
Model-Driven Engineering in the
Heterogeneous Tool Set

Daniel Calegari1, Till Mossakowski2, and Nora Szasz3

1 Universidad de la República, Uruguay
dcalegar@fing.edu.uy

2 Otto-von-Guericke University Magdeburg, Germany
mossakow@iws.cs.uni-magdeburg.de

3 Facultad de Ingenieŕıa, Universidad ORT Uruguay
szasz@ort.edu.uy

Abstract. We have defined a unified environment that allows formal
verification within the Model-Driven Engineering (MDE) paradigm us-
ing heterogeneous verification approaches. The environment is based on
the Theory of Institutions, which provides a sound basis for representing
MDE elements and a way for specifying translations from these elements
to other logical domains used for verification, such that formal experts
can choose the domain in which they are more skilled to address a formal
proof. In this paper we present how this environment can be supported
in practice by the Heterogeneous Tool Set (Hets). We define semantic-
preserving translations from the MDE elements to the core language of
Hets, and we also show how it is possible to move from it to other log-
ics, both to supplement the original specification with other verification
properties and to perform a heterogeneous verification.

Keywords: verification, formal methods, Model-Driven Engineering

1 Introduction

The Model-Driven Engineering (MDE,[1]) paradigm is based on the construction
of models representing different views of the system to be constructed, and model
transformations as the main activity within the software development process. In
this context, there are multiple properties that can be verified [2], from syntactic
to semantic ones, and at different abstraction levels. Whenever formal verifica-
tion is mandatory, there is a plethora of verification approaches with different
objectives, formalisms and supporting tools, which are heterogeneous and not
integrated. With an heterogeneous approach [3], different formalisms are used
for expressing parts of a problem and semantic-preserving mappings allow the
communication between these formalisms in order to compose different views to
an overall specification of the whole problem. We have followed this approach by
proposing a theoretical environment for the formal verification of different MDE
aspects using heterogeneous verification approaches [4], based on the theory of
Institutions [5]. This environment proposes a generic representation of the MDE

2

elements (by means of institutions) which can be formally (and automatically)
translated into other formalisms, providing the “glue” that formal experts need
to choose the formalism in which they are more skilled to address a formal proof.

In this paper we show how the environment can be supported in practice us-
ing the Heterogenous Tool Set (Hets,[3,6]), which is meant to support heteroge-
neous multi-logic specifications. It also provides proof management capabilities
for monitoring the overall correctness of a heterogeneous specification whereas
different parts of it are verified using (possibly) different formalisms. We first
define from a theoretical perspective how MDE elements can be integrated in
this tool by defining semantic-preserving translations to the Common Algebraic
Specification Language (Casl,[7]), which is the core language of Hets. The ex-
istent connections between Casl and other formalisms broadens the spectrum of
formal domains in which verification can be addressed. We also detail the imple-
mentation of a prototype which allows one to specify MDE elements, supplement
them with multi-logic properties, and perform a heterogeneous verification.

The remainder of the paper is structured as follows. In Section 2 we introduce
the main concepts of MDE based on a running example, and in Section 3 we
summarize how these elements can be represented within our institution-based
environment. Then, in Section 4 we present how this environment can be formally
connected with Casl, and in Section 5 we give details about an implementation
of these ideas using Hets. Finally, in Section 6 we present related work and in
Section 7 we present some conclusions and an outline of further work.

2 Model-Driven Engineering

In MDE there are two key elements: models specifying different views of the sys-
tem to be constructed and model transformations allowing the (semi)automatic
construction of the system by processing the models.

Every model conforms to a metamodel which introduces the syntax and se-
mantics of certain kinds of models. The MetaObject Facility (MOF, [8]) is a
standard language for metamodeling, basically defining hierarchical-structured
classes with properties that can be attributes (named elements with an associ-
ated primitive type or class) or associations (relations between classes in which
each class plays a role within the relation). Every property has a multiplicity
which constraints the number of elements that can be related through it. If there
are conditions that cannot be captured by the structural rules of this language,
the Object Constraint Language (OCL, [9]) is used to specify them. These con-
siderations allow defining conformance in terms of structural and non-structural
conformance. Structural conformance with respect to a metamodel means that
in a given model: every object and link is well-typed and the model also re-
spects the multiplicity constraints. Non-structural conformance means that a
given model respects the invariants specified with the supplementary language.

Consider as an example a simplified version of the well-known Class to Re-
lational model transformation [10]. The metamodel in the left side of Figure 1
defines UML class diagrams, where classifiers (classes and primitive types) are

3

contained in packages. Classes can contain one or more attributes and may be
declared as persistent, and each attribute is typed by a primitive type. Notice
that a class must contain only one or two attributes, and also that the Classifier
class is not abstract. We handle these aspects differently from UML class dia-
grams in order to have a more complete example. In the right side of Figure 1
there is a model composed by a persistent class of name ID within a package of
name Package. The class has an attribute of name value and type String.

