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Abstract

In order to maximize resource utilization as well as provid-
ing trust management in P2P computing environments,
we propose a novel framework - Trust-Incentive Service
Management (TIM). Having child model, club model,
bid model and trust model, TIM is constructed based on
role based price strategy. In this mechanism, providers
set the price according to demand and supply, and con-
sumers maximize the surplus upon budget and deadline.
A weighted voting scheme is also proposed to secure the
P2P system by declining the join request from malicious
peers. TIM is scalable and efficient in that: (1) it is com-
pletely distributed without a central server; (2) it dynam-
ically manages the price and service by integrating valu-
ables of pricing, trust, and incentive. A TIM prototype
has been successfully implemented in a real P2P system,
CROWN. We evaluate the proposed approach through
comprehensive experiments and achieve improved results
in service allocation efficiency, system completion time,
and aggregated resource utilization.
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1 Introduction

The emerging peer-to-peer model has recently gained sig-
nificant attention due to its high potential of sharing huge
amount of resources among millions of networked users,
where each peer acts as both a resource provider and a
consumer. A dilemma in P2P computing area is that
when every participating peer tries to maximize its own
utility, the overall utility of the collaboration might drop.
In the worst case scenario, P2P resources are easily de-
pleted due to selfish users take free rides without offering
any sharing resource. Unfortunately, such ”tragedy of the
commons” phenomenon also happens in a number of ex-
isting peer-to-peer systems where cooperated scientific re-
search systems emphasize on sharing resource voluntarily.
Apparently, certain resource management scheme has to
be implemented on P2P systems to ensure them working

properly and growing healthily.
To encourage resource sharing, several previous works

adopt soft incentive schemes [8, 13, 14, 16], which is essen-
tially a reputation system. Peers get higher degree of trust
by sharing more resources, and thus have the permission
to access other resources. Soft incentive cannot meet the
requirement of P2P systems in that providers not only
care about the reputation, but also wish to gain benefit
by providing resources. Other works adopt hard incentive
scheme [1, 6, 19], in which peers get virtual currency by
selling their resources, and then use the currency to bid for
other resources. However, the assumption, wealthy peers
are more trustful, is not always valid. Simply consider-
ing the bid price in resource allocation cannot satisfy the
increasing security concerns from different participating
organizations.

In this paper, we consider a service market in which
each peer sells the service of executing tasks, rather than
raw resource. In order to tackle the mentioned above is-
sues, we combine the soft incentive and hard incentive
schemes and propose a Trust-Incentive Compatible Dy-
namic Service Management framework, called TIM. TIM
framework borrows the principles of market pricing when
constructing the trust and incentive model. The primary
goals of TIM are securing shared services, promoting users
to share valuable services, maintaining the balance of sup-
ply and demand in competitive P2P service market, and
finally maximizing aggregate resource utilization. Major
contributions are summarized as follows.

1) By adopting a continual exchange process and match-
ing user requests with available services, we propose
the TIM model which can maximize aggregate re-
source utilization in an economically and computa-
tionally efficient manner. In this model, users can
get more only if they are willing to share more and
as the same time have higher degree of trust. As a
result, it promotes collaborators to share more valu-
able services and avoid malicious waste.

2) In a P2P system, price fluctuates when service sup-
ply and demand changes. We separate the role of
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providers and consumers and apply different strate-
gies to each role. Providers simply mark their price
based on supply and demand while consumers offer
their bids upon deadline and budget constraints. Be-
cause the service dynamics are included in our man-
agement model, the workload of providers is balanced
and the efficiency of P2P system is improved.

3) Peers may join or leave a P2P system randomly. To
prevent a system from being attacked by malicious
peers, we employ a weighted voting scheme in TIM,
such that a secure and balanced environment is con-
structed.

