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Abstract

This paper introduces a new class of the controlled prim-
itives that are oriented to the use in the form of the
data-dependent operations while designing fast hardware-
suitable ciphers. The proposed class represents a general-
ization of the known data-dependent permutations. New
primitives are used to design switchable controlled oper-
ations and ciphers with simple key scheduling.
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1 Introduction

Well known permutation networks (PNs) have been
widely studied in the field of parallel processing and tele-
phone switching systems [4, 12, 19] and they are very
interesting to be used as controlled cryptographic prim-
itive. The PNs are well suited for cryptographic appli-
cations, since they allow one to specify and perform per-
mutations at the same time. A variant of the symmetric
cryptosystem based on PNs controlled with key is pre-
sented in [13]. Another cryptographic application of PN
is presented by the cipher ICE [9] in which a very sim-
ple PN is used to specify a key-dependent permutation,
the last is not very effective against differential crypt-
analysis [16] though. More advanced cryptographic ap-
plication of the PNs is using them in the form of the
data-dependent permutations (DDPs) [11]. Efficiency of
the use of data-dependent operations (DDOs) was demon-
strated with examples of ciphers RC5 [14], RC6 [15], and
MARS [3], which are based on data-dependent rotations
with 32 different modifications. The PNs can be used as
controlled permutation (CP) boxes to perform DDP. It is
easy to design the CP boxes providing possibility to spec-
ify 264...2192 and more different modifications of the DDP
operation on data bit strings [11] and key bit strings [10].
Recently published detailed results on investigating DDPs
and on their application show that DDPs are well suited
to design fast ciphers oriented to cheap hardware imple-

mentation [5, 8, 17]. However all mentioned above primi-
tives conserves the weight of the transformed bit strings.
Thus, it is very interesting to develop and study DDP-
like DDOs that change arbitrary the weight of the trans-
formed binary vectors.

This paper introduces a new class of the DDP-like con-
trolled primitives defining transformations with the sub-
stitution properties.

In Section 2 we consider a layered topology of the oper-
ational boxes implementing the DDP-like primitives pos-
sessing the substitution properties. The new primitives
are called controlled operational substitutions (COSes),
since they are free of preserving the weight of the input
binary vector. The COS boxes are constructed using some
layered CP box as a prototype and replacing all switching
elements by elementary controlled 2×2 S-boxes denoted as
F2;1. Selecting different types of the main building blocks
F2;1 one can design different DDP-like primitives. Several
criteria are formulated to select F2;1-boxes. The criteria
are used to classify all possible variants of the F2;1-boxes.
Non-linear and differential properties of different types of
the F2;1-boxes are presented.

In Section 3 we consider design and properties of the
COS boxes having the first-order topology.

Section 4 discusses design of the switchable COS-box
operations and presents several COS-based block ciphers.

Section 5 presents conclusion that proposed new class
of the DDOs gives more design possibilities than DDPs
while developing fast cheap-hardware-oriented ciphers.
The COSes suit well to design of the switchable DDOs
the use of which allows preventing weak keys in the ci-
phers with simple key scheduling.

Notation: Let BFn or fn denote Boolean function
(BF) in n variables, i.e. fn = f(x1, x2, ..., xn).

Let the binary vector (f(0, 0, 0), f(0, 0, 1), f(0, 1, 0),
f(0, 1, 1), f(1, 0, 0), f(1, 0, 1), f(1, 1, 0), f(1, 1, 1)) denote
truth table of the BF f(x1, x2, x3).

Let NL(fn) denote non-linearity of fn in the sense of
the minimal distance from fn to the set of the affine BFsn.
The distance between two BFs fn

1 and fn
2 is the weight

of the truth table of the BF fn
3 = fn

1 ⊕ fn
2 .
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Figure 1: Elementary box F2;1: a − designation, b − representation as a pair of BFs3, c − switching element P2;1

Let hexidecimal numbers denote truth tables of BFn.
For example 35 and CA denotes truth tables (00110101)
and (11001010), respectively.

Let {0, 1}n denote the set of all n-bit binary vectors
X = (x1, ..., xn).

Let numerical value (or simply value) X be
∑n

i=1 xi2
i−1.

Let bρc denote the maximum even integer less or equal
to ρ.

Let X ⊕ Y denote the bit-wise XOR operation per-
formed on X and Y : X, Y ∈{0, 1}n.

Let (A, B, ..., Z) denote concatenation of the binary
vectors A, B,..., Z.

Let “+n” (“−n”) denote addition (subtraction) mod-
ulo 2n.

Let Y = X>>>k denote rotation of the word X by k
bits, where ∀i ∈ {1, ..., n − k} we have yi = xi+k and
∀i∈{n − k + 1, ..., n} we have yi = xi+k−n.

Definition 1. Let {F1,F2, ...,F2m} be some set of the
single-type operations defined by formula Y = Fi =
Fi(X1, X2, ..., Xq), where i = 0, 1, ..., 2m − 1 and
X1, X2, ..., Xq are the input n-dimensional binary
vectors (operands) and Y is the output n-dimensional
binary vector. Then the V -dependent operation F(V )

defined by formula Y = F(V )(X1, X2, ..., Xq) =
FV (X1, X2, ..., Xq), where V is the m-dimensional
controlling vector, we call the controlled q-place op-
eration. The operations F0,F1, ...,F2m−1 are called
modifications of the controlled operation F(V ).

Definition 2. Let {F0,F1, ...,F2m−1} be the set of
the modifications of the controlled operation F(V ).
The operation (F−1)(V ) containing modifications
F−1

0 ,F−1
1 , ...,F−1

2m−1 is called inverse of F(V ), if for

all V F−1
V and FV are mutual inverses.

Definition 3.[10] Let given the CP-box operation Y =

P
(V )
n;m(X), where X, Y ∈{0, 1}n. The CP box Pn;m is

called a CP box of the order h (1 ≤ h ≤ n), if for
arbitrary index set i1, i2, ..., ih and arbitrary index set
j1, j2, ..., jh (iα 6= iβ and jα 6= jβ for α 6= β) there is
at least one vector V which specifies a permutation
PV moving xiα

to yjα
for all α = 1, 2, ..., h.

2 A Class of the Elementary Con-

trolled Boxes

2.1 Design Criteria

The main building block in the layered CP boxes is the
elementary switching element P2;1 performing controlled
transposition of two input bits. The elementary con-
trolled transformation performed with P2;1 is described
by two specific Boolean functions (BFs) in three vari-
ables: y1 = f1(x1, x2, v) = x1v ⊕ x2v ⊕ x1 and
y2 = f2(x1, x2, v) = x1v ⊕ x2v ⊕ x2, where x1 and x2

are the input bits, y1 and y2 are the output bits, and v
is the controlling bit. Selecting the functions f1 and f2

of different types one can get different variants of the ele-
mentary controlled boxes F2;1 (see Figure 1). Using some
given topology of the CP boxes and replacing the elements
P2;1 by F2;1 one can get different variants of the controlled
operational boxes performing transformations that in gen-
eral case do not conserve the weight of the transformed
binary vectors. Let such operational boxes be called the
controlled operational substitutions (COSes).

The general structure of some layered Fn;m-box is
shown in Figure 2. It consist of s = 2m/n active layers
each of which contains n/2 parallel F2;1-boxes. A unique
index is associated with each F2;1-box. For example, in
Figure 2 all elementary boxes are consecutively numbered
from left to right and from top to bottom. In accordance
with such enumeration (indexing) the j-th bit of vector V
controls the j-th elementary box F2;1 and the vector V can
be represented as some concatenation of the s = 2m/n
vectors V1, V2, ..., Vs ∈ {0, 1}n/2, i.e. V = (V1, V2, ..., Vs).
Using different interconnections between active layers one
can design different COS boxes for fixed variant of the box
F2;1 and given values n and m. Such interconnections are
denoted in Figure 2 as fixed permutations π1, ..., πk−1.