Fig. 1. Class metamodel and model of the example

A model transformation takes as input a model conforming to certain meta-
model and produces as output another model conforming to another metamodel
(possibly the same). Query/View/Transformation Relations (QVT-Relations,
[10]) is a relational language which defines transformation rules as mathematical
relations between source and target elements. A transformation is a set of in-
terconnected relations: top-level relations that must hold in any transformation
execution, and non-top-level relations that are required to hold only when they
are referred from another relation. Every relation defines a set of variables, and
source and target patterns which are used to find matching sub-graphs of ele-
ments in a model. Relations can also contain a when clause which specifies the
conditions under which the relationship needs to hold, and a where clause which
specifies the condition that must be satisfied by all model elements participating
in the relation. The when and where clauses, as well as the patterns may contain
arbitrary boolean OCL expressions and can invoke other relations.

The transformation of the example basically describes how persistent classes
within a package are transformed into tables within a schema, and attributes of
a class are transformed into columns of the corresponding table. Below we show
an excerpt of this transformation. There are keys defined as the combination of
those properties of a class that together can uniquely identify an instance of that
class, e.g. there are no two tables with the same name within the same schema.

4

transformation uml2rdbms (uml : UML , rdbms : RDBMS) {

key RDBMS::Table {name, schema};

top relation PackageToSchema { ... }

top relation ClassToTable {

cn, prefix : String;

checkonly domain uml c : UML::Class {

namespace = p : UML::Package {}, kind = ’Persistent’, name = cn

};

enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema {}, name = cn

};

when { PackageToSchema(p, s); }

where { AttributeToColumn(c, t);}

}

relation AttributeToColumn { ... }

}

3 An Institution-Based Environment for MDE

Our environment [4] is based on representing models (from now on SW-models
to avoid confusion), metamodels, the conformance relation, transformations and
verification properties in some consistent and interdependent way without de-
pending on any specific logical domain. We follow an heterogeneous specification
approach [3] which is based on providing Institutions [5] for representing the syn-
tax and semantics of the elements. An institution is defined as:

– a category Sign of signatures (vocabularies for constructing sentences in a
logical system) and signature morphisms (translations between vocabularies)

– a functor Sen : Sign → Set giving a set of sentences for each signature and
a function Sen(σ):Sen(Σ1)→ Sen(Σ2) translating formulas to formulas for
each signature morphism σ : Σ1 → Σ2;

– a functor Mod : Signop → Cat , giving a category Mod(Σ) of models (provid-
ing semantics) for each signature Σ and a reduct functor Mod(σ):Mod(Σ2)→
Mod(Σ1) translating models to models (and morphisms to morphisms) for
each signature morphism;

– a satisfaction relation of sentences by models, such that when signatures
are changed (by a signature morphism), satisfaction of sentences by models
changes consistently, i.e. M2 |=Σ2 Sen(σ)(ϕ) iff Mod(σ)(M2) |=Σ1 ϕ

We provide an institution IQ for QVT-Relations check-only unidirectional trans-
formations (which we called Qvtr). This institution needs a representation of
SW-models and metamodels, therefore we define an institution IM for the struc-
tural conformance relation between them based on a simplified version of MOF
(which we called Csmof). Complete definitions can be found in [11].

5

The institution IM represents the MOF-based structural conformance rela-
tion between metamodels and SW-models. From any metamodel we can derive
a signature Σ = (C, α,P) declaring: a finite class hierarchy C = (C,≤C) (a par-
tial order between classes representing the inheritance relation between them)
extended with a subset α ⊆ C denoting abstract classes; and a properties dec-
laration (attributes and associations) P = (R,P) where R is a finite set of role
names with a default role name “ ”, and P is a finite set of properties of the
form 〈r1 : c1, r2 : c2〉 representing a property and its opposite. The type ci at-
tached to the role ri represents the type of the property, as well the type in
the opposite side represents its owned class. By T(C) we denote the type exten-
sion of C by primitive types (e.g. Boolean) and type constructors (e.g. List).
Formulas represent multiplicity constraints determining whether the number of
elements in a property end is bounded (upper and/or lower). They are defined
as follows: Φ ::= #C •R = N | N ≤ #C •R | #C •R ≤ N The #-expressions
return the number of links in a property when some role is fixed. The • operator
represents the selection of the elements linked with another of class C through
a role in R. An interpretation I (or model) contains a semantic representation
for a SW-model, i.e. objects and links. It consists of a tuple (VT

C(O),A) where
VT

C(O) = (Vc)c∈T (C) is a T(C)-object domain (a family of sets of object identi-

fiers), A contains a relation 〈r1 : c1, r2 : c2〉I ⊆ Vc1 × Vc2 for each relation name
〈r1 : c1, r2 : c2〉 ∈ P with c1, c2 ∈ T (C), and c2 ∈ α implies Oc2 =

⋃
c1≤Cc2

Oc1 .
Finally, an interpretation I satisfies a formula ϕ with some c• r if for any object
of class c, the number of elements within I related through the role r (of a prop-
erty of the class c) satisfies the multiplicity constraints. The satisfaction relation
checks the multiplicity requirements of the structural conformance relation.

