G−1(x), zG−1(x2
k−2), G−1(x+ 1) + 1,

x(G−1(x2
k−2 + 1) + 1),

x+ (x+ 1)G−1 · (x(x+ 1)2
k−2),

(x+ 1)G−1((x+ 1)2
k−2) + 1},

Sτ3 = { (xG(x2
k−2))−1,

(xG−1(x2
k−2))−1,

((x+ 1)G−1((x+ 1)2
k−2) + 1)−1,

(x(x2
k−2 + (x2

k−2 + 1)G((x+ 1)2
k−2))−1)−1,

((x+ 1)G((x+ 1)2
k−2) + 1)−1,

(x(x2
k−2 + (x2

k−2 + 1)G−1((x+ 1)2
k−2))−1)−1},

Sτ4 = {(x+ xG(x2
k−2 + 1))−1,

(x+ xG−1(z2
k−2 + 1))−1,

(x+ (x+ 1)G−1(x · (x+ 1)2
k−2))−1,

x(x2
k−2 + (x2

k−2 + 1)G−1((x+ 1)2
k−2))−1,

(x+ (x+ 1)G(x(x+ 1)2
k−2))−1,

x(x2
k−2 + (x2

k−2 + 1)G((x+ 1)2
k−2))−1},

where s ∈ N, µ ∈ F∗2k and ν ∈ F2k . Let i1, i2 ∈
{τ1, τ2, τ3, τ4}, G1 ∈ Si1 and G2 ∈ Si2 . Then

Trk1 (xG1(yx2
k−2)) and Trk1 (xG2(yx2

k−2)), where (x, y) ∈
F2k × F2k ,

1) are EA-equivalent if i1 = i2;

2) may be EA-inequivalent if i1 6= i2.

According to Lemma 3 and Lemma 4, we deduce
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Theorem 2. Let the parameters be identified with

those in Lemma 4. Then Trkm(xG1(yx2
k−2)) and

Trkm(xG2(yx2
k−2)), where (x, y) ∈ F2k × F2k , G1 ∈ Si1

and G2 ∈ Si2 ,

1) are EA-equivalent if i1 = i2;

2) may be EA-inequivalent if i1 6= i2.

Note that H vectorial functions viewed in univariate
representation are Niho vectorial Boolean bent functions.
Indeed, the result of Lemma 4 in [10] can be extend to
(n,m)-functions with n = 2k, which indicates that the
restrictions of H vectorial functions to the vector space
ωF2k are linear for all ω ∈ F∗2n . Recall that a positive
integer d (in the sense of modulo 2n−1) is named as a Niho
exponent and xd a Niho power function if the restriction
of xd to F2k is linear [13, 21], i.e., d ≡ 2s(mod 2k − 1)
for some nonnegative integer s < n. A bent function is
named as a Niho bent function if the exponents of all its
non-constant terms are Niho exponents, when it is viewed
in the univariate representation.

4 Conclusions

In this paper, H vectorial functions are further character-
ized. In [20], it was shown that G is an o-polynomial on

F2k is sufficient for xG(yx2
k−2) is bent, (x, y) ∈ F2k ×F2k

to be bent. However, the necessity is unknown. This pa-

per proves that Trkm(xG(yx2
k−2)) is bent if and only if G

is an o-polynomial on F2k .
Based on special forms of the four projectively equiv-

alent o-polynomials µG(x) + ν, G(µx + ν), xG(x2
k−2),

(G(x2
s

))2
k−s

of a given o-polynomial G, Proposition 2
in [20] showed that the H vectorial functions correspond-
ing to the five projectively equivalent o-polynomials G(x)

µG(x) + ν, G(µx+ ν), xG(x2
k−2), (G(x2

s

))2
k−s

are EA-
equivalent. In this paper, we introduce a new technique
for studying the EA-equivalent relationships among vec-
torial Boolean functions, i.e Lemma 3. According to
Lemma 3, the EA-equivalent relationships among the H
vectorial functions corresponding to 27 projectively equiv-
alent o-polynomials are characterized.

As we can see from Theorem 2, new projectively equiv-
alent o-polynomials may derive new EA-inequivalent H
vectorial functions, thus the identification and classifi-
cation of new projectively equivalent o-polynomials of a
given o-polynomial is very interesting, which is our future
work.
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