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Abstract

It is a very desirable property of an identity-based sig-
nature to have a tight security reduction. According to
our known knowledge, there are few results on design-
ing identity-based signature schemes with tight security
reduction. Inspired by the work of David Galindo et
al. [13] and based on the signatures proposed by Sven
Schäge [36, 37], we construct identity-based signatures
which are existentially unforgeable under adaptively cho-
sen message and identity attacks and whose security is
also tightly related to Strong Diffie-Hellman assumption
in the standard model.
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Signature; q-Strong Diffie-Hellman Problem; Standard
Model

1 Introduction

One focus of modern cryptography has been the construc-
tion of identity-based signature scheme that can be rigor-
ously proven secure based on specific computational as-
sumptions.

A number of identity-based signature (IBS)
schemes [7–9, 16, 17, 21, 26, 28, 30, 32, 34, 40–43] have
been devised since the concept of identity-based cryp-
tography was proposed by Shamir [39] in 1984. At
present, there are two known generic constructions of
IBS. The first is due to Bellare et al. [29]. They show
that a large number of previously proposed schemes are
instances of their generic construction. The other generic
construction is due to Kurosawa and Heng [15]. The
construction of Kurosawa and Heng requires an efficient
zero-knowledge protocol for proof of knowledge of a
signature, which makes their construction applicable to
only a few schemes such as RSA-FDH and BLS [22].

1.1 Our Contribution

In this work, we ask the following question: how does
one construct identity-based signature with tight security
proof in the standard model? The security of an IBS
scheme is generally confirmed by a security proof which
typically describes a reduction from some hard compu-
tational problem to breaking a defined security property
of the IBS scheme. The reduction for the IBS scheme
is considered as tight when this success probability of an
adversary breaking the IBS is roughly equal to the prob-
ability of solving the underlying hard problem in roughly
the same amount of time. Tightness of security reduction
gives explicit bound on the probability that adversary suc-
cessfully forges a signature for an IBS scheme as a func-
tion of its expended resources, and affects the efficiency of
the IBS scheme when instantiated in practice: A tighter
reduction allows to securely use smaller parameters, e.g.,
shorter moduli, a smaller group size. Therefore it is a very
desirable property of an IBS to have a tight security reduc-
tion. According to our known knowledge, there are few
results on designing IBS schemes with tight security re-
ductions. In this paper, we study the problem above and
our work stems from the results of Sven Schäge [36, 37]
and Galindo et al. [13]. In [36, 37], Schäge presented
combing function based signature and chameleon hash
function based signature which are strongly existential
unforgeability under adaptively chosen message attack
in standard model and which have tight security proof.
In [13], Galindo et al. gave a Schnorr-like identity-based
signature which is existentially unforgeable under adap-
tively chosen message and identity attack in random or-
acle model. Galindo et al.’s work is different from that
of Bellare et al. [29], is also different from that of Kuro-
sawa and Heng [15]. Inspired by the work of Galindo et
al., we construct four identity-based schemes with tight
security reduction from combing function based signature
and chameleon hash function based signature [36,37]. Ac-
cording to the type of parings used in our four schemes,
we have divided them into two types and denoted them as
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TYPE I and TYPE II, respectively. TYPE I is based the
fact that there is efficiently computable homomorphism
on the bilinear groups (G1,G2), and TYPE II is just the
opposite. According to the efficiency and the security, we
compare our IBS scheme with the known IBS schemes in
Table 1.

1.2 Related Works

It is a very desirable property of an IBS scheme to have
a tight security reduction. Therefore, providing new se-
curity proofs for cryptosystems that were already well
known to be secure in the random oracle model or for
some of their variants ( e.g., [2, 3, 10, 11, 27, 36, 37]) and
constructing new schemes ( e.g., [5, 6, 14, 18, 19, 23–25])
that provide tight security reductions have been a new
research focus in in the area of provable security. In addi-
tion, to verify whether there is a tight security proof for
the Schnorr signature scheme, cryptographers have given
considerable research efforts, e.g., [4, 31,38].