The institution IQ represents QVT-Relations transformations by extend-
ing the Csmof institution. A signature is a pair 〈ΣM

1 , Σ
M
2 〉 representing the

source and target metamodels of the transformation, and an interpretation is
a tuple 〈MM

1 ,MM
2 〉 of disjoint SignM

i -interpretations that contains a seman-
tic representation for the source and target SW-models. A formula ϕK rep-
resents a key constraint of the form 〈c, {r1, ..., rn}〉 (1 ≤ n) with c ∈ Ci (i
= 1..n) a class in one of the metamodels, rj ∈ Ri (j = 1..n) roles defined
in properties in which such class participates (having such role or at the op-
posite side of it). Roles determine the elements within these properties that
together can uniquely identify an instance of the class. A formula ϕR rep-
resents a set of interrelated transformation rules, such that, given variables
Xs = (Xs)s ∈(

⋃
i T (Ci)), the formula is a finite set of tuples representing rules

of the form 〈top,VarSet,ParSet,Pattern1,Pattern2,when,where〉, where top ∈
{true, false} defines if the rule is a top-level relation or not, VarSet ⊆ Xs

is the set of variables used within the rule, ParSet ⊆ VarSet representing the
set of variables taken as parameters when the rule is called from another one,
Patterni (i = 1, 2) are the source and target patterns, and when/where are the
when/where clauses of the rule, respectively. A pattern is a tuple 〈Ei, Ai, P ri〉
such that Ei ⊆ (Xc)c ∈Ci

is a set of class-indexed variables, Ai is a set of ele-
ments representing associations of the form rel(p, x, y) with p ∈ Pi and x, y ∈ Ei,

6

and Pri is a predicate over these elements. A when/where clause is a pair
〈whenc,whenr〉 such that whenc is a predicate with variables in VarSet, and
whenr is a set of pairs of transformation rules and their parameters. The satis-
faction relation expresses that the target SW-model is the result of transforming
the source SW-model (both within the interpretation) according to the transfor-
mation rules and also that key constraints hold (both represented as formulas).

Institutions can be formally connected by means of (co)morphisms. By defin-
ing these semantic-preserving translations, it is possible to connect MDE ele-
ments to potentially several logics for formal verification. In this way, we just
specify MDE elements once, then spread this information into other logics to
supplement this specification with additional properties, and finally choose the
verification approach we want to use. To the extent that there are many logics
connected through comorphisms, the capabilities of the environment increases.
The environment supports a separation of duties between software developers
(MDE and formal methods experts) such that a formal perspective is avail-
able whenever it is required. Moreover, comorphisms can be automated, as we
show in the following sections, thus the environment is scalable in terms of the
rewriting of MDE elements in each logic. Although our proposal is aligned with
OMG standards, this idea can be potentially formalized for any transformation
approach and language. This allows extending the approach as far as necessary.

4 Borrowing Proof Capabilities

We use the possibility of connecting our institutions to potentially several host
logics with their own proof systems. The host logic allows both to supplement
the information contained within the MDE elements with properties specified
in the host logic, and to borrow its proof calculus for formal verification. We
use generalized theoroidal comorphisms (GTC,[12]) between two institutions I
and J , i.e. a functor Φ : ThI → ThJ translating theories (pairs of signatures
and set of sentences); and a natural transformation β : (Φ)op; ModJ → ModI

translating models in the opposite direction.
We do not define GTC from the institutions defined in the last section, but

from extended institutions IM+

and IQ+

. We extend the definition of Csmof
formulas with a syntactic representation of SW-models as follows:

Ω ::= xc | 〈r1, x1c1 , r2, x2c2〉 | Ω ⊕Ω

with xc ∈ Xc a variable representing a typed element, 〈r1, x1c1 , r2, x2c2〉 repre-
senting a link between two typed elements with their respective roles, and Ω⊕Ω
the composition of these elements. In the case of Qvtr, we extend Qvtr for-
mulas by including extended Csmof formulas, i.e. now there is a representation
of multiplicity constraints and SW-models, indexed by the institutions in which
they are defined. These extensions allow to use a proof system such that it is
possible to prove that constraints (as a formula) are derived from a syntactic
representation of a SW-model, which is the context where the verification must
be done. An exhaustive discussion on this topic can be found in [11].