4) We have successfully implemented TIM in the key
project of our lab, CROWN system. Our implemen-
tation experiences and experimental results are valu-
able to research peers.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 illustrates the service
management architecture and dynamic service manage-
ment model in CROWN system. We present our TIM
framework in Section 4, including price strategy, alloca-
tion mechanism, and dynamic peers management scheme.
Section 5 presents performance evaluations. We conclude
this work in Section 6.

2 Related Work

The objective of resource incentive is to promote users
to share more resources. Therefore, “tragedy of the com-
mons” can be avoided. Generally speaking, there are two
incentive schemes: Soft Incentive and Hard Incentive.

Soft incentive [8, 13, 14, 16] includes two models, Peer-
Approved and Service-Quality. Peers in [13, 16] are al-
lowed to access resources only from others with a lower
or equal ratings, and the QoS provided to these peers also
can be differentiated accordingly.

Feldman [8] proposes a Reciprocative decision function,
and introduces the notion of generosity. Generosity mea-
sures the benefit an entity has provided relative to the
benefit it has consumed. Obviously, a peer is willing to
cooperate with the collaborators who are more generous
than him.

Based on only one type of bandwidth resource and a
known user’s utility function, Richard et al. [14] present
an allocation mechanism and introduce the notion of con-
tribution to maximize aggregate utilization. They design
an interactive protocol to help game competitors to reach
Nash equilibrium. This approach is not practical for a
P2P environment in that a user’s utility function of re-
sources is not typically known a priori and determining
an allocation policy to maximize utility is difficult.

In essence, soft incentive in above work is a reputa-
tion system where the reputation [13, 16] (or generosity
[8], contribution [14]) of a peer is consistent with the util-
ity and quantity of resources supplied by the peer, but

no price mechanism is involved in above systems. How-
ever, in dynamic P2P environment, soft incentive cannot
meet the requirement in that resource providers not only
care about the reputation, but also wish to gain economic
benefit by providing resources.

There have been many researches in resource man-
agement approach which are based on economic models.
Buyya et al. [5, 17, 19] suggest that the economic mod-
els in the human society, such as auction model, com-
modity market model, contract-net model, and bartering
model, can be applied to grid computing. The discussion,
however, is at conceptual level and no implementation or
performance measurement has been presented.

Resource management based on price scheme can be
treated as hard incentive [1, 6], which adopts a Token-
Exchange approach. Each first-time user might be allot-
ted a fixed number of tokens, but once these run out, the
user has to serve resources to earn tokens. Resource price
scheme in economics can be broadly categorized into two
types: commodities markets [18] and auctions [1, 6, 7].
Chun [1, 6] allocates resources using a centralized combi-
natorial auction that allows users to express preferences
with complementarities. In contrast, we implement a dis-
tributed service exchange model that is more scalable.
Feldman [9] presents a price-anticipating resource alloca-
tion mechanism. In their work, each user can reach the
Nash equilibrium by iteratively applying a best response
algorithm to adapt his bids. The resource price setting
strategy is missing in their work. Additionally, resource
allocation approach in above researches mainly considers
the bid price of consumers, that is, the higher price the
peer bids, the more resources the peer gets. However,
wealthy peers are not always with higher degree repu-
tation. Thus only considering the bid price in resource
allocation cannot satisfy the increasing security concerns
from different participating organizations.

The TIM we proposed combines features from both
soft incentive approach and hard incentive approach.
The framework is dynamic oriented and completely dis-
tributed. Such design allows better scalability when man-
aging practical P2P services. The weighted voting scheme
included in our work can decline suspicious peers from
joining the P2P system and therefore maintaining a se-
cure and balanced P2P environ

3 System Model

The key project in our lab, CROWN (China R&D
Environment Over Wide-area Networks) [10, 11, 12], is
aiming at empowering in-depth integration of resources
and cooperation of researchers nationwide and worldwide.
A number of universities and institutes about 500 peers
across several cities in China have joined CROWN. As
illustrated in Figure 1, the distributed service manage-
ment in CROWN adopts a two-tier P2P architecture
[2, 4, 20]. The super layer is the backbone consisting
of CDSRes (CROWN Distributed Service Register); the
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Figure 1: The two-tier architecture of TIM

child layer includes all clients and service providers.
Usually, multiple self-organizing peers with the common
service aggregate in a club to improve the efficiency
of service discovery. To simple the question, we make
each club consist of one CDSR and multiple child peers,
and provide one type of service, such as Clubj in Figure 1.