However, the research on tight security reduction for
IBS schemes has made little progress. In fact, Hess and
Barreto et al. gave proofs under the Diffie-Hellman as-
sumption for their respective scheme through Pointcheval
and Stern’s forking lemma [35] which does not yield tight
security reductions. Chen et al. [7,8,21] gave proofs under
the Diffie-Hellman assumption for their schemes by “ID
reduction technique” from [1] which does not yield tight
security reductions. Bellare et al. [29] defined a frame-
work to provide security proofs for a large family of IBS
schemes. Unfortunately, their framework does not pro-
vide tight security bounds for the resulting family of IBS.
Kurosawa and Heng [15] showed a transformation from
any digital signature scheme satisfying certain condition
to an IBS scheme and gave security proof for the result-
ing IBS scheme. Although their security proof avoids the
use of the forking technique, their reduction is still quite
loose. Until today, there have few results on IBS schemes
with tight security reductions except that the scheme was
constructed by Libert et al. [20].

2 Preliminaries

2.1 Security Notion of Signature Scheme

A signature scheme is made up of three algorithms, Key-
Gen, Sign, and Verify, for generating keys, signing, and
verifying signatures, respectively.

The standard notion of security for a signature scheme
is called existential unforgeability under a chosen message
attack, which is defined using the following game between
a challenger C and an adversary A:

Setup. C runs the algorithm KeyGen of the signature
scheme and obtains both the public key PK and the
private key SK. The adversary A is given PK but
the private key SK is kept by the challenger.

Queries. Proceeding adaptively, A requests signatures
on at most qS messages of his choice m1, . . . ,mqS ∈
{0, 1}∗ under PK. C responds to each query with a
signature σi =Sign(SK,mi).

Forgery. The adversary outputs a pair (m∗, σ∗). The
adversary succeeds if the following hold true:

1) Verify(PK,m∗, σ∗)=accept.

2) m∗ is not any of m1, , . . . ,mqS .

We define AdvSigA to be the probability that A wins in
the above game, taken over the coin tosses made by A
and the challenger.

Definition 1. An adversary A (t, qS , ε)-breaks a signa-
ture scheme if A runs in time at most t and makes at most
qS signature queries in the above game, and AdvSigA is at
least ε. A signature scheme is (t, qS , ε)- existentially un-
forgeable under adaptively chosen message attacks if no
adversary (t, qS , ε)-breaks it.

We also consider a slightly stronger notion of security,
called strong existential unforgeability. The above game
can easily be extended to cover strongly existential un-
forgeability by changing the second requirement in the
forgery stage as follows.

Forgery. The adversary outputs a pair (m∗, σ∗). The
adversary succeeds if the following hold true:

1) Verify(PK,m∗, σ∗)=accept.

2) (m∗, σ∗) is not any of (m1, σ1), . . . (mqS , σqS ).

Definition 2. An adversary A (t, qS , ε)-breaks a signa-
ture scheme if A runs in time at most t and makes at
most qS signature queries in the modified game above, and
AdvSigA is at least ε. A signature scheme is (t, qS , ε)-
strongly existentially unforgeable under adaptively chosen
message attacks if no adversary (t, qS , ε)-breaks it.

2.2 Security Notion of Identity-Based
Signature Scheme

An identity-based signature scheme can be described as a
collection of the following four algorithms:

Setup. This algorithm is run by the “Private Key Gener-
ator” (PKG) on input a security parameter, and gen-
erates the public parameters params of the scheme
and a master secret. PKG publishes params and
keeps the master secret to itself.

Extract. Given an identity ID, the master secret and
params, this algorithm generates the private key dID
of ID. PGK will use this algorithm to generate private
keys for all entities participating in the scheme and
distribute the private keys to their respective owners
through a secure channel.
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Table 1: Scheme comparison

Scheme Reduction Type of Pairing Pairing Operation Security Assumption Random Oracles

KJ [32] Loose Type 1 3 CDH NO

BJ [20] Tight Type 1 2 one more CDH YES

RG [41] Tight Type 1 2 SDH NO

TYPE I Tight Type 1,2 2 SDH NO

TYPE II Tight Type 3 4 SDH NO

Sign. Given a message m, an identity ID, a private key
dID and params, this algorithm generates the signa-
ture σ of ID on m. The entity with identity ID will
use this algorithm for signing.

Verify. Given a signature σ, a message m, an identity
ID and params, this algorithm outputs accept if σ
is a valid signature on m for identity ID, and outputs
reject otherwise.

We recall here the security notion [20] for identity-
based signatures which is an extension of the usual notion
of existential unforgeability under chosen-message attacks
for signature and which is defined security for identity-
based signature schemes by the following game between
a challenger C and an adversary A:

Setup. C runs the algorithm Setup of the signature
scheme and obtains both the public parameters
params and the master secret SK. A is given params
but the master secret SK is kept by the challenger.