7

We defined GTC from our extended institutions to Casl, a general-purpose
specification language. The institution IC underlying Casl is the sub-sorted
partial first-order logic with equality and constraints on sets SubPCFOL=, a
combination of first-order logic and induction with subsorts and partial func-
tions. Since Casl has a sound proof calculus, and our comorphisms admit bor-
rowing of entailment [3], we can translate our proof goals using the comorphism
into Casl and use its proof calculus also for proving properties of our extended
Csmof and Qvtr specifications. The importance of Casl is that it is the main
language within the Heterogenous Tool Set (Hets, [3]), a tool meant to support
heterogeneous multi-logic specifications. This comorphism not only allows us to
have tool support for the verification of model transformation by using Hets
(as will be introduced in Section 5) but also to move between the graph of logics
within Hets to take advantage of the benefits of each logic.

In what follows we introduce Casl and resume the encoding of the main
components of the extended institutions into it. An example of the encoding is
given in Section 5.1, and a complete version can be found in [11].

4.1 Common Algebraic Specification Language

The institution IC for Casl is defined as follows. Signatures consist of a set
S of sorts with a subsort relation ≤ between them together, with a family
{PFw,s}w∈S∗,s∈S of partial functions, {TFw,s}w∈S∗,s∈S of total functions and
{Pw}w∈S∗ of predicate symbols. Signature morphisms consist of maps taking
sort, function and predicate symbols respectively to a symbol of the same kind
in the target signature, and they must preserve subsorting, typing of function
and predicate symbols and totality of function symbols.

For a signature Σ, terms are formed starting with variables from a sorted set
X using applications of function symbols to terms of appropriate sorts, while sen-
tences are partial first-order formulas extended with sort generation constraints
which are triples (S′, F ′, σ′) such that σ′ : Σ′ → Σ and S′ and F ′ are respec-
tively sort and function symbols of Σ′. Models interpret sorts as non-empty sets
such that subsorts are injected into supersorts, partial/total function symbols as
partial/total functions and predicate symbols as relations.

The satisfaction relation is the expected one for partial first-order sentences.
A sort generation constraint (S′, F ′, σ′) holds in a model M if the carriers of the
reduct of M along σ′ of the sorts in S′ are generated by function symbols in F ′.

4.2 Encoding Csmof into Casl

We define a GTC between the extended Csmof institution IM+

and the in-
stitution IC for SubPCFOL=. The class hierarchy represented within a IM+

signature is basically translated into a set of sorts complying with a subsorting
relation, properties are translated into predicates, and an axiom is introduced
to relate predicates derived from bidirectional properties. Formally, every IM+

signature Σ = (C, α,P) with C = (C,≤C) and P = (R,P) is translated into a
theory ((S, TF, PF, P,≤S), E) such that:

8

– For every class name c in C, there is a sort name c ∈ S.
– For every c1 ≤C c2 with c1, c2 ∈ C, we have c1 ≤S c2 with c1, c2 ∈ S.
– For every c ∈ α there is an axiom in E stating that c is the disjoint embedding

of its subsorts (sort generation constraint).
– For every 〈r1 : c1, r2 : c2〉 ∈ P , there are two predicates r1 : c2 × c1 and
r2 : c1×c2 ∈ Π, and an axiom in E stating the equivalence of the predicates,
i.e. r1(x, y) iff r2(y, x) with x ∈ S1, y ∈ S2. In the case of predicates with the
default role name , we only generate the predicate in the opposite direction
of the default role, i.e. if 〈 : c1, r2 : c2〉 or 〈r1 : c1, : c2〉 we only have r2 :
c1 × c2 or r1 : c2 × c1, respectively.

We consider the existence of a built-in extension of the institution IC, e.g. the
Casl standard library. The sets of functions TF and PF within this extension
contain those functions defined for built-in types (like + for strings).

As an example, the signature corresponding to the class metamodel in Fig-
ure 1 is translated into a theory such that there are sorts for each class, e.g.
UMLModelElement and Package, within the subsorting relation, e.g. Package ≤S
UMLModelElement; and there are predicates for each property, e.g. elements :
Package × Classifier and name : UMLModelElement × String. There is a sort
generation constraint stating that UMLModelElement is the disjoint embedding
of its subsorts Attribute, Classifier, and Package. There are also axioms stat-
ing the equivalence of the predicates derived from bidirectional properties, e.g.
∀ x : Package, y : Classifier. elements(x, y)⇔ namespace(y, x)