In general case a box Fn;m can be composed using el-
ementary boxes F2;1 of several different types, i.e. each
active layer can be unique. In this article we shall con-
sider the COS boxes with uniform structure, i.e. the COS
boxes built up from F2;1-boxes of the single type.

In many cases the use of the operation Fn;m while en-
crypting implies the use of its inverse F−1

n;m. It is evident,
that arbitrary Fn;m-box operation is invertible, if the ele-
mentary box F2;1 is invertible. Inverse transformation can
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Figure 2: The boxes Fn;m: a − general structure, b − designation

be constructed by swapping input and output of the given
COS box and replacing each of the elementary building
boxes F2;1 by its inverse F−1

2;1 . To define easy construc-
tion of the mutual inverse COS boxes one can propose
to use the boxes F2;1 representing some elementary con-
trolled involutions, i.e. the boxes both modifications F0

and F1 of which are involutions. The box P2;1 is one of
them. Below we show that there exist 40 elementary con-
trolled involutions and 24 of them are more interesting
elementary cryptographic primitives than the P2;1-box.

If in the layered topology (see Figure 2) the elemen-
tary operation F2;1 is involution, then each active layer
performs transformation of the n-bit strings, which is in-
volution. In this case the inverse COS box is constructed
by changing the fixed permutations and permuting the
components V1, V2,...,Vs of the controlling vector as it is
shown in Figure 3. Let the F2;1-boxes of some box F−1

n;m

be consecutively numbered from left to right and from
bottom to top. Then in the mutually inverse COS boxes
the jth controlling bit controls the jth elementary box.

Design of the COS boxes can be considered as a design
at bit level. To formulate the criteria for selecting pairs
of BFs3 defining the F2;1-boxes suitable to the design of
the COS boxes we have taken into account that the el-
ementary switching box P2;1 is a main building block in
the CP boxes and the last have been successfully used in
the design of block ciphers [5]. Thus, we have formulated
the following criteria arising from the main properties of
P2;1:

C1. Each of two outputs of the F2;1-box should be a non-

linear BF3 having maximum non-linearity.

C2. Each of two outputs of the F2;1-box should be a bal-
anced BF3.

C3. Each of two elementary modifications of the F2;1-box,
i.e. F0 and F1, should be bijective transformation
(x1, x2) → (y1, y2).

We have experimentally checked all of 256 existing BF3

and have found 56 BFs satisfying criteria 1 and 2 (see
Table 1). Our experiments based on exhaustive search
have shown that there exist 288 pairs of BF3 that define
288 different variants of the F2;1-boxes satisfying criteria
C1, C2, and C3. Maximum non-linearity of the balanced
BFsn for odd n is NLmax(f

n) =
⌊

2n−1 − 2
n
2 −1

⌋

[18]. For
non-linear BFs f3 we have NLmax (f(x1, x2, v)) = 2. Note
that non-linearity of each non-linear balanced BF3 has
value 2.

Having obtained comparatively large number of pos-
sible F2;1-boxes we have added new criteria that should
help to select the best variants. Additional criteria are
the following:

C4. Linear combination of two outputs of the F2;1-box,
i.e. the BF f ′(x1, x2, v) = y1 ⊕ y2, should be a non-
linear BF3 having maximum non-linearity.

C5. The F2;1-box should be a controlled involution, i.e.
each of two its elementary modifications F0 and F1

should be involution.
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Figure 3: Mutually inverse COS boxes: a − Fn;m, b − F−1
n;m

Criteria C1 to C4 define 192 different variants of the
F2;1-boxes. The P2;1-box is beyond this set, since it does
not satisfy criterion C4. Criteria C1 to C3 and C5 de-
fine 40 different variants of the F2;1-boxes two of them
represent two variants of the elementary switching box

(in literature the P
(v)
2;1-box is described as that perform-

ing swapping two input bits at v = 1; the other variant
P′

2;1-box corresponds to swapping performed at v = 0).
Criteria C1 to C5 define 24 (see Table 2) different variants
of the elementary controlled involutions F2;1. Since the
DDPs performed with the CP boxes represent an efficient
cryptographic primitive one can conclude that the main
design criteria are those that are satisfied by the P2;1-box,
i.e. criteria C1 to C3. Criterion C4 should contribute sig-
nificantly to the security of the COS-based ciphers. Meet-
ing criterion C5 appears to be not necessary, but it is
very useful for practical design of the COS boxes. Cri-
terion C5 promotes easer design of the pairs of mutually
inverse COS-box operations, for example CP boxes with
symmetric topology can be transformed into its inverses
by simple transposing of the components V1, V2, ..., Vs of
the controlling vector [5]. This possibility will be used in
Section 4 while designing switchable COS boxes.

The box P2;1 does not satisfy criterion C4, i.e. sum of
its outputs is a linear BF3: y1 ⊕ y2 = x1 ⊕ x2. The trans-
formation defined by arbitrary Pn;m-box conserves the
weight of the input vector and for the CP boxes there ex-
ists one linear characteristic with bias 1/2 [5]. This defines
necessity to combine CP-box operations with some other
non-linear primitives while constructing encryption sys-
tems (see for example the ciphers CIKS-1 [11], SPECTR-
H64 [6], and SPECTR-128 [5]).

The variants of the F2;1-boxes that satisfy criteria 1
to 4 define the substitution properties of the Fn;m-boxes
and possibility to design some pure COS-based ciphers,
i.e. the ciphers that use only COS-box operations, fixed
bit permutations, and the XOR operations. It is resonable
to formulate also some avalanche criterion represented in
one of the following two variants:

C6a. Complementing one bit at input of the F2;1-box should
define changing two output bits with probability 1/4.

C6b. Complementing one bit at input of the F2;1-box should
define changing two output bits with probability 1/2.

The P2;1-box does not satisfy any of these avalanche
criteria. It is evident that no avalanche is introduced by
any Pn;m-box at fixed controlling vector, i.e. comple-
menting one bit (let such bit be called active) at input
of the Pn;m-box defines changing only one output bit.
Avalanche effect connected with the CP-box operations
is caused by using each bit of the controlling data sub-
block to control several P2;1-boxes of the CP box [5, 11].
Thus, when performing a CP box operation the avalanche
effect spreads only if the active bits are used as control-
ling ones. The COS boxes constructed on the basis of
the F2;1-boxes satisfying the avalanche criterion C6a or
C6b posses better avalanche properties, i.e. avalanche
spreads also in the case when active bits pass through
the COS box from input to output. One can expect that
such F2;1-boxes allows one to design the COS-box opera-
tions providing some essential advantages against the CP
boxes. One can show that if some F2;1-box satisfies crite-
ria C1 to C4, then it satisfies also one of two criteria C6a
and C6b. Thus, selection of the elementary controlled
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Table 1: Full set of the BF3 functions satisfying criteria C1 and C2 (the truth table of BF3 are presented in the
binary (1) and hexidecimal (2) forms)

1 2 1 2 1 2 1 2
00010111 17 00011011 1B 00011101 1D 00011110 1E
00100111 27 00101011 2B 00101101 2D 00101110 2E
00110101 35 00110110 36 00111001 39 00111010 3A
01000111 47 01001011 4B 01001101 4D 01001110 4E
01010011 53 01010110 56 01011001 59 01011100 5C
01100011 63 01100101 65 01101010 6A 01101100 6C
01110001 71 01110010 72 01110100 74 01111000 78
10000111 87 10001011 8B 10001101 8D 10001110 8E
10010011 93 10010101 95 10011010 9A 10011100 9C
10100011 A3 10100110 A6 10101001 A9 10101100 AC
10110001 B1 10110010 B2 10110100 B4 10111000 B8
11000101 C5 11000110 C6 11001001 C9 11001010 CA
11010001 D1 11010010 D2 11010100 D4 11011000 D8
1110001 E1 11100010 E2 11100100 E4 11101000 E8

boxes satisfying criteria C1 to C4 yields a new class of in-
teresting cryptographic primitives. Criteria C6a and C6b
serves to differentiate between two subclasses of such F2;1-
boxes. Better avalanche and non-linearity of the sum of
outputs provides possibility to construct a number of dif-
ferent COS boxes that are free of essential demerits of
the CP boxes. From general point of view one can expect
that using such advanced controlled operational boxes it
is possible to design ciphers with fewer number of rounds
reducing the hardware implementation cost and increas-
ing performance. It seems also easier to construct the
pure COS-based ciphers (one can propose some special
design of the pure DDP-based cipher, however this is a
topic of the individual research).