Queries. The adversary A adaptively makes a number
of different queries to the challenger.

1) Extraction query.Proceeding adaptively, A
requests extractions on at most qE identi-
ties of his choice ID1, . . ., IDqE ∈ {0, 1}∗.
C responds to each query with dIDi

=
Extract(param, SK, IDi).

2) Signature query.Proceeding adaptively, A re-
quests signatures on at most qS messages of his
choice (IDi1 ,m1), . . . , (IDiqS

,mqS ) ∈ {0, 1}∗ ×
{0, 1}∗. C responds to each query by run-
ning Extract(params, SK, IDij ) to obtain
the private key dIDij

of IDij , then running

σj=Sign(params, dIDij
, IDij ,mj), last for-

warding σj to the adversary A.

Forgery. The adversary outputs a tuple (ID∗, m∗,σ∗).
The adversary succeeds if the following hold true:

1) Verify(params, ID∗,m∗, σ∗)=accept.

2) ID∗ was not any of ID1, . . ., IDqE .

3) (ID∗,m∗) was not any of (IDi1 , m1), . . .,
(IDiqS

, mqS ).

We define AdvSigA to be the probability that A wins
in the above game, taken over the coin tosses made by A
and the challenger.

Definition 3. An adversary A (t, qE , qS , ε)-breaks an IBS
signature scheme if A runs in time at most t and makes
at most qS signature queries, qE extraction queries in
the above game, and AdvSigA is at least ε. A signa-
ture scheme is (t, qE , qS , ε)- existentially unforgeable un-
der adaptively chosen message and identity attacks if no
adversary (t, qE , qS , ε)-breaks it.

2.3 Bilinear Parings and Complexity As-
sumptions

We consider the mathematical preliminaries for construct-
ing and proving our signature schemes.

Let us consider three cyclic multiplicative group G1, G2

and GT of the same prime order p. Let g1 be a generator
of G1, g2 be a generator of G2. Let ê : G1 ×G2 → GT be
a bilinear pairing with the following properties:

Bilinearity: ê(ua, vb) = ê(u, v)ab for all u ∈ G1, v ∈ G2,
a, b ∈ Zp.

Non-degeneracy: There exists u ∈ G1, v ∈ G2 such
that ê(u, v) 6= 1.

Computability: There is an efficient algorithm to com-
pute ê(u, v) for all u ∈ G1, v ∈ G2.

Definition 4. Bilinear Groups. We say that (G1,G2)
are bilinear groups if there exists a group GT and a non-
degenerate bilinear pairing ê : G1 × G2 → GT , such that
the group order of G1,G2, and GT is a prime p, and the
bilinear map ê and the group operations in G1,G2, and
GT are all efficiently computable.

Galbraith, Paterson, and Smart [33] defined three types
of pairings:

– In Type 1, G1 = G2.

– In Type 2, G1 6= G2 but there exists an efficient
homomorphism ψ: G2→G1, while no efficient one
exists in the other direction.

– In Type 3, G1 6= G2 and no efficiently computable
homomorphism exist between G1 and G2, in either
direction.

Although Type 1 pairings were mostly used in the early-
age of pairing-based cryptography, they have been grad-
ually discarded in favor of Type 3 pairings.
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Definition 5. q-Strong Diffie-Hellman Problem (q-
SDH). Over bilinear groups (G1,G2), given as input a

q+ 3 tuple of elements (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 ) output

a pair (c, g
1/(x+c)
1 ) for some value c ∈ Zp \ {−x}, where

g1 is a generator of G1 and g2 is a generator of G2.

An algorithmA solves the q-SDH problem over bilinear
groups (G1, G2) with advantage ε if

SDHAdvq,A = Pr[A(g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 ) =

(c, g
1/(x+c)
1 )] ≥ ε

where the probability is over the random choice of gener-
ators g1 ∈ G1 and g2 ∈ G2, the random choice of x ∈ Z∗p,
and the random bits consumed by A.

Definition 6. Strong Diffie-Hellman Assumption
(SDH). We say that the (q, t, ε)-SDH assumption holds
over bilinear groups (G1,G2) if no t-time algorithm has
advantage at least ε in solving the q-SDH problem over
the bilinear groups (G1,G2).