CDSR: A CDSR knows not only the service infor-
mation in its club but also the available services from
other clubs through information propagation. There-
fore, it can answer queries forwarded from other CDSRes.

Child Peer: According to the area partition, a child
peer connects to the nearest and most trustworthy CDSR,
and reports its service status periodically to its designated
CDSR. A child peer also can send service request to a
CDSR and receives responses.

For example, in Figure 1, each CDSR will periodically
publish the provision services. A child peer selects the de-
sired service, generates the corresponding bids, and trans-
mits them to the selected CDSR by its own parent CDSR.

Based on the two-tier architecture, we first present
our Trust-Incentive Compatible Dynamic Service Man-
agement model. The proposed TIM model includes four
building blocks, i.e. CHILD model, CLUB model, BIDS
model, and TRUST model. Suppose that there are p clubs
(that is, p CDSRes), and each club may have one type of
service. Let Clubj denote the jth Club(j = 1, . . . , p), and
Chlidi

j denote the ith child peer in Clubj. The dynamic
service management model is defined as follows.

Definition 1. (CHILD Model) Chlidi
j is defined as

(Aci
j
, directtrustij , revenuei

j): Aci
j

to denote availabil-

ity quantity of the service provided by Chlidi
j; a direct

trust value directtrustij ∈ [0, 1] in Clubj; a peer revenue

revenuei
j ∈ R.

Definition 2. (CLUB Model) Clubj is defined as
(numj, Aj, Pj, Bidsj, RecTrustj): a children number
numj ∈ N ; Aj, Pj to denote availability quantity and
price of the service in Clubj, respectively; a bids vector
Bidsj = (bids1

j , bids2
j , . . . , bidsm

j ) received by Clubj, and

bids
q
j is the qth bid; a recommendation trust value vec-

tor RecTrustj = (rectrustj1, rectrustj2, . . . , rectrustjp),
and rectrustji ∈ [0, 1] (i = 1, . . . , p) is the recommenda-
tion trust value from CDSR in Clubj to CDSR in Clubi.

Definition 3. (BIDS Model) Bids is defined as (cid,
pid, et, Q, directtrust, C, V ): cid ∈ {1, . . . , p}, pid ∈ N

to denote the bid coming from Child
pid
cid ; a estimated task

execution time et; a desired quantity Q ≥ 1 of services;
a direct trust value directtrust ∈ [0, 1] of the Child

pid
cid ;

a set of constraints C, such as deadline and budget, etc;
and a bidding price V that the consumer is willing to pay.

Definition 4. (TRUST Model) We adopt the trust
model used in [3, 15]. If T1 denotes a recommendation
trust value from A to B, and T2 denotes a direct trust
value from B to C, then the trust value from A to C is
1 − (1 − T2)

T1 . Similarly, we suppose that peers in the
same club have direct trust relations, peers in different
clubs have indirect trust relations, and CDSRes have rec-
ommendation trust relations.

Then we get the following trust inference.

1) Direct trust computing. After peers in Clubi use the
services of Childk

i to execute tasks, the peers will
report positive or negative experiences to the CDSR
in Clubi. A direct trust relationship will set up only
if all experiences with that the CDSR in Clubi knows
about are positive experiences. Let q be the number
of positive experiences, then the direct trust value
from the CDSR to Childk

i is directtrustki = 1 − λq,
where λ is the probability of reliability with a single
task;

2) Recommendation trust computing. After peers in
Clubj have used the services of peers in Clubi to
execute tasks, the peers in Clubj will report positive
or negative experiences to the CDSR in Clubj. Given
numbers of positive and negative experiences p and
n, the recommendation trust value from the CDSR
of Clubj to the CDSR of Clubi is:

rectrustji(p, n) =

{

1 − λp−n if p > n

0 else;

3) The trust value from Clubj to Childk
i is given by:

trustki = 1 − (1 − directtrustki )rectrustji .