Let F2;1-boxes satisfying criteria C1 to C4, and C6b
(C1 to C4, and C6a) be denoted as S2;1 (R2;1 ) and all
the rest of the elementary boxes satisfying criteria C1 to
C3 be denoted as Z2;1. We shall denote the COS boxes
constructed using the elementary building blocks S2;1,
R2;1, and Z2;1 as Sn;m, Rn;m, and Zn;m, correspondingly.
Thus, we have the COS boxes of the R-type, S-type, and
Z-type. The CP boxes belongs to the Z-type COS boxes.

2.2 Visual Design of the F2;1-boxes

Selection of the pairs of BF3 considered above can be
characterized as a formal selection of the F2;1-boxes with
required properties. It allows to find all possible F2;1-
boxes satisfying some given set of the design criteria,
however some selected set of the BF3 pairs can define
the F2;1-boxes the difference between which is only formal
and does not results in some essential differences of the
properties of the constructed COS boxes. The box F

(v)
2;1

defines two different modifications of the transformation
(x1, x2) → (y1, y2): F0, if v = 0 and F1, if v = 1. Such
transformations can be called elementary modifications.

For formally different elementary boxes F2;1 and F′
2;1 one

can have F′
0 = F1 and F′

1 = F0.
Criterion C3 requires each of the modifications F0 and

F1 be bijective. There exist only 24 variants of the bi-
jective modifications Fv. They are shown in Figure 4.
One can propose some visual design of the F2;1-boxes
which consists in selecting different pairs of the modifica-
tions from the set of possible ones. Note that each of the
possible elementary modifications is a linear transforma-
tion. Non-linear properties of the F2;1-boxes are defined
by specifying different elementary modifications to differ-
ent values v. There are possible 24 × 23 = 552 ordered
pairs and only 288 of them define non-linear F2;1-boxes
satisfying criteria C1 to C3. Different variants of the rep-
resentation of the F2;1-box as a pair of BFs3 are shown in
Figure 5.

After some pair of the modifications is selected as F0

and F1 one should write the BFs describing the F2;1-
box and check if some chosen design criteria are satisfied.
Boolean functions f1 and f2 describing some F2;1-box that
is initially defined as a pair of the elementary modifi-
cations can be easy written in the following way. Let
{f ′

1(x1, x2), f ′
2(x1, x2)} be some pair of the BFs2 describ-

ing the modification F0 that is assigned to value v = 0
and {f ′′

1 (x1, x2), f
′′
2 (x1, x2)} be another pair of the BFs2

describing the modification F1 that corresponds to v = 1.
Then we have the following two BFs3 describing the F2;1-
box:

y1 = (v ⊕ 1)f ′
1(x1, x2) ⊕ vf ′′

1 (x1, x2),

y2 = (v ⊕ 1)f ′
2(x1, x2) ⊕ vf ′′

2 (x1, x2).

For example, for the elementary box described by Fig-
ure 5a one can write:

y1 = (v ⊕ 1)x1 ⊕ vx2 = vx1 ⊕ vx2 ⊕ x1,

y2 = (v ⊕ 1)(x1 ⊕ x2) ⊕ vx1 = vx2 ⊕ x1 ⊕ x2,
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Table 2: Full set of the F2;1-boxes that are involutions satisfying criteria C1 to C5 (pairs of BF3 are presented by
pairs of truth tables in binary (1) and hexidecimal (2) representation)

# 1 2 # 1 2 # 1 2

1 00011011
00101101

1B
2D 9 00011011

10000111
1B
87 17 00011110

00111001
1E
39

2 00011110
10010011

1E
93 10 00100111

00011110
27
1E 18 00100111

01001011
27
4B

3 00101101
00110110

2D
36 11 00101101

01100011
2D
63 19 00110110

00011011
36
1B

4 00111001
00100111

39
27 12 01001011

00111001
4B
39 20 01001011

10010011
4B
93

5 01001110
01111000

4E
78 13 01001110

11010010
4E
D2 21 01100011

00011011
63
1B

6 01101100
01110010

6C
72 14 10000111

00110110
87
36 22 10000111

01100011
87
63

7 10001101
10110100

8D
B4 15 10001101

11100001
8D
E1 23 10010011

00100111
93
27

8 10011100
10110001

9C
B1 16 11000110

01110010
C6
72 24 11001001

10110001
C9
B1

y1 ⊕ y2 = vx1 ⊕ x2.

Using expression for y1 and y2 one can calculate the
truth table and determine that Figure 5a defines the F2;1-
box with number 1 in Table 2. After some practice it
is easy to select the necessary pairs of the elementary
modifications which define the boxes F2;1 satisfying the
given set of criteria. Different variants of the F2;1-boxes
constructed with such method are presented in Figure 5.
Each of them satisfy the design criteria C1 to C3. Fig-
ures 5a to 5i show the F2;1-boxes that are elementary con-
trolled involutions one of which is the elementary switch-
ing element P2;1 (Figure 5i). The F2;1-boxes correspond-
ing to Figure 5a, 5c, 5d, and 5g satisfy criteria C1 to
C5 and C6a. The F2;1-boxes corresponding to Figure 5b,
5e, 5f, and 5h satisfy criteria C1 to C5 and C6b. Fig-
ure 5 presents the most important types of the elementary
boxes. The set of the R2;1-boxes includes several types
of the elementary controlled involutions (see some exam-
ples in Figure 5). In frame of the visual design one can
formulate one criterion more:

C7. One of the F2;1-box modifications should include
swapping bits.

Use of this heuristic criterion allows one to attribute a
subset of the F2;1-boxes to the class of the P2;1-like ones,
which includes all boxes R2;1 (the set {R2;1}) and all
boxes Z2;1 (the set {Z2;1}). For the elementary switching
box we have P2;1∈ {Z2;1}. There exists no F2;1-box that
satisfies simultaneously the criteria C1 to C4, C6b, and
C7, therefore no P2;1-like box is a S2;1-box. Let the COS
boxes constructed from the P2;1-like elementary boxes be
called CP-like or DDP-like ones. For the CP-like COS
boxes it is reasonable to introduce the notion of the order:

Definition4. The COS box Rn;m is called a COS box of
the order h (1 ≤ h ≤ n), if it has the same topology
as some CP box of the order h.

The CP boxes P2k;m of the orders h = 1, 2, ..., 2k−2,
and 2k can be implemented using s active layers, where s
equals to log2n, log2n + 1,...,2log2n − 2, and 2log2n − 1,
respectively (the last figure corresponds also to implemen-
tation of the the CP box of the order 2k−1) [5].

2.3 Classification of the F2;1-boxes

Representing the boxes F2;1 as pairs of the modifications
F0/F1 it is easy to divide 192 variants satisfying criteria
C1 to C4 into two sets {R2;1} and {S2;1}. The first set
includes all of 128 existing boxes R2;1 that satisfy addi-
tionally criterion C6a. The second set includes all of 64
existing boxes S2;1 that satisfy additionally criterion C6b.
All boxes Z2;1 form the third set {Z2;1} including 96 vari-
ants of the elementary controlled boxes which meet only
criteria C1 to C3. Table 3 shows all representatives of
these three sets. Each representative is shown as a pair
of its two modifications F0 and F1. Rows in Tabe 5 cor-
respond to the modification selected as F0 and columns
correspond to modification F1. Letters R, S, and Z denote
type of the F2;1-boxes.