2.4 Chameleon Hash Function and Com-
bining Function

In this section, we review the notions of chameleon hash
function and combining function from [36,37].

A chameleon hash function CH = (CHGen, CHEval,
CHColl) consists of three algorithms. The probabilistic
polynomial-time algorithm CHGen takes as input the se-
curity parameter k and outputs a secret key SKCH and a
public key PKCH. Given PKCH, a random r from a random-
ization space R and a message m from a message space
M, the algorithm CHEval outputs a chameleon hash value
c in the hash space C. Analogously, CHColl deterministi-
cally outputs, on input SKCH and (r,m,m′) ∈ R×M×M,
r′ ∈ R such that CHEval(PKCH,m, r)=CHEval(PKCH, m

′,
r′).

Definition 7. Collision-resistant chameleon hash
function. We say that CH is (ε, t)-collision-resistant if
no t-time algorithm, only given PKCH, outputs (r, r′,m,m′)
such that m 6= m′ and CHEval(PKCH, m, r) = CHEval(PKCH,
m′, r′) with probability at least ε, where the probability is
over the random choices of PKCH and the coin tosses of
algorithm.

For the convenience of writing, we write CH(r,m)
to denote CHEval(PKCH, r,m) and CH−1(r,m,m′) for
CHColl(SKCH, r,m,m

′) if the keys are obvious from the
context.

Definition 8. Combining Functions. Let Vk for k ∈
N be a collection of functions of the form z : R×M→ Z
with |Z| ≤ 2k. Let V = {Vk}k∈N . We say that V is
(t, ε, δ)-combining if for all attackers A there exist negli-
gible functions ε and δ and the following properties hold
for randomly picked z from Vk.

1) for all m ∈ M it holds that |R|=|Zm| where Zm is
defined as Zm = z(R,m). For all m ∈ M and all
t ∈ Z there exists an efficient algorithm z−1(t,m)
that, if t ∈ Zm, outputs the unique value r ∈ R such
that z(r,m) = t, and ⊥ otherwise.

2) for randomly picked t ∈ Z and r′ ∈ R, we have for
the maximal (over all m ∈ M) statistical distance
between r′ and z−1(t,m) that

MAX
m∈M

{1

2

∑
r∈R
|Pr[r′ = r]− Pr[z−1(t,m) = r]|} ≤ δ

3) for all r ∈ R, it holds for all t-time attackers A that
output (m,m′) such m 6= m′ and z(r,m) = z(r,m′)
with probability at most ε.

2.5 The SDH Signatures

The Boneh-Boyen (BB) signature [5, 6] is proven tightly
secure under a new flexible assumption, the q-Strong
Diffie Hellman (SDH) assumption and without random
oracle. Based on this work, Sven Schäge [36, 37] gives
combing function based signature (denoted as SCMB, SDH,
where CMB is the abbreviation of combing function) and
chameleon hash function based signature (denoted as
SCH, SDH), respectively.

For the combining signature SCMB, SDH and the
chameleon signature SCH, SDH, if the combing function
is (tcomb, εcomb, δcomb)-combining, where functions εcomb
and δcomb are negligible, and chameleon hash function is
collision-resistant, Sven Schäge [36,37] gave the following
result.

Proposition 1. The combining signature SCMB, SDH, and
the chameleon signature SCH, SDH are tightly secure against
strong existential forgeries under adaptively chosen mes-
sage attacks.

3 SCMB, SDH Based IBS

3.1 SCMB, SDH Based IBS over Bilinear
Groups with Efficiently Computable
Isomorphism

Let (G1,G2) be bilinear groups with group order |G1| =
|G2| = p for some prime p,ψ be an efficiently computable
isomorphism from G2 to G1, if G1 = G2, one could take ψ
to be the identity map. For the moment we assume that
the messages m to be signed are elements in Zp, but the
domain can be extended to all of {0, 1}∗ using (target)
collision resistant hashing.

Setup: Select five random generators a,b,c,g1∈ G1 and
g2 ∈ G2, and random integers x,y,z ∈ Z∗p. Then, the
bilinear map over bilinear groups (G1,G2) is taken
as ê : G1 × G2 → GT . Compute u = gx2 ∈ G2,
h1 = gxy1 ∈ G1, h2 = gy1 ∈ G1, f1 = gxz1 ∈ G1,
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f2 = gz1 ∈ G1. π : R × ID → Z is a com-
bining function, where we assume that Z ⊆ Zp,
R ⊆ Zp, ID is an identity space. Also compute
γa = ê(a, g2) ∈ GT ,γb = ê(b, g2) ∈ GT ,γc = ê(c, g2) ∈
GT . The public system parameters are the tu-
ple (a, b, c, g1, g2, h1, h2, f1, f2, u, γa, γb, γc, π, ê). The
master secret key is the triple (x, y, z).