For example, in Figure 2, the direct trust value from the
CDSR of Clubi to Childk

i is 0.8, and the recommendation
trust value from the CDSR of Clubj to the CDSR of Clubi

is 0.5, then the trust value from Clubj to Childk
i is 1 −

(1 − 0.8)0.5 = 0.55.

4 Design of TIM

In this section, we present our TIM framework to manage
shared services in CROWN.
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Figure 2: The trust inference in TIM

The prices of services are set by providers who con-
tinuously adjust the prices based on supply and demand.
When consumers bid for the services, they offer bids that
can maximize their surplus and meet the deadline and the
budget constraints. Both BID model and TRUST model
are making contributions to evaluate peers and are there-
fore influencing how the service is allocated and managed.
And also, TIM is working in a continually exchanged man-
ner, which guarantees the dynamics of the supply and de-
mand are reflected in service allocation and management.

Our work successfully integrates the trust mechanism,
incentive mechanism, allocation mechanism, and dynamic
management of shared services. First, the peer who sup-
plies valuable services can accumulate more virtual cur-
rency and higher degree of trust, thus it can have prece-
dence in bidding for other services. Second, since there is
no centralized trust server and peers may join or leave dy-
namically, collaborative peers need to vote to determine
whether to accept the new peers or not. Trust and price
are the two major factors that are involved in this decision
making process to keep a secured P2P environment. Fi-
nally, to ensure the balance of supply and demand in P2P
market, prices setting strategy are considered in service
allocation.

Because it is possible that multiple peers bid for mul-
tiple sets of services simultaneously, we assume that the
services in one club has the same sale price. Each CDSR
sets the sale price according to supply and demand and
periodically publishes its local service information. Af-
ter getting the sale price, each consumer will then offer
a bidding price, which can meet its deadline and budget
constraints.

4.1 Price Mechanism

In P2P computing, the evaluation is the key to allocate
and manage shared service. It is rather difficult to find a
fixed analytic formula to calculate the service price due to
geographical distribution, heterogeneity, indeterminably,
and large scale in the P2P environment. But with dif-
ferent preconditions and history information, an approxi-
mate price model can be constructed. In TIM, we propose
the provider price strategy based on supply and demand,
and the consumer price strategy upon deadline and bud-
get constraints.

4.1.1 Provider Price Strategy

In TIM, we proposed a distributed service quantity esti-
mation strategy based on weighted average calculations,
and then estimate the service price based on service quan-
tity. The weights for computing the estimates are based
on the iteration indices until the current iteration.

First, for estimating the available service quantity at
a club, each Clubj needs to keep track of the actual ser-
vice quantity Aj from its previous iterations. Note that
for implementation purposes it is sufficient to keep a cu-
mulative value for the weighted service quantity. In any
iteration q, each club shall estimate the service quantity
that will be available for the next iteration (q + 1) as

Â
q+1

j =

∑q

k=1
k × Ak

j
∑q

k=1
k

Second, we can estimate the service price for the next
iteration (q + 1) by the formula P̂

q+1

j = max{ε, P q
j +

λ(Aq
j − Â

q+1

j ), where λ > 0 is a small step size parameter,
ε > 0 is a sufficiently small constant preventing price to
approach zero.

Finally, the CDSR of each club will periodically publish
the available service quantity and price to other clubs.