Differential characteristics (DCs) of the COS boxes
are defined by their topology and DCs of the elementary
controlled boxes used as main building blocks while con-
structed the COS boxes. In general case the differences
passing through the box F2;1 are shown in Figure 6. All
boxes S2;1 posses the same DCs. All boxes R2;1 posses
also the same DCs but different than that of the S2;1-
boxes (see Table 4).

For all elementary boxes Z2;1 the sum y1+y2 is a linear
BF3. Having investigated the DCs of all Z2;1-boxes we
have divided them into four subsets:

1) The subset {Ż2;1} includes 32 elementary controlled
boxes satisfying criteria C6a and defining the proba-
bility Pr(∆Y

1 /∆X
0 , ∆V

1 ) = 1.

2) The subset {Z̈2;1} includes 32 elementary controlled
boxes satisfying criteria C6a and defining the proba-
bility Pr(∆Y

2 /∆X
0 , ∆V

1 ) = 1/2.

3) The subset {Z̃2;1} includes 16 elementary controlled
boxes defining the probabilities Pr(∆Y

1 /∆X
1 , ∆V

0 ) = 1
and Pr(∆Y

1 /∆X
0 , ∆V

1 ) = 1.

4) The subset {Z′
2;1} includes 16 elementary controlled

boxes defining the probabilities Pr(∆Y
1 /∆X

1 , ∆V
0 ) = 1

and Pr(∆Y
2 /∆X

0 , ∆V
1 ) = 1/2.
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Figure 4: The set of the existing elementary modifications of the F2;1-boxes
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Table 3: Possible types of the F2;1-boxes satisfying criteria C1 to C3

F0\F1 a b c d e f g h i j k l m n o p q r s t u v w x

a - P Z ′ Z̃ Z ′ R R R R R R R R
b - Z̃ Z̃ Z ′ Z̃ R R R R R R R R
c - Z̃ Z̃ Z̃ Z ′ R R R R R R R R
d - Z ′ Z ′ Z ′ Z̃ R R R R R R R R
e P′ Z̃ Z̃ Z ′ - R R R R R R R R
f Z ′ Z̃ Z̃ Z ′ - R R R R R R R R
g R R - S S S S R R Z̈ Ż Z̈ Ż
h R R S - S S S R R Z̈ Z̈ Ż Ż
i R R S - S S S R R Ż Ż Z̈ Z̈
j R R S S - S S R R Ż Z̈ Ż Z̈
k R R S S - S S R R Z̈ Ż Z̈ Ż
l R R S S - S S R R Ż Z̈ Ż Z̈
m R R S S S S - R R Ż Ż Z̈ Z̈
n R R S S S S - R R Z̈ Z̈ Ż Ż
o Z̃ Z ′ Z̃ Z ′ R R R R R R R R -
p Z ′ Z̃ Z ′ Z̃ R R R R R R R R -
q R R R R Z̈ Ż Ż Z̈ - S S S S
r R R R R Z̈ Ż Ż Z̈ - S S S S
s R R R R Ż Z̈ Z̈ Ż - S S S S
t R R R R Ż Z̈ Z̈ Ż - S S S S
u R R R R Z̈ Ż Z̈ Ż S S S S -
v R R R R Ż Z̈ Ż Z̈ S S S S -
w R R R R Z̈ Ż Z̈ Ż S S S S -
x R R R R Ż Z̈ Ż Z̈ S S S S -

The elementary switching box P2;1 is an element of the
subset {Z′

2;1}: P2;1 ∈ {Z′
2;1}. Some probabilistic proper-

ties of the subsets are presented in Table 4. One can see
that the boxes S2;1 and R2;1 are less predictable than the
boxes Z2;1. Proposed classification define the following
properties:

1) If F2;1 ∈ {S2;1}, then F−1
2;1 ∈ {S2;1}.

2) If F2;1 ∈ {R2;1}, then F−1
2;1 ∈ {R2;1}.

3) If F2;1 ∈ {Z̃2;1}∪{Z′
2;1}, then F−1

2;1 ∈ {Z̃2;1}∪{Z′
2;1}.

If the boxes Z̃2;1 and Z′
2;1 are not involutions, then

Z̃−1
2;1 ∈ {Z′

2;1} and Z′−1
2;1 ∈ {Z̃2;1}.

4) If F2;1 ∈ {Ż2;1}∪{Z̈2;1}, then F−1
2;1 /∈ {Z2;1}∪{S2;1}∪

{R2;1}, since one of two outputs of such F−1
2;1-boxes

is a linear BF3.

Among 288 boxes F2;1 we have 40 involutions: 8 in-
volutions S2;1, 16 involutions R2;1, and 16 involutions
Z2;1. The last two subsets represent 32 P2;1-like elemen-
tary controlled involutions. All elementary controlled in-
volutions F2;1 are presented in the upper-left part of Ta-
ble 3. Twenty four involutions corresponding to the set
{S2;1}∪{R2;1} are presented in Table 2 as pairs of BFs3.
The involutions included in this set are the most attrac-
tive ones for the use in the design of the COS-box opera-
tions.

3 Controlled Operational Substi-

tutions

Design of the operational boxes Rn;m and Sn;m includes
the following two items: (1) selection of the fixed per-
mutations between active layers and (2) selection of the
types of active layers. The topologies developed for the
CP boxes of different orders [5] present different variants
of the sets of fixed permutations suitable to construction
COS boxes. The second item is a new one against the
Pn;m-boxes design. Using different variants of the F2;1-
boxes one can design different variants of the active layers.
Even in a single COS box different active layers can be
used. One can consider the following approaches to the
COS-box design:

1) Use of the F2;1-boxes of the same type.

2) Use of the active layers of different types, each single
active layer being constructed with the F2;1-boxes of
the same type.

3) Use of the active layers of the same type, the active
layers comprising different types of the F2;1-boxes.

4) Arbitrary use of different types of the elementary
controlled boxes.

The first approach allows one to design COS boxes
having more uniform structure providing easier calcula-
tion of their properties. In the frame of the first approach
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Table 4: Values of the probability Pr(∆Y
i /∆X

j , ∆V
k ) for different types of the F2;1-boxes

i j k S2;1 R2;1 Ż2;1 Z̈2;1 Z̃2;1 Z′
2;1

0 0 1 1/4 1/4 0 1/2 0 1/2
1 0 1 1/2 1/2 1 0 1 0
2 0 1 1/4 1/4 0 1/2 0 1/2
0 1 1 1/4 1/4 1/4 1/4 1/2 0
1 1 1 1/2 1/2 1/2 1/2 0 1
2 1 1 1/4 1/4 1/4 1/4 1/2 0
1 1 0 1/2 3/4 1/2 1/2 1 1
2 1 0 1/2 1/4 1/2 1/2 0 0
1 2 0 1 1/2 1 1 0 0
2 2 0 0 1/2 0 0 1 1
0 2 1 1/4 1/4 1/2 0 0 1/2
1 2 1 1/2 1/2 0 1 1 0
2 2 1 1/4 1/4 1/2 0 0 1/2
Examples,
F0/F1

h/g; j/i
m/g; u/t

g/e; i/f
p/h; x/d

l/u; k/x
n/s; j/u

l/v; l/s
n/r; j/x

b/e; c/f
a/o; d/p

a/f; e/a
b/o; c/p

it is more interesting to use elementary controlled involu-
tions Rn;m and Sn;m, since in different cryptoschemes one
should use mutually inverse operations. Let us construct
a Sn;m box, containing log2n active layers and having pa-
rameters n = 2k and m = kn/2, where k ≥ 2 is a natural
number.The fixed permutation between jth and (j +1)th
active layers we define as follows. For g = 1, 2, ..., n/2 the
(2g−1)th output of the jth active layer is connected with
the (2g−1)th input of the (j+1)th active layer. The 2gth
output of the jth active layer is connected with the ith
input of the (j + 1)th active layer, where

i =

{

2g + 2j , if g ≤ g0 = n
2 − 2j−1;

2g + 2j − n, if n
2 − 2j−1 < g ≤ n

2 .
(1)