Extraction: Given the secret key (x, y, z) and an iden-
tity ID ∈ ID, pick chooses a random value r ∈
R, a random value r0 ∈ Zp\{−x} and compute
τ = (abrcπ(r,ID))1/(x+r0) ∈ G1. Here, the inverse
1/(x + r0) is computed modulo p. The private key
corresponding ID is the pair (τ, r, r0).

Signature: Given a private key (τ, r, r0) correspond-
ing identity ID ∈ ID and a message m ∈ Zp.
Pick a random value k ∈ Zp and compute σ1=τ
((h1h

r0
2 )m(f1f

r0
2 ))k, σ2 = (ugr02 )k. The signature is

σ = (σ1, σ2, r, r0).

Verification: Given the public system parameters
(a, b, c, g1, g2, h1, h2, f1, f2, u, γa, γb, γc, π, ê), an iden-
tity ID ∈ ID, a message m ∈ Zp, and a signature
σ = (σ1, σ2, r, r0), verify that

ê(σ1, ug
r0
2 ) = γaγ

r
bγ

π(r,ID)
c ê((h1h

r0
2 )m(f1f

r0
2 ), σ2)

If the equality holds the result is valid; otherwise the
result is invalid.

On the IBS scheme above, we have the following result.

Theorem 1. Suppose the SCMB, SDH signature is (t′, qE +
qS , ε

′)-secure against strongly existential forgery under an
adaptively chosen message attack. Then the identity-based
signature scheme above is (t, qE , qS , ε)-secure against ex-
istential forgery under an adaptively chosen massage and
identity attack provided that qS + qE ≤ q, ε′ ≥ ε− 2qS/p,
and t′ = t+O((6qS+4)T ), where T is the maximum time
for an exponentiation in G1, G2, and Zp.

Due to limited space, we omit the proof of Theorem 1.
According to Theorem 1 and Proposition 1, for the

SCMB, SDH based identity-based signature, we get the fol-
lowing result.

Corollary 1. Suppose SDH assumption holds in bilin-
ear groups (G1,G2). Then the identity-based signature
above is tightly secure against existential forgeries under
adaptively chosen massage and identity attacks in stan-
dard model.

3.2 SCMB, SDH Based IBS over Bilinear
Groups without Efficiently Com-
putable Isomorphism

Let (G1,G2) be bilinear groups where |G1| = |G2| = p
for some prime p, and there are no efficiently computable
homomorphisms between G1 and G2. For the moment we
assume that the messages m to be signed are elements in

Zp, but the domain can be extended to all of {0, 1}∗ using
(target) collision resistant hashing.

1) Setup: Select five random generators a, b, c, g1 ∈ G1

and g2 ∈ G2, and random integers x, y, z ∈ Z∗p.
Then, the bilinear map over bilinear groups (G1,G2)
is taken as ê : G1×G2 → GT . Compute u = gx2 ∈ G2,
h1 = gy1 ∈ G1, f1 = gz1 ∈ G1. π : R × ID → Z is a
combining function, where we assume that Z ⊆ Zp,
R ⊆ Zp, ID is an identity space. Also compute
γa = ê(a, g2) ∈ GT ,γb = ê(b, g2) ∈ GT ,γc = ê(c, g2) ∈
GT . The public system parameters are the tuple
(a, b, c, g1, g2, h1, f1, u, γa, γb, γc, π, ê). The master se-
cret key is the triple (x, y, z).

2) Extraction: Given the secret key (x, y, z) and an
identity ID ∈ ID, pick chooses a random value
r ∈ R, a random value r0 ∈ Zp\{−x} and compute
τ = (abrcπ(r,ID))1/(x+r0) ∈ G1. Here, the inverse
1/(x + r0) is computed modulo p. The private key
corresponding ID is the pair (τ, r, r0).

3) Signature: Given a private key (τ, r, r0) correspond-
ing identity ID ∈ ID and a message m ∈ Zp, pick a
random value k ∈ Zp and compute σ1 = τ(hm1 f1)k,
σ2 = (ugr02 )k, σ3 = gk1 . The signature is σ =
(σ1, σ2, σ3, r, r0).