4.1.2 Consumer Price Strategy

Each P2P user generates the service request for its tasks
according to their requirements, and submits the request
to a selected CDSR that the user will bid for. The goal
of each P2P user is to maximize its own surplus upon
deadline and budget constraints. Given the price Pj of
service in the Clubj and the completion time constraint
T , the utility function of each P2P user can be expressed
as follows:

U(V ) = K(T −
LPj

V
) − V

in which L is the length of the task, V is the payment
value of the user,

LPj

V
is the estimated task execution

time, and K is a constant coefficient defined by the user.
Thus, the utility optimization problem above can be writ-
ten as:

{

Max U(V )
s.t. g(V ) ≥ 0

(g(V ) = T −
LPj

V
).

By using the multiplicator method, we obtain the approx-
imative optimal solution V ∗ =

3LPj

2T−K
as the bidding price,

which is also the value V in BIDS model.

4.2 Trust-incentive Compatible Service

Allocation Algorithm

After collecting the consumers’ bids, the CDSR of each
club uses the trust-incentive compatible mechanism to
allocate services. The allocation mechanism in TIM
has the following property: (1) providing differentiated
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services according to the bidding price and trust value
of peers; (2) promoting peers to accumulate more
virtual currency and higher degree of trust by supplying
more valuable services. TIM uses the following algorithm:

Step 1: In each period of bidding, we calculate the

per unit valuation Bidi
j =

V i
j

Qi
j
×eti

j

for each bid in Clubj,

where V i
j , Qi

j , etij denote bidding price, service number,
and estimated execution time, respectively. Then we

scale the Bidi
j by the formula bidi

j =
Bidi

j−Bidmin
j

Bidmax
j

−Bidmin
j

.

Step 2: We calculate the evaluation value of each bid by
the formula:

evlbidi
j = α × bidi

j + (1 − α) × trust
pid
cid ,

where trust
pid
cid is the trust value from Clubj to Child

pid
cid ,

and α ∈ [0, 1] is risk degree of Clubj according to the
benefit and secure factors. If Clubj focuses more on
benefit than security, set α bigger; otherwise, set α

smaller.

Step 3: We sort all bids in descending order according
to evlbidi

j.

Step 4: We go through the sorted bid list and schedule
each single bid. We will allocate the services to each bid

i with
evlbidi

j×totalservicequantity
∑

n
k=1

evlbidk
j

.

4.3 Dynamic Management for Peers

Peers may join and leave the collaboration dynamically,
or transfer from one club to another club. Thus, some
CDSRes maybe have the trust records for a child peer. In
our TIM approach, the more services a peer provides, the
higher degree of trust a peer has. Obviously, every peer is
willing to cooperate with a peer with higher trust value.

As illustrated in Figure 1, when the CDSR in Clubj

receives the join request, it will propagate the join re-
quest to other CDSRes. Since each club may have dif-
ferent trust records and recommendation trust value, it
may have different opinions about the requesting peer.
In our proposal, this is solved by employing a weighted
voting scheme to decide whether to accept the requesting
peer or not. After receiving the vote request, the CDSRes
make their own decisions as follows:

votei =







1 trust > τ

0 no trust value record

−1 trust < τ

where τ ∈ [0, 1] is the configuration threshold value used
by each CDSR. The result will then be returned to the
voting sponsor, that is, the CDSR in Clubj. According
to the majority principle, the CDSR in Clubj uses the
constraint in equation

∑p

i=1
rectrustjivotei ≥ 0 to make

the final decision.

Club1
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club
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resource
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Figure 3: Architectural framework for TIM in CROWN
system

If the new peer is a full stranger with no corresponding
records, the CDSR who has received the joining request
will determine to accept or reject the new peer based on
the current services price constraints. Normally, the full
stranger will be accepted if it can provide sufficient valu-
able services to other peers.

5 Implementation

5.1 Implementation Environment

We have implemented the TIM approach in CROWN sys-
tem with Java. The cooperation facility among peers is
provided by CROWN, a fully decentralized P2P middle-
ware infrastructure.