Thus, the fixed permutations corresponding to j =
1, 2, ..., k−1 are described by the following table:

1 2 3 · · · 2g · · ·
1 2 + 2j 3 · · · n − 2j · · ·

2g0 · · · 2g · · · n − 1 n
n · · · 2g + 2j − n · · · n − 1 2j

It is evident the R-type COS boxes having topology
described by Formula (1) are of the first order. The COS
boxes F8;12 and F16;32, where F ∈ {R,S}, constructed
with the use of such fixed permutations are shown in Fig-
ure 7. It is easy to show that for such COS boxes each out-
put is some BF in µ variables, where µ = 2n−1 = 2k+1−1.
Indeed, the output yi, i = 1, 2, ..., n, depends on one con-
trolling bit corresponding to the sth layer (s = 2m/n =
log2 n) and on two outputs of the (s − 1)th layer. Each
of the lasts depends on one controlling bit corresponding
to the (s− 1)th layer and two output bits of the (s− 2)th
layer. Considering consecutively all other layers one can
calculate that yi depends on all input bits and z control-
ling bits, where z = 1+2+ ...+2k−1 = 2k−1, i.e. we have
z + n = µ. Taking into account that BFs3 describing the

elementary boxes R2;1 and S2;1 have the algebraic degree
2 it is easy to calculate that for all i the algebraic degree
of the BFµ describing the output yi is equal to k + 1.

Since each output bit of the Fn;m-box is some BF in
µ = 2n − 1 variables one can describe the Fn;m-box as
some set Φ of the component BFsµ. To estimate non-
linearity of some fµ

i ∈ Φ one can use the Formula [18]:

NL(fµ
i ) = 2n−1 −

1

2
max

∀α∈GF (2)n

∣

∣Ûα(fµ
i )

∣

∣, (2)

where Ûα(fµ
i ) is the value of the Walsh-Hadamard

spectrum component corresponding to vector α.

For n ≤ 8 we have experimentally investigated WHT of
all component BFsµ of the Fn;m-boxes constructed from
elementary controlled involutions S2;1 or R2;1 presented
in Table 2. The experiment has shown that the maximum
value of the WHT component is described by the formula

max
∀α∈GF (2)n

∣

∣Ûα(fµ
i )

∣

∣ =
2µ

n
=

22n−1

n
= 22k+1

−k−1. (3)

This result can be interpreted as follows. In each layer
two outputs of each elementary box represent balanced
BFs related to the same class. One can represent the
(x1, x2) input of arbitrary box F2;1 in the next (for ex-
ample, in the second) active layer as the Kroneker prod-
uct of the BFs f1 and f2 with the row-vector ||11...1||,
i.e. x1 = f1 ⊗ ||11...1||T and x2 = ||11...1|| ⊗ fT

2 , where
the number of elements in the row-vector is equal to the
number of elements of the truth table of BFs. Due to
recursive construction of the Hadamard’s matrices the in-
crease of the number of variables in the component BFs
of the Fn;m-box does not change the features of the WHT
spectrum of the component BFs. For elementary box S2;1

we have µ = 3, n = 2, and max∀α∈GF (2)n

∣

∣Ûα(fµ
i )

∣

∣ = 2µ

n ,
therefore this dependence is conserved for all component
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2;1
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2;1
}    {
R
2;1
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Figure 7: Examples of the COS boxes: a − R8;12 and S8;12, b − R16;32 and S16;32

BFs implementing the Fn;m-box. Thus, the experimen-
tal results and their interpretation give us grounds to put
forward the following hypothesis.

Hypothesis 1. Let the COS box Fn;m be constructed
using the elementary building blocks F2;1 presented in Ta-
ble 4 and topology described by (1). Then maximum value
of the WHT component of each component BFµ is de-
scribed by Formula ( 3).

From Formulas (2) and (3) one can obtain the following
formula for estimating the non-linearity of the component
BFs of the Rn;m- and Sn;m-boxes:

NL(fµ
i ) = 2µ−1 −

2µ−1

n
=

22n−2(n − 1)

n
= (n − 1)22n−k−2.

The non-linearity of arbitrary BFµ has the following
theoretic limitation [18]:

NL(fµ) ≤ 2µ−1 − 2
µ

2 −1.

Only bent functions fµ′

bent have maximum non-linearity

NLmax(f
µ′

) = NL(fµ′

bent) = 2µ′
−1 − 2

µ′

2 −1, where µ′ is
even. For arbitrary balanced BF fµ

bal, where µ is even or

odd, we have NLmax(f
µ
bal) < 2µ−1 − 2

µ
2 −1 − 2 [18]. For

all component BFs fµ
i of the investigated COS boxes we

have the following ratio

NL(fµ
i )

NLmax(f
µ
bal)

>
2µ−1 − 2µ−1

n

2µ−1 − 2
µ
2 −1

=
1 − 1

n

1 − 2−
µ
2

=
1 − 1

n

1 − 2−n+ 1
2

.

(4)
Thus, non-linearity of all component BFs is close to the

maximal possible non-linearity of the balanced BFs in µ
variables. The ratio (4) tends to value 1 while increas-

ing n, the difference NLmax(f
µ
bal) − NL(fµ

i ) = 2k(2
1
2 − 1)

increases also though.
For n = 4, 8, 16 we have experimen-

tally investigated the autocorrelation function
rα(f) = 1

2µ

∑

X′∈GF (2)µ(−1)f(X′)⊕f(X′
⊕α), where

X ′, α ∈ GF (2)µ, of all component BFs fµ
i (X ′) of

different variants Sn;m-boxes constructed using different
elementary controlled involutions S2;1 (see Table 5) and
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Figure 8: Probability distribution p(t) =
Pr(∆Y

t /∆X
1 , ∆V

0 ) for the S64;192-box

topology described by Formula (1). We have obtained
that rα(f) = 0 for 2µ − 1 vectors α ∈ GF (2)µ. This
shows that all component BFs fµ

i (X ′) ∈ Φ have good
propagation properties.

Using data of Table 4 and technique of the prob-
ability generating functions we have calculated the
Pr(∆Y

t /∆X
1 , ∆V

0 ) probability of the transformation of the
input difference ∆X

1 with the weight 1 into the output
differences ∆Y

t with the weight t, while passing through
the S64;192-box. For each value t the same probability
has been obtained for the S64;192-boxes constructed from
different elementary building boxes S2;1 presented in Ta-
ble 5. The results of the calculation are presented in
Table 6. Then we have performed statistic experiments
to determine the experimental values of the probabilities
Pr(∆Y

t /∆X
1 , ∆V

0 ). The experimental and theoretic curves
of the probability distribution p(t) = Pr(∆Y

t /∆X
1 , ∆V

0 )
are in a good agreement (see Figure 8). Thus, the
S64;192-box posses significantly better difference propaga-
tion properties than the box P64;192. Indeed, for arbitrary
CP box we have Pr(∆Y

1 /∆X
1 , ∆V

0 ) = 1.
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Table 5: The set of the involutions S2;1

# Elementary modifications Algebraic normal forms of BF
F0 F1 f1 f2

15 g h x2v ⊕ x1 x1v ⊕ x1 ⊕ x2

21 j h x2v ⊕ x1 x1v ⊕ x1 ⊕ x2 ⊕ v ⊕ 1
39 h g x2v ⊕ x1 ⊕ x2 x1v ⊕ x2

42 h j x2v ⊕ x1 ⊕ x2 x1v ⊕ x2 ⊕ v
75 g i x2v ⊕ x1 ⊕ v x1v ⊕ x1 ⊕ x2

81 j i x2v ⊕ x1 ⊕ v x1v ⊕ x1 ⊕ x2 ⊕ v ⊕ 1
147 i g x2v ⊕ x1 ⊕ x2 ⊕ v ⊕ 1 x1v ⊕ x2

150 i j x2v ⊕ x1 ⊕ x2 ⊕ v ⊕ 1 x1v ⊕ x2 ⊕ v

4 Some Items of The COS-based

Cipher Design

4.1 Switchable Controlled Operations

The COS-based design of the ciphers represents a variant
of the bit-level design that suits well to develop fast cryp-
tosystems oriented to the low-cost hardware implementa-
tion. The COS boxes are more efficient as compared with
the CP boxes, since (1) they change arbitraly the weight
of the input vector, (2) they define significant avalanche
while data are transformed with them, (3) they define
lower probability that the low-weight differences of the
controlling vector do not introduce changes in the out-
put, and (4) the sum of all outputs of the COS boxes is
a non-linear BF versus linearity of such sum in the case
of the CP boxes. Since different examples of the cipher
design based on using the CP-box operations have shown
DDPs’ efficiency as cryptographic primitive [5], one can
expect that replacing the CP boxes in the already pro-
posed ciphers by the COS boxes one can provide possibil-
ity to reduce the number of the encryption rounds. For
many hardware implementation architectures this results
in higher performance and lower implementation cost.