In the case of a SW-model formula Ω, each variable within the formula
(representing an object) is translated into a total function of the corresponding
type. We also add several axioms in order to represent implicit constraints in
the IM+

institution which are not necessarily kept when representing the basic
elements in SubPCFOL=, as for example the need of distinguishing between
two different variables (functions in the target institution) and the specification
of the cases in which a property holds (when there is a syntactic link represented
within the formula Ω). Formally,

– For every xc ∈ υ(Ω) there is a total function x : c ∈ TF with c ∈ S
– For every 〈r1, xc1 , r2, yc2〉 ∈ ω(Ω) with 〈r1 : c1, r2 : c2〉 ∈ P , there is an axiom

in E stating that the predicate r2 : c1 × c2 holds for x : c1, y : c2 ∈ TF .
Notice that the opposite direction holds by the predicates equivalence stated
during the signature translation.

– E has some additional axioms:
• Distinguishability: {xi 6= xj | i 6= j. xi, xj : c ∈ TF} for all c ∈ S
• Completeness of elements: for all x : c we have that x = oi for some oi :
c ∈ TF . When c is a non-abstract class having sub-classes, completeness
must be defined for oi : c′ ∈ TF for all c′ ≤ c.

• Completeness of relations: for all x : c1, y : c2 we have that r(x, y) holds
only if x = o1 and y = o2 for some o1 : c1, o2 : c2 for which r(c1, c2) hold.

The “distinguishability” and “completeness of elements” axioms correspond
to the “no junk, no confusion” principle: there are no other values than those
denoted by the functions x : c, and distinct functions denote different values.

9

The variables within the class SW-model in Figure 1 are translated into total
functions, e.g. p : Package, c : Class and ID : String. Moreover, for every link
there is an axiom stating that the corresponding predicate holds for the functions
corresponding to the translated elements within the link. This axiom can be
stated in conjunction with the “completeness of relations”, e.g. ∀ x : Package, y :
Classifier. elements(x, y)⇔ (x = p ∧ y = c) ∨ (x = p ∧ y = pdt). In the case
of the non-abstract class Classifier which has sub-classes, the “completeness of
elements” constraint is stated by the axiom: ∀ x : Classifier. x = c ∨ x = pdt.
Finally, the “distinguishability” constraint must be stated between elements of
sorts related by the subsorting relation. For example, in the case of the elements
within the UMLModelElement hierarchy, we have the following constraint:
¬(a = c) ∧ ¬(a = p) ∧ ¬(a = pdt) ∧ ¬(c = p) ∧ ¬(c = pdt) ∧ ¬(p = pdt).

For the translation of a multiplicity constraint formula we define the following
predicates for constraining the size of the set of elements in a relation:

– min(n,R : D × C) holds if for all y : D there exists x1, ..., xn : C such that
R(y, xi) for all i = {1..n}, and xi 6= xj for all i = {1..n− 1}, j = i+ 1.

– max(n,R : D × C) holds if for all y : D and x1, ..., xn+1 : C, Rel(y, xi) for
all i = {1..n+ 1} implies there is some xi = xj with i = {1..n}, j = i+ 1.

The first predicate states that there are at least n different elements related to
every element y by the relation R, which represents a minimal cardinality for
the relation. The other predicate states that there are no more than n elements
related to any element y by the relation R, which represents a maximal cardi-
nality for the relation. Using these predicates, we can translate any multiplicity
constraint formula as follows:

– n ≤ #D •R is translated into min(n,R : D × C)
– #D •R ≤ n is translated into max(n,R : D × C)
– #D •R = n is translated into min(n,R : D × C) ∧ max(n,R : D × C)

such that Q : C × D,R : D × C ∈ Π are the predicates generated by the
translation of the property 〈R : C,Q : D〉. If the multiplicity constraint involves
the other end, i.e. C •Q, the predicate Q : C ×D is used instead of R : D × C.

As an example, the formula #(UMLModelElement • name) = 1 derived
from Figure 1 is translated into the conjunction of

min(1,name : UMLModelElement× String) =

∀ x1 : UMLModelElement. ∃ y1 : String. name(x1, y1)

max(1,name : UMLModelElement× String) =

∀ x1 : UMLModelElement, y2, y1 : String.

(name(x1, y1) ∧ name(x1, y2))⇒ y1 = y2

Given a IM+

theory T = 〈Σ,Ψ〉, a IC model M of its translated theory
(Σ′, E) is translated into a Σ-interpretation denoted I = (VT

C(O),A) such that:
each non-empty carrier set |M |s with s ∈ S, is translated into the set Vc in
the object domain VT

C(O), with s the translation of type c ∈ T (C); and each
relation pM of a predicate symbol r2(c1, c2) ∈ P derived from the translation of
a predicate 〈r1 : c1, r2 : c2〉, is translated into the relation pI ⊆ Vc1 × Vc2 ∈ A.