As illustrated in Figure 3, the system has two kinds of
peer, CDSR and child peer. Each child peer has a Child
Agent. The Child Agent is responsible for various actions
defined in TIM, such as service registration and discovery,
generating bid values, submitting bids, scheduling the ac-
cepted task, and sending the join or leave request to the
CDSRes. Similarly, each CDSR has a Server Agent. A
Server Agent is responsible for creating the club policy,
setting the prices for local services, collecting and pub-
lishing local services information, collecting the bids, in-
ferring trust value of peers from other clubs, allocating
local services, and accepting or rejecting new peers.

In the setup phase, we created five clubs [11], and each
club has a CDSR and 40-50 virtual child peers.

5.2 Efficiency of Allocation Mechanism

We first conduct an experiment with a set of five peers
with varying currency and trust value, bidding for some
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Figure 4: Incentive compatible allocation

portion of 200 unit services. To evaluate TIM, we first
define a metric named allocation ratio for each bid as
follows.

allocation ratio =
allocation quantity

total request quantity
.

In this experiment, we assume that the total request
quantity of each peer is 100 units. There are five curves
in Figures 4 and 5, where x-axis represents the bids times,
and y-axis represents the allocation ratio. We first set the
risk degree α = 1 in Figure 4 and consider the security
factor and set the risk degree α = 0.2 in Figure 5. The
symbol S in both figures denotes the ratio of providing
services, for example, the first peer provides 90 percent of
local services to other peers. The symbol T in Figure 5
denotes the trust value of bidding peers. In the first three
periods, only two peers request for 100 units services and
the supply meets the demand. Thus the allocation ratios
for the two peers are all 100 percent. After the third
period, the increasing bids outnumbered the supply.

As shown in Figure 4, without the security considera-
tion, the peers providing the same services nearly obtain
the same allocation ratio, and the more services a peer
contributes, the higher allocation ratio a peer obtains.
However, if considering the trust value in Figure 5, we
can see that the provision ratio of peer 3 (60%) is less
than that of peer 1 (90%), but peer 3 has a higher trust
value (T = 0.6) and thus obtains more services than peer
1. Similarly, peer 2 and peer 4 have the same provision
ratio: 30%. Peer 2 obtains more services than peer 4 at
the sixth bid in Figure 5, because the trust value of peer
2 (T = 0.8) is far greater than that of peer 4 (T = 0.1).

Thus, by evaluating the allocation scheme in TIM, we
can see that peers can obtain more services only having
shared more services and accumulated higher degree of
trust.
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Figure 5: Trust incentive allocation

5.3 Impact of TIM Price Strategy

This experiment is to study characteristics of price set-
ting strategy with Round-Robin strategy in terms of task
completion time, which is measured from accessing the
requested P2P services till task is accomplished. Three
clubs are the service providers, with each having 200 unit
services. Service requests are generated by the child peers
and the bid is generated at an interval of 350 time units.
We change the system load from 0.1 to 0.9 with a step
of 0.1, where system load is defined as a ratio of aggre-
gate bids load to aggregated capability of providers. The
initial value of the service price is 50G$, and each CDSR
re-publishes the service price with an interval of 500 time
units.

From Figures 6 and 7, we can see that TIM price set-
ting strategy has better efficiency and spends less time to
complete tasks compared with the Round-Robin strategy,
especially at higher bids. In Figure 6, when system load
reaches 0.5, the completion time of Round-Robin strat-
egy increase sharply. The reason is that at higher loads,
TIM price direction strategy allows consumers to select
the best available service for a task, which will in turn
reduce the workload and therefore the execution time.

In Figure 7, we contrast the performance between TIM
price direction strategy and Round-Robin strategy with
system load at 0.4, 0.6, and 0.8, respectively. At 10,000
time units, the completion ratio for Round-Robin strategy
is only around 64%, while our price direction strategy can
score 83% of the completion ratios.