Data-dependent operations are very attractive to be
used together with simple key scheduling. However the
use of the simple key scheduling introduces the problem
of weak keys. This problem is especially important while
designing hash functions with the use of block ciphers.

Definition 5. Let F′(e), where e ∈ {0, 1}, be some
e-dependent operation containing two modifications
F′(0) = F′

0 and F′(1) = F′
1, where F′

1 = F′−1
0 . Then

the operation F′(e) is called switchable.

Definition 6. Let two modifications of the switchable
operation F′(e) be mutual inverses F′(0) = F(V ) and
F′(1) = (F−1)(V ). Then F′(e) is called switchable con-
trolled operation F(V,e) .

Below we describe the switchable COS boxes R
(V,e)
32;96

and R
(V,e)
64;192 representing practical interest in the design of

the 64- and 128-bit ciphers, correspondingly. Such switch-
able operational boxes are constructed on the bases of the

COS boxes R32;96 and R64;192 with symmetric structure.
These boxes can be constructed using the single-type ele-
mentary controlled involutions represented, for example,
by one of the following pairs of BFs3 #9, #19, #6, and
#24 (see Table 2). The boxes R8;12 (Figure 9a) and
R−1

8;12 (Figure 9b) containing three active layers are used
as main building blocks while constructing the six-layer
boxes R32;96 (Figure 9c) and R64;192 (Figure 9e). It is
easy to show the R32;96 and R64;192 are the boxes of the
second and first orders, correspondingly.

The fixed permutation π3 corresponding to connections
between four parallel boxes R8;12 and four parallel boxes

R−1
8;12 in R32;96-box is described as the following fixed per-

mutational involution I1:

(1)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,29)(10)(11,18)
(12,26)(14)(15,22)(16,30)(19)(20,27)(23)(24,31)(28)(32).

The fixed permutation π′
3 corresponding to connections

between eight parallel boxes R8;12 and eight parallel boxes

R−1
8;12 in R64;192-box represents the following permuta-

tional involution I2:

(1)(2,9)(3,17)(4,25)(5,33)(6,41)(7,49)(8,57)(10)(11,18)
(12,26)(13,34)(14,42)(15,50)(16,58)(19)(20,27)(21,35)

(22,43)(23,51)(24,59)(28)(29,36)(30,44)(31,52)(32,60)(37)
(38,45)(39,53)(40,61)(46)(47,54)(48,62)(55)(56,63)(64).

Due to symmetric topology the difference between the
boxes R32;96 (Figure 9c) and R−1

32;96 (Figure 7d) con-
sists only in the use of the controlling-vector compo-
nents V1, V2,...,V6. Between the boxes P64;192 (Figure 9e)
and R−1

64;192 (Figure 9f) we have analogous difference.
Due to symmetric topology the modifications RV , where
V = (V1, V2, ...V6), and RV ′ , where V ′ = (V6, V5..., V1)
are mutually inverse. Such property is a core one for the

design of the switchable COS boxes R
(V,e)
64;192 and R

(V,e)
32;96.

Thus, reversing the order of the use of the components V1,
V2,...,Vs in arbitrary symmetric COS box one can define
switching between two mutually inverse boxes Rn;m and
R−1

n;m.

The box R
(V,e)
32;96 can be constructed using very sim-

ple transposition box P
(e)
96;1 implemented as some single-

layer CP box comprising three parallel single-layer boxes
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Table 6: Theoretic values of the probability Pr(∆Y
t /∆X

1 , ∆V
0 ) for the S64;192-box

t p t p t p t p
1 1.6 · 10−2 17 3.5 · 10−2 33 6.6 · 10−4 49 2.3 · 10−8

2 3.1 · 10−2 18 3.1 · 10−2 34 4.4 · 10−4 50 8.6 · 10−9

3 4 · 10−2 19 2.7 · 10−2 35 2.8 · 10−4 51 3 · 10−9

4 4.9 · 10−2 20 2.3 · 10−2 36 1.8 · 10−4 52 1 · 10−9

5 5.4 · 10−2 21 1.9 · 10−2 37 1.1 · 10−4 53 3.1 · 10−10

6 5.9 · 10−2 22 1.96 · 10−2 38 6.6 · 10−5 54 8.8 · 10−11

7 6.1 · 10−2 23 1.3 · 10−2 39 3.8 · 10−5 55 2.3 · 10−11

8 6.2 · 10−2 24 1.1 · 10−2 40 2.1 · 10−5 56 5.6 · 10−12

9 6.2 · 10−2 25 8.4 · 10−3 41 1.2 · 10−5 57 1.2 · 10−12

10 6.1 · 10−2 26 6.5 · 10−3 42 6.2 · 10−6 58 2.3 · 10−13

11 5.9 · 10−2 27 5 · 10−3 43 3.1 · 10−6 59 3.9 · 10−14

12 5.6 · 10−2 28 3.8 · 10−3 44 1.5 · 10−6 60 5.6 · 10−15

13 5.2 · 10−2 29 2.8 · 10−3 45 7.2 · 10−7 61 6.5 · 10−16

14 4.8 · 10−2 30 2 · 10−3 46 3.3 · 10−7 62 5.7 · 10−17

15 4.4 · 10−2 31 1.4 · 10−3 47 1.4 · 10−7 63 3.5 · 10−18

16 4 · 10−2 32 9.8 · 10−4 48 5.9 · 10−8 64 1.1 · 10−19

P
(e)
2×16;1 (Figure 10a). Input of each P

(e)
2×16;1-box is divided

into 16-bit left and 16-bit right inputs. The box P
(e)
2×16;1

is a set of 16 parallel P
(e)
2;1 -boxes controlled with the same

bit e. The right (left) input (output) of 16 parallel boxes

P
(e)
2;1 compose the right (left) 16-bit input (output) of the

box P
(e)
2×16;1. Thus, each of three boxes P

(e)
2×16;1 performs

e-dependent swapping of the respective pair of the 16-bit
components of the controlling vector V . For example,

P
(0)
2×16;1(V1, V6) = (V1, V6) and P

(1)
2×16;1(V1, V6) = (V6, V1).

Let the input vector of the box P
(e)
96;1 be (V1, V2, ...V6).

Then at the output of P
(e)
96;1 we have V ′ = (V1, V2, ..., V6),

if e = 0, or V ′ = (V6, V5, ..., V1), if e = 1. Structure of the

switchable CP box P
(V,e)
32;96 is shown in Figure 10b.

The switchable CP box R
(V,e)
64;192 can be constructed

with the use of transposition box P
(e)
192;1 that is imple-

mented as three parallel single-layer boxes P
(e)
2×32;1 (Fig-

ure 10c). Each P
(e)
2×32;1-box is a set of 32 parallel P

(e)
2;1 -

boxes all of which are controlled with the bit e. The
structure of the R

(V,e)
64;192-box is shown in Figure 10d.

Use of the single-layer box to perform swapping com-
ponents of the controlling vector V does not introduce
essential additional time delay. Maximal introduced de-
lay is t⊕ (time delay of the XOR operation). If V is set
beforehand, then no additional delay is introduced.