10

4.3 Encoding Qvtr into Casl

We define a GTC between the extended Qvtr institution IQ+

and the institu-
tion IC for SubPCFOL=. Every IQ+

signature 〈ΣM
1 , Σ

M
2 〉 is translated by the

functor Φ into a theory such that each signature ΣM
i is translated as defined in

the encoding of Csmof into Casl. We assume that the institution IE of the
expressions language has a correspondence (via a comorphism) with the built-in
extension of the institution IC.

Formulas representing keys and transformation rules are translated into named
first-order formulas. Formulas will be of the form P ⇔ F such that P is the pred-
icate naming the formula, and F represents the conditions which must hold in
order to satisfy a key constraint ϕK or transformation ϕR.

In the case of a formula ϕK, the formula F defines that there are not two
different instances of that class with the same combination of properties con-
forming the key of such class. Formally, any formula 〈C, {r1, ..., rn}〉 is translated
into a predicate key C naming a key constraint definition, and a formula of the
form key C ⇔ ∀x, y ∈ C, vj : Tj . x 6= y →

∧
i,j ri(x, vj) →

∨
i,j ¬ri(y, vj),

with ri(,) one of the two predicates from the translation of the property
〈r1 : C1, r2 : C2〉 such that one of the roles is of type C and the other of type Tj .

The key formula in the example is translated into the expression

key Table⇔ ∀x, y ∈ Table, v1 : String, v2 : Schema.

x 6= y → name(x, v1) ∧ schema(x, v2)→ ¬name(y, v1) ∨ ¬schema(y, v2)

In the case of a formula ϕR, the formula F declares that top-level rela-
tions must hold, and each individual rule is translated into the set of condi-
tions stated by the checking semantics of QVT-Relations. Formally, every rule
Rule = 〈top,VarSet,ParSet,Patterni (i = 1, 2),when,where〉 ∈ ϕR is translated
into: a predicate Rule : T1× ...×Tn ∈ P with ParSet = {T1, .., Tn}, and a predi-
cate Top Rule without parameters (only if top = true), naming the formula; and
a formula ∀v1 : T1, ..., vn : Tn. Rule(v1, ..., vn) ⇔ F such that Rule(v1, ..., vn) is
the predicate defined before. In the case of a top rule, there is also a formula
Rule⇔ F . For the formula F there are two cases corresponding to the checking
semantics of QVT-Relations:

1. If WhenVarSet = ∅

∀ x1, ..., xn ∈ (VarSet\2 VarSet)\ParSet. (Φ(Pattern1)→
∃ y1, ..., ym ∈ 2 VarSet\ParSet. (Φ(Pattern2) ∧ Φ(where)))

2. If WhenVarSet 6= ∅

∀ z1, ..., zo ∈ WhenVarSet\ParSet. (Φ(when)→
∀ x1, ..., xn ∈ (VarSet\(WhenVarSet ∪ 2 VarSet))\ParSet.

(Φ(Pattern1)→ ∃ y1, ..., ym ∈ 2 VarSet\ParSet.

(Φ(Pattern2) ∧ Φ(where))))

11

The translation of Patterni = 〈Ei, Ai, P ri〉 is the formula
∧
r2(x, y)∧Φ(Pri)

such that r2(x, y) is the translation of predicate p = 〈r1 : C, r2 : D〉 for every
rel(p, x, y) ∈ Ai with x : C, y : D; and Φ(Pri) is the translation of the predicate
into Casl. Moreover, the translation of when = 〈whenc,whenr〉 (or where) is the
formula

∧
Rule(v) ∧ Φ(whenc) such that Rule(v) is the parametric invocation

of the rule (Rule, v) ∈ whenr, and Φ(whenc) is the translation of the predicate.
Back to the example, for each rule there is a predicate defining the rule. The

relation ClassToTable is translated into the expression (in Casl syntax):

Top_ClassToTable <=> forall p : Package; s : Schema

. PackageToSchema(p,s) =>

forall c : Class; cn : String . namespace(c,p)

/\ kind(c,Persistent) /\ name(c,cn) =>

exists t : Table . schema(t,s)

/\ name(t,cn) /\ AttributeToColumn(c,t)

This formula says that the top-level relation holds whereas for every package
and schema satisfying the relation PackageToSchema, if there is a persistent class
within that package, there must exists a table in the corresponding schema with
the same class name. Moreover, the attributes and columns of both elements
must be in the relation AttributeToColumn.

Given a IQ+

theory T = 〈Σ,Ψ〉, a model M of its translated theory (Σ′, E)
is translated into a Σ-model M = 〈MM

1 ,MM
2 〉 by constructing disjoint models

with an interpretation of elements for each corresponding IM+

theory. EachMM
i

(i = 1, 2) is defined as in Section 4.2.