4) Verification: Given the public system parameters
(a, b, c, g1, g2,h1, f1, u, γa, γb, γc, π, ê), an identity
ID ∈ ID, a message m ∈ Zp, and a signature
σ = (σ1, σ2, σ3, r, r0), verify that

ê(σ1, ug
r0
2 ) = γaγ

r
bγ

π(r,ID)
c ê(hm1 f1, σ2)

ê(σ3, ug
r0
2 ) = ê(g1, σ2).

If the equality holds the result is valid; otherwise the
result is invalid.

On the IBS scheme above, we have the following result.

Theorem 2. Suppose the SCMB, SDH signature is (t′, qE +
qS , ε

′)-secure against strongly existential forgery under an
adaptively chosen message attack. Then the identity-based
signature scheme above is (t, qE , qS , ε)-secure against ex-
istential forgery under an adaptively chosen massage and
identity attack provided that

qS + qE ≤ q, ε′ ≥ ε− 2qS/p, and t′ = t+O((5qS + 4)T ),

where T is the maximum time for an exponentiation in
G1, G2, and Zp.

Due to limited space, we omit the proof of Theorem 2.
According to Theorem 2 and Proposition 1, for the

SCMB, SDH based identity-based signature, we get the fol-
lowing result.

Corollary 2. Suppose SDH assumption holds in bilin-
ear groups (G1,G2). Then the identity-based signature
above is tightly secure against existential forgeries under
adaptively chosen massage and identity attacks in stan-
dard model.
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4 SCH, SDH Based IBS

4.1 Construction over Bilinear Groups
with Efficiently Computable Isomor-
phism

Let (G1,G2) be bilinear groups where |G1| = |G2| = p
for some prime p, ψ be an efficiently computable isomor-
phism from G2 to G1, if G1 = G2, one could take ψ to
be the identity map. For the moment we assume that
the messages m to be signed are elements in Zp, but the
domain can be extended to all of {0, 1}∗ using (target)
collision resistant hashing.

1) Setup: Select random generators a, b, g1 ∈ G1 and
g2 ∈ G2, and random integers x, y, z ∈ Z∗p. Then, the
bilinear map over bilinear groups (G1,G2) is taken
as ê : G1 × G2 → GT . Compute u = gx2 ∈ G2, h1 =
gxy1 ∈ G1, h2 = gy1 ∈ G1, f1 = gxz1 ∈ G1, f2 = gz1 ∈
G1. CH is a chameleon hash function and its public
key is PKCH. Also compute γa = ê(a, g2) ∈ GT ,γb =
ê(b, g2) ∈ GT . The public system parameters are the
tuple (a, b, g2, h1, h2, f1, f2, u, γa, γb, CH, PKCH, ê). The
master secret key is the triple (x, y, z).

2) Extraction: Given the master secret key (x, y, z)
and an identity ID ∈ ID, pick chooses a random
r ∈ R, a random t ∈ Zp\{−x} and compute τ =
(abCH(r,ID))1/(x+t) ∈ G1. Here, the inverse 1/(x+t) is
computed modulo p. The private key corresponding
ID is the pair (τ, r, t).

3) Signature: Given a private key (τ, r, t) correspond-
ing identity ID and a message m ∈ Zp, pick a ran-
dom k ∈ Zp and compute σ1 = τ((h1h

t
2)m(f1f

t
2))k,

σ2 = (ugt2)k. The signature is σ = (σ1, σ2, r, t).

4) Verification: Given the public system parameters
(a, b, c, g1, g2, h1, h2, f1, f2, u, γa, γb, γc, π, ê), an iden-
tity ID, a message m ∈ Zp, and a signature σ =
(σ1, σ2, r, t), verify that

ê(σ1, ug
t
2) = γaγ

CH(r,ID)
b ê((h1h

t
2)m(f1f

t
2), σ2) (1)

If the equality holds the result is valid; otherwise the
result is invalid.

On the IBS scheme above, we have the following result.

Theorem 3. Suppose the SCH, SDH signature is (t′, qE +
qS , ε

′)-secure against strongly existential forgery under an
adaptively chosen message attack. Then the identity-based
signature scheme above is (t, qE , qS , ε)-secure against ex-
istential forgery under an adaptively chosen massage and
identity attack provided that qS+qE ≤ q, ε′ ≥ ε−2qS/(p−
1), and t′ = t+O((6qS + 6)T ), where T is the maximum
time for an exponentiation in G1, G2, and Zp.