Analogously to the construction of the R-type COS
boxes one can construct different variants of the the
switchable COS boxes S

(V,e)
32;96 and S

(V,e)
64;192. For this purpose

one can use the S2;1-involutions described, for example,
by one of the following pairs of BFs3 #17, #2, and #20
(see Table 2 and Figure 5).

In the design of switchable COS boxes for construct-
ing the boxes R8;12 and S8;12,one can use also elementary

boxes R2;1 and S2;1 that are not involutions. In this case
the boxes R−1

8;12 and S−1
8;12 should be constructed using the

respective inverses R−1
2;1 and S−1

2;1. Thus, we have large
number of the potential variants of the switchable COS
boxes appropriate to cryptographic applications. There
are still more possibilities while designing switchable COS
boxes combining different types of the F2;1-boxes. Below
we shall consider the application of the switchable COS
boxes in the design of the ciphers with simple key schedul-
ing. The property of the controllability of the operations
used as cryptographic primitives provides possibility to
design different types of the iterative block cryptoschemes
with simple key scheduling, which can be implemented in
cheap hardware. The property of the switchability al-
lows avoiding the weak keys while using the simple key
scheduling.

4.2 Ciphers with Simple Key Scheduling

A number of the hardware-oriented DDP-based ciphers
with simple key scheduling are presented in [5]. Using
the respective COS boxes instead of the CP boxes in that
ciphers one can reduce the number of rounds, however the
problem of the weak keys, which is connected with the use
of the simple key scheduling, remains unsolved. Below we
represent ciphers SCOS-1, SCOS-2, and SCOS-3 as ex-
amples of the use of the switchable COS boxes in order to
avoid weak keys and thwart slide attacks based on chosen
structure of the key. If the simple key scheduling is used,
then one can use equal subkeys and all encryption rounds
will define the same substitution providing homogeneity
of the encryption procedure, i.e. prerequisites for some
successful slide attack [1, 2]. The switchable operation in
the ciphers SCOS-1, SCOS-2, and SCOS-3 are used in a
way preventing possibility to define homogeneity of the
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Table 7: Distribution of the bits of the controlling data subblock

V1 w7 w8 w1 w2 w16 w15 w10 l9 w5 w6 w3 w4 w11 w12 w13 w14

V2 w9 w10 w11 w12 w1 w2 w7 w8 w13 w14 w15 w16 w5 w6 w3 w4

V3 w13 w14 w15 w16 w5 w6 w3 w4 w1 w2 w7 w8 w9 w10 w11 w12

V4 w21 w22 w29 w30 w25 w26 w23 w24 w31 w32 w27 w28 w17 w18 w19 w20

V5 w31 w32 w27 w28 w17 w18 w19 w20 w29 w30 w25 w26 w21 w22 w23 w24

V6 w19 w20 w23 w24 w27 w28 w29 w30 w21 w22 w17 w18 w32 w31 w25 w26

encryption procedure by choosing certain types of keys.
Figure 11 presents round encryption function of SCOS-

1. The 32-bit round subkeys are denoted as Kr, Gr, and
Tr. Two input data subblocks A and B are of the 32-

bit length. The operational boxes S
(e)
32;96, R

(e)
32;96, and

P
(e)
2×32;1 have been specified in Section 4.1. The exten-

sion box E used to form the controlling vector of the
corresponding operations is described by Table 7, where
bits wi correspond to vector W = (w1, w2, ..., w32) that
is input of the E-box and the output vector is V =
(V1, V2, ..., V6). For example, in line with Table 7 we have
V1 = (w7, w8, w1, w2, w16, w15, w10, w9, w5, w6, w3, w4,
w11, w12, w13, w14). The extension box E has been con-
structed in accordance with the following criteria:

1) Let X be the input n-bit vector of one of the boxes

R
(e)
32;96 and S

(e)
32;96. Then for all W and i the bit xi

should be permuted depending on six different bits of
W .

2) For all i the bit wi should define exactly three bits of
V .

The first criterion provides that each output of the
switchable COS box is some BF in µ = 63 variables,
where 32 variables are the bits of the current trans-
formed data subblock and 31 variables are 31 bits of the
current controlling data subblock. The second-type ex-
tension box E′ used in SCOS-1 is specified as follows:
E′(W ) = E(W>>>16). The box E′ also satisfies criteria
1 and 2.

The generalized encryption procedure is the following
one:

1) Perform initial transformation: A := A ⊕ G0 and
B := B ⊕ T0.

2) For rounds r = 1 to 8 do {Perform the round trans-
formation and swap data subblocks}.

3) Swap data subblocks and perform final transforma-
tion: A := A ⊕ G9 and B := B ⊕ T9.

The cipher SCOS-1 uses the 128-bit key Q =
(Q1, Q2, Q3, Q4) represented as concatenation of four 32-
bit keys. The key scheduling and specification of the
switching bits are presented in Table 8. The cipher SCOS-
1 is oriented to cheap hardware implementation. An inter-
esting peculiarity of this cryptoscheme is the high paral-

lelism of the computations. Indeed, the operations S
(e1)
32;96

and R
(e2)
32;96 are performed in parallel and then the opera-

tions S
(e3)
32;96 and R

(e4)
32;96 are performed also in parallel.

The COS-box operations can be easily embedded in mi-
crocontrollers and general purpose CPUs and used while
designing fast firmware and software encryption systems.
Figure 12 shows round functions of the firmware-suitable
COS-based ciphers SCOS-2 (a) and SCOS-3 (b) working
with the 128-bit key Q = (Q1, Q2, Q3, Q4). The general-
ized encryption scheme of the both ciphers is presented
in Figure 12(c). The final transformation in SCOS-2
is performed as swapping subblocks and performing two
XOR operations: A := A ⊕ G13 and B := B ⊕ T13. In
SCOS-3 the final transformation is performed as follows:
A := A−32 G13 and B := B +32 T13. Table 9 presents the
key scheduling and specification of the switching bits for
SCOS-2 and SCOS-3 (both ciphers use the identical key
scheduling for e = 0).

4.3 Estimate of the Hardware Implemen-

tation and Security

While the FPGA implementation of the cipher SCOS-1
oriented to hardware the consumption of the logical cells
is independent of type of the boxes R2;1 and S2;1 used
as elementary building blocks for constructing the boxes

R
(e)
32;96 and S

(e)
32;96. While the VLSI implementation the

critical path and required number of nand-gates depend
on the type of the elementary building blocks, however
in all cases the implementation cost and the depth of the
critical path are comparatively small.

The time delay corresponding to one active layer of the

boxes R
(e)
32;96 and S

(e)
32;96 equals from t⊕ to 2t⊕, where t⊕

is the time delay of the XOR operation. Time delay of
the switchable operational boxes used in the described ci-
phers can be estimated as from 6t⊕ to 12t⊕ (we consider
six-layer COS boxes). The critical path of one round of
the cipher SCOS-1 equals from 15t⊕ to 27t⊕. The criti-
cal path of eight rounds of SCOS-1 equals from 122t⊕ to
218t⊕ (see Table 11).

Conservative estimate shows that implementation of

the boxes R
(e)
32;96 and S

(e)
32;96 takes about from 800 to 1000

nand-gates. The last figures define the implementation
cost of the additional instruction of some hypothetical
microcontroller while implementing the ciphers SCOS-2
and SCOS-3 in firmware.