5 The Environment in Action

We have implemented a prototype of the environment using the Heterogeneous
Tools Set (Hets,[3,6]). Hets is an open source software providing a general
framework for formal methods integration and proof management, based on the
Theory of Institutions, as introduced above. Based on this foundation, Hets
supports a variety of different logics. More specifically, Hets consists of logic-
specific tools for the parsing and static analysis of basic logical theories written in
the different involved logics (e.g. our extended Csmof and Qvtr institutions),
as well as a logic-independent parsing and static analysis tool for structured
theories and theory relations. Proof support for other logics can be obtained by
using logic translations defined by comorphisms (e.g. from Csmof to Casl). Our
prototype and examples can be downloaded together with the Hets distribution.

Within this prototype, MDE experts can specify model transformations in
their domain and such specifications can be complemented by verification ex-
perts with other properties to be verified, e.g. non-structural constraints. All
this information is taken by Hets, which performs automatic translations of
proof obligations into other logics and allows selecting the corresponding prover
to be used, whilst a graphical user interface is provided for visualizing the whole
proof. In other words, we provided to MDE practitioners the “glue” they need
for connecting their domain with the logical domains needed for verification.

12

5.1 Heterogeneous Verification

Our problem is formally stated as a heterogeneous specification using Casl
structuring constructs, with at least three logics: CASL, CSMOF and QVTR. We
also perform logic translations through the implemented comorphisms which
are CSMOF2CASL and QVTR2CASL. Next, there is an excerpt of the heterogeneous
specification of the example.

(1) logic CSMOF

from QVTR/UML get UML |-> UMLMetamodel

from QVTR/UML_WMult get UML |-> UMLConstraints

(2) spec UMLProof = UMLMetamodel

then %implies UMLConstraints end

(3) logic QVTR

from QVTR/uml2rdbms get uml2rdbms |-> QVTTransformation

(4) logic CASL

spec ModelTransformation = QVTTransformation with logic QVTR2CASL

then %implies

. key_RDBMS_Table

. Top_PackageToSchema

. Top_ClassToTable

end

Within the CSMOF logic (1) we create two specifications from standard XMI
files with the information of the class metamodel and SW-model in Figure 1. This
implies the creation of a representation of signatures and formulas according to
the institution defined in Section 3. Another specification is created (2) by ex-
tending UMLMetamodel and stating that UMLConstraints is implied. This means
that every formula (multiplicity constraint) in the second specification can be de-
rived, thus there must be a proof of it. This is how the satisfaction relation of the
Csmof institution is checked. We also use the QVTR logic (3) to create a specifi-
cation from a standard .qvt file according to the institution defined in Section 3.
The only difference with respect to the QVT standard is that instead of using
OCL as the expressions language, we use for now a very simple language contain-
ing boolean connectives, the constants true and false, term equality, strings and
variables. Finally, we move into Casl (through the comorphism QVTR2CASL) for
creating another specification (4) in which the translation of key and rule formu-
las defined in Section 3 are implied by the transformation specification. When
a proposition, e.g. Top_ClassToTable, is called from the Casl specification, a
proof of the implication must be given. We can also translate our specifications
and complement them with other constraints which cannot be stated as formulas
of the former institutions. As an example we can state that there cannot be two
Classifiers with the same name in the UMLMetamodel specification. For this
purpose we are using the CSMOF2CASL comorphism as follows.

13

spec MoreProofs = UMLMetamodel with logic CSMOF2CASL

then %implies

forall x,y : Classifier; str : String

. name(x,str) /\ name(y,str) => x = y

end

Once our heterogeneous specification is processed, Hets constructs a devel-
opment graph in which nodes correspond to specifications, some of them with
open proof obligations, and arrows to dependencies between them. We have three
proof obligations corresponding to those formulas marked as %implies within
the specifications. Proof goals can be discharged using a logic-specific calculus,
e.g. some prover for Casl in the example. The double arrows are heterogeneous
theorem links, meaning that the logic changes along the arrow. In the example
this corresponds to the extension of specifications by using the comorphisms. It
can be noticed that we can use any other logic within the logics graph of Hets
through comorphisms. This improves the proof capabilities of our environment.

5.2 Verification Properties

There are several properties that can be verified, some of them related to the
computational nature of transformations and target properties of transformation
languages, and other to the modeling nature of transformations [2]. The min-
imal requirement is conformance, i.e. that the source and target models (resp.
the transformation specification) are syntactically well-formed instances of the
source and target metamodels (resp. the transformation language). Our frame-
work provides this verification in three parts. During the construction of Csmof
and Qvtr theories, parsing and static analysis check whether signatures and
formulas are well-formed, and (as we explained before) a SW-model within a
signature is a structurally well-formed instance of the metamodel in the same
signature, as well as a transformation specification given in a formula is well-
formed with respect to the signature containing both source and target meta-
models. Multiplicity constraints are verified when proving the satisfaction of
Csmof formulas. Finally, non-structural constraints are verified by extending
both Csmof and Qvtr specifications using other logics, as Casl in the ex-
ample. Hets also allows for disproving things using consistency checkers. This
provides an additional point of view. In particular, we can check if a set of rules
have contradictory conditions which could inhibit its execution.

In most cases a general-purpose logic, as provided by Casl, is enough to
cover most of the verification approaches in [2]. The future inclusion of OCL
as an institution will provide additional support in this sense. However, the
verification process may depend on the problem to verify, since it is well-known
that there is a “state explosion” problem when using automated checkers. Thus,
automatic proofs are not always possible. In Hets it is possible to choose the tool
we want to use. In this sense, we can choose not to use an automated theorem
proving system, but for example an interactive theorem prover.

14

Verification interests go beyond these kinds of problems. When verifying a
model transformation we want to consider its elements as a whole and not indi-
vidually. In this sense, sometimes the notion of a transformation model is used,
i.e. a model composed by the source and target metamodel, the transformation
specification and the well-formedness rules. We have a transformation model in
a Qvtr theory (QVTTransformation in the example) which allows to add other
properties by combining elements from the source and target metamodels and
SW-models. With this we can state model syntax relations, trying to ensure
that certain elements or structures of any input model will be transformed into
other elements or structures in the output model. This problem arises when,
for example, these relations cannot be inferred by just looking at the individual
transformation rules. We can also state model semantics relations, e.g. tempo-
ral properties and refinement. Besides further work is needed to evaluate the
alternatives, there are languages and tools, as ModalCasl and VSE (based on
dynamic logics) commonly used for verifying these kinds of things. We could
also be interested in working at another abstraction level, i.e. not considering
specific SW-models but only metamodels and the transformation specification.
This can be useful, for example, for proving that a transformation guarantees
some model syntax relations when transforming any valid source SW-model. The
problem here is that we need another institutional representation, e.g. we need
to consider an abstract representation of a SW-model instead of a fixed one.

6 Related Work

There are some works that define environments for the comprehensive verifi-
cation of MDE elements based on a unified mathematical formalism. As an
example, in [13] rewriting logic is used to analyze MOF-like and QVT-like el-
ements. Since rewriting logic was integrated into Hets [14], we can use these
representations instead of using our comorphism into Casl. Nevertheless, since
our institution is logic-independent it provides more flexibility for the definition
of further specific comorphisms into other logics and languages (e.g. UML). In
general, the use of a fixed unified mathematical formalism serving as a unique
semantic basis can be quite restrictive. With our approach we can move between
formalisms, and use a unified mathematical formalism if necessary (e.g. when
transforming the whole specification into Casl).

In [15] the authors define a language-independent representation of meta-
models and model transformations supporting many transformation languages.
They also define mappings to the B and Z3 formalisms. Since they use only one
generic language, only one semantic mapping needs to be defined for each target
formalism. However, the semantic mapping should be semantics-preserving, and
this aspect is not formally addressed in such work. In our case, comorphisms
already preserve the semantics with respect to the satisfaction relation. More-
over, our comorphism into Casl and the corresponding implementation in Hets,
provides the possibility of connecting our institutions to several logics and tools.

15

There are works representing the semantics of UML class diagrams with
first-order logic, as in [16]. Since there are no so many alternatives for this re-
presentation, these works have similarities with our representation of extended
Csmof into Casl. In particular, the work in [16] is the nearest to ours from
which we take many aspects, e.g. the “distinguishability” and “completeness of
elements” axioms. In [17] the authors explain how class diagrams with OCL
constraints can be translated into Casl. However, their definition is informally
presented, and not in terms of a comorphism. In [18] the authors define a comor-
phism from UML class diagrams with rigidity constraints to ModalCASL (an

extension of Casl). Since our IM+

institution is an adaptation of the institution
for UML class diagrams, the comorphisms have some aspects in common, as the
translation of formulas, but without the modal logic particularities.

Several approaches to heterogeneous specification have been developed for
traditional software development, but there is little tool support. CafeOBJ [19]
is a prominent approach based on the theory of institutions. However it provides
a fixed cube of eight logics and twelve projections (formalized as institution mor-
phisms), not allowing logic encodings (formalized as comorphisms). Thus, it is
not an option for the definition of our environment. Moreover, HeteroGenius [20]
is a framework, based on institutions, allowing the interaction between different
external tools giving the user the possibility of performing hybrid analysis of a
specification. However, the framework is not formally defined or available to be
used as a basis for our environment.

7 Conclusions & Future Work

We have presented the implementation of