Due to limited space, we omit the proof of Theorem 3.
According to Theorem 3 and Proposition 1, for the

SCH, SDH based identity-based signature, we get the follow-
ing result.

Corollary 3. Suppose SDH assumption holds in bilin-
ear groups (G1,G2). Then the identity-based signature
above is tightly secure against existential forgeries under
adaptively chosen massage and identity attacks in stan-
dard model.

4.2 Construction over Bilinear Groups
without Efficiently Computable Iso-
morphism

Let (G1,G2) be bilinear groups where |G1| = |G2| = p
for some prime p, and there are no efficiently computable
homomorphisms between G1 and G2. For the moment we
assume that the messages m to be signed are elements in
Zp, but the domain can be extended to all of {0, 1}∗ using
(target) collision resistant hashing.

1) Setup: Select random generators a, b, g1 ∈ G1 and
g2 ∈ G2, and random integers x, y, z ∈ Z∗p. Then,
the bilinear map over bilinear groups (G1,G2) is
taken as ê : G1 × G2 → GT . Compute u = gx2 ∈
G2, h1 = gy1 ∈ G1, f1 = gz1 ∈ G1. CH is a
chameleon hash function and its public key is PKCH.
Also compute γa = ê(a, g2) ∈ GT ,γb = ê(b, g2) ∈
GT . The public system parameters are the tuple
(a, b, g2, h1, f1, u, γa, γb, CH, PKCH, ê). The master se-
cret key is the triple (x, y, z).

2) Extraction: Given the master secret key (x, y, z)
and an identity ID ∈ ID, pick chooses a random
r ∈ R, a random t ∈ Zp\{−x} and compute τ =
(abCH(r,ID))1/(x+t) ∈ G1. Here, the inverse 1/(x+t) is
computed modulo p. The private key corresponding
ID is the pair (τ, r, t).

3) Signature: Given a private key (τ, r, t) correspond-
ing identity ID and a message m ∈ Zp, pick a ran-
dom k ∈ Zp and compute σ1 = τ(hm1 f1)k, σ2 =
(ugt2)k,σ3 = gk1 . The signature is σ = (σ1, σ2, σ3, r, t).

4) Verification: Given the public system parame-
ters (a, b, c, g1, g2, h1, f1, u, γa,γb,γc, π, ê), an iden-
tity ID, a message m ∈ Zp, and a signature σ =
(σ1, σ2, σ3, r, t), verify that

ê(σ1, ug
t
2) = γaγ

CH(r,ID)
b ê(hm1 f1, σ2)

ê(σ3, ug
t
2) = ê(g1, σ2)

If the equality holds the result is valid; otherwise the
result is invalid.

On the IBS scheme above, we have the following result.

Theorem 4. Suppose the SCH, SDH signature is (t′, qE +
qS , ε

′)-secure against strongly existential forgery under an
adaptively chosen message attack. Then the identity-based
signature scheme above is (t, qE , qS , ε)-secure against ex-
istential forgery under an adaptively chosen massage and
identity attack provided that qS+qE ≤ q, ε′ ≥ ε−2qS/(p−
1), and t′ = t+O((5qS + 4)T ), where T is the maximum
time for an exponentiation in G1, G2, and Zp.
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Due to limited space, we omit the proof of Theorem 4.

According to Theorem 4 and Proposition 1, for the
SCH, SDH based identity-based signature, we get the follow-
ing result.

Corollary 4. Suppose SDH assumption holds in bilin-
ear groups (G1,G2). Then the identity-based signature
above is tightly secure against existential forgeries under
adaptively chosen massage and identity attacks in stan-
dard model.

5 Conclusion

In this paper, according to the fact whether bilinear
groups (G1,G2) have an efficiently computable homomor-
phism, we give two IBS schemes, which are existentially
unforgeable under adaptively chosen message and identity
attacks and whose security is tightly related to q-SDH in
the standard model, based on SCMB, SDH proposed by Sven
Schäge [36,37]. And then, we apply the idea constructing
IBS schemes above to the SCH, SDH by Sven Schäge [36,37],
we also get IBS schemes which are existentially unforge-
able under adaptively chosen message and identity attacks
and whose security is also tightly related to q-SDH in the
standard model.
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