5.4 Evaluation of Trust Model

Malicious peers may exist in P2P environments to disturb
service exchange or even destroy services of other peers.
We consider the security problem from both sides, includ-
ing malicious consumers and malicious providers. On one
hand, when bidding for services, a malicious consumer can
either set a higher bit value arbitrarily or does not give
the corresponding payment. Such behaviors adversely af-
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Figure 6: Execution time Vs system load

fect the interests of service providers. On the other side,
a malicious provider can boast of having more services to
get more currency. It makes good peers losing the bids
and accumulating more currency. Both types of malicious
peers will decrease the total revenue of the club and the
recommendation trust value of the CDSR.

We first study how malicious consumers affect the P2P
system. In this experiment, there are three clubs and 40
peers in each club are service providers. 100 peers from
the other two clubs act as consumers and generate bidding
requests. We let the three providing clubs receive the
100 bids each time by varying the percentage of malicious
consumers from 0 to 0.9 with a step of 0.1. For each
scenario, a set of risk degree α in TIM are configured: 0,
0.5, and 1. As showed in Figure 8, the club considering
both benefit and security factors (α = 0.5) obtains more
revenue after the percentage of malicious consumers is
over 20%. When the percentage of malicious consumers
is over 80%, the club considering only the security factors
will get more revenue.

We then study how malicious providers affect the P2P
system. In the simulations, Club1 implements admission
control based on the TIM weighted voting scheme de-
scribed in Section 4.3, while Club2 dose not. Both clubs
have 40 service providers and are handling 40 bids. Con-
sider the case when 40 peers from the other three clubs
want to join Club1 and Club2. Still, we set the percent-
age of malicious join peers from 0 to 0.9 with a step of
0.1. The CDSR in Club1 set the admission policy τ = 0.3,
which means that the peer whose trust value is lower than
0.3 will not be accepted. As a result, few malicious peers
are able to join Club1, while many of them can join Club2.

As Shown in Figure 9, when the percentage of malicious
join increases, the revenue of both clubs decreases. But
the revenue of Club2 without TIM is suffering much more
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Figure 10: Recommendation trust varying of CDSRes

than Club1 with TIM. At the extreme case when all the
new peers are malicious peers, the revenue of Club2 is
only 60 percent of the revenue of Club1.

In the last experiment, as more malicious peers request
to join a club, we compare the recommendation trust
value of the CDSR in the club among three mechanisms.
The first mechanism is the CDSR does not implement ad-
mission control and each peer can join the club arbitrarily.
The second mechanism is Pretty Good Privacy with local
certificate repositories in individual nodes. A CDSR ver-
ifies the public key of a requester by finding a certificate
chain from CDSR to the requester in its local certificate
repository. The remaining mechanism is the TIM pro-
posed in this paper. Figure 10 shows that as more mali-
cious peers enter Club2, the recommendation trust value
of the CDSR in Club2 without TIM decrease rapidly. In
our TIM mechanism, the CDSR will propagate the join
request to other CDSRes and employ a weighted voting
scheme to decide whether to accept the requesting peer or
not. The CDSR can discover and isolate more malicious
nodes, so it is able to maintain a high recommendation
trust value.

6 Conclusion

Proving trust and incentive in P2P computing environ-
ments are of great importance. This paper presents
a Trust-Incentive Compatible Dynamic Service Man-
agement, TIM, on the basis of economy model and
trust model. By introducing the price strategy, trust-
incentive compatible service allocation mechanism and
the weighted voting scheme, TIM encourages peers to
share more services, ensures the balance of supply and de-
mand, enhances the aggregated resource utilization, and
maintains the secure environment of a P2P computing
system.

TIM scheme has been successfully implemented in our
key project, CROWN environment. We evaluate our
proposed approach by comprehensive experiments and
achieved much improved results in service allocation, sys-
tem completion time and aggregated resource utilization.

In the future, we will widely deploy our TIM approach
in the CROWN to construct a more secured and balanced
collaborative P2P environment.
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