One round of the hardware-oriented ciphers SCOS-
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Table 8: SCOS-1: specification of the switching bits and round subkeys

Round e = 0 e = 1 e = 0 e = 1
r Kr Gr Tr Kr Gr Tr e1 e2 e3 e4 e′ e1 e2 e3 e4 e′

0 - Q2 Q1 - Q1 Q4 - - - - - - - - - -
1 Q1 Q2 Q3 Q1 Q3 Q2 1 0 1 0 0 0 0 1 1 0
2 Q4 Q1 Q2 Q2 Q4 Q1 0 1 1 1 1 1 1 1 1 0
3 Q3 Q4 Q1 Q4 Q1 Q3 0 0 0 0 0 0 0 1 0 1
4 Q2 Q3 Q4 Q3 Q2 Q1 1 0 1 1 0 0 0 0 1 0
5 Q3 Q1 Q2 Q2 Q4 Q3 1 1 1 0 1 0 1 0 0 1
6 Q4 Q3 Q1 Q3 Q1 Q4 1 0 0 0 0 1 0 1 0 1
7 Q2 Q1 Q4 Q4 Q2 Q1 0 1 0 1 1 1 1 0 1 0
8 Q1 Q2 Q3 Q1 Q3 Q2 1 1 0 0 1 0 0 0 0 1
9 - Q1 Q4 - Q2 Q1 - - - - - - - - - -
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procedure
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Table 9: SCOS-2 and SCOS-3: Specification of the switching bits and round subkeys (final transformation is denoted
as r = 13)

e = 0 e = 1 e = 1 e = 0 e = 1
r SCOS-2(3) SCOS-2 SCOS-3

Gr Tr Gr Tr Gr Tr e1 e2 e′ e1 e2 e′

1 Q1 Q2 Q2 Q3 Q2 Q3 1 0 1 0 1 1
2 Q3 Q4 Q1 Q4 Q4 Q1 0 0 0 1 0 0
3 Q3 Q2 Q3 Q2 Q2 Q3 1 1 1 0 0 0
4 Q4 Q1 Q4 Q1 Q1 Q4 0 1 0 1 0 1
5 Q4 Q3 Q3 Q1 Q1 Q3 1 0 1 1 1 0
6 Q1 Q2 Q4 Q2 Q2 Q4 1 1 1 0 1 0
7 Q4 Q3 Q4 Q3 Q3 Q4 0 1 0 0 0 0
8 Q4 Q2 Q1 Q2 Q2 Q1 0 0 0 1 0 0
9 Q3 Q1 Q4 Q3 Q3 Q4 1 0 1 0 1 1
10 Q4 Q1 Q4 Q1 Q1 Q4 1 1 1 0 0 0
11 Q3 Q2 Q3 Q2 Q2 Q3 1 0 1 1 1 1
12 Q1 Q4 Q3 Q4 Q4 Q3 0 1 0 1 0 0
13 Q2 Q3 Q1 Q2 Q1 Q2 - - - - - -

1 can be implemented using about from 3,600 to 4,400
gates, respectively. In the case of the implementation
hardware architecture described in [7] all rounds of the ci-
phers are implemented. For full round ciphers we have the
implementation cost from 28,800 to 35,200 nand-gates.
To the last figures one should add some gate count cor-
responding to the key scheduling, 128-bit register for key
and to two 64-bit registers for input and output data.
This makes about 1,500 additional nand-gates. The whole
implementation cost of SCOS-1 is presented in Table 11
which presents hardware evaluation comparing different
ciphers (figures marked with ∗ relates to [7]).

One can see that the fastest implementation corre-
sponds to 128-bit cipher Rijndael (performance z ≈ 1.35
bit/t⊕) and the cheapest one corresponds to SCOS-1
(470 . . .580 gate/bit). The SCOS-1 (z ≈ 0.30 . . . 0.53
bit/t⊕) is faster than RC6 (z ≈ 0.15 bit/t⊕), Triple-DES
(z ≈ 0.29 bit/t⊕), and Twofish (z ≈ 0.27 bit/t⊕). It
is remarkable that SCOS-1 is cheaper than DES (≈ 840
gate/bit).Hardware implementation efficacy of the SCOS-
1 is explained by designing it at bit level.

Our preliminary security estimations for SCOS-1,
SCOS-2, and SCOS-3 show that all of them are indistin-
guishable from a random cipher with differential, linear
and other attacks. The most useful linear and differential
characteristics (DCs) correspond to the case of few ac-
tive bits, the differential attack (DA) being more efficient
than linear one. The last corresponds to the results on
analysis of different DDP-based ciphers presented in [5].
Results of our rough security estimation against DA are
presented in Table 10, where R is the full number of en-

cryption rounds and p(r) = Pr
(

∆
r
→ ∆′

)

is the proba-

bility that the ∆ input difference transforms into the ∆′

output difference when passing through r rounds.

For the considered ciphers the most efficient is the

Table 10: Contribution of the two-round DC to the prob-

ability p(R) = Pr
(

(∆A
0 , ∆B

1 )
R
→ (∆A

0 , ∆B
1 )′

)

Cipher R Difference p(2) p(R)

SCOS-1 8 (∆A
0 , ∆B

1 ) < 2−28 < 2−112

SCOS-2 12 (∆A
0 , ∆B

1 ) < 2−16 < 2−96

SCOS-3 12 (∆A
0 , ∆B

1 ) < 2−13 < 2−78

two-round iterative DC with the difference (∆A
0 , ∆B

1 ),
where indices indicates the number of active bits.
Its contribution to the to probability p(R) =

Pr
(

(∆A
0 , ∆B

1 )
R
→ (∆A

0 , ∆B
1 )′

)

is less than 2−78. Note that

∆B
1 denotes arbitrary difference with one active bit in the

right data subblock, i.e. ∆B
1 denotes a batch of the one bit

differences. The results of the DA security estimate of the
described above ciphers show that they are indistinguish-
able from a random cipher with DA using the considered
iterative DC (see Table 10). Presented ciphers are only
the illustrations of the design peculiarities connected with
the use of the COS box operations.

5 Conclusion

This research has shown that previously proposed DDPs
are only a particular representatives of the wide class
of DDO performed with the COS boxes. Furthermore,
there exist many different types of the elementary build-
ing blocks F2;1 providing construction of the COS boxes
that are more attractive as cryptographic primitive than
the CP boxes. Using variety of the proposed DDP-based
cryptoschemes [5, 11] and replacing the CP boxes by
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Table 11: Hardware evaluation of SCOS-1 against some well-known ciphers

Cipher Gate count Critical path, t⊕

key schedule encryption key setup, encryption

SCOS-1 500 29,800...
...36,200 - 122 ...

... 210

DES 12, 000∗ 42, 000∗ - 80
Triple-DES 23, 000∗ 120, 000∗ - 220
Rijndael 94, 000∗ 520, 000∗ 83 95

RC6 900, 000∗ 740, 000∗ 3000 880
Twofish 230, 000∗ 200, 000∗ 23 470

the corresponding COS boxes one can construct differ-
ent block ciphers that allows one to obtain the required
avalanche, correlation-immunity, and propagation proper-
ties with fewer number of rounds. This leads to decrease
of the hardware implementation cost and to the perfor-
mance increase. However, in certain applications the CP
boxes are preferable, for example, in the case of imple-
menting a new CPU instruction suitable to perform some
DDO [5]. Different types of new controlled operations can
be constructed (1) using the fixed topology and different
types of the boxes F2;1, (2) using the fixed type of the
elementary COS boxes and different topologies, and (3)
mixing different types of the COS boxes in different used
topologies.

We have proposed some specific topologies of the COS
boxes and several COS-based block ciphers, however they
are presumably only implementation examples. Using
methodology [5] of the block cipher design based on the
use of the controlled operations the reader can easy con-
struct many other cryptosystems having high security
against known attacks. While using the key preprocessing
one can efficiently apply the COS boxes in order to con-
struct strong key scheduling oriented to minimizing the
consumption of the additional hardware resources. The
COS boxes are also very interesting for the use in the hash
function design.

While using the simple key scheduling in the block ci-
pher design one can apply the switchable COS boxes that
should provide (1) avoiding the weak keys and (2) secu-
rity against slide attacks based on chosen key. However,
justification of such approach to the design of the ciphers
with simple key scheduling require further investigation
regarding different other security aspects. Our results give
only the initial bar to undertake further research in this
direction.

Thus, this paper introduces a class of new controlled
primitives enriching the DDO-based design of fast ciphers
and diversifies the class of the switchable controlled oper-
ations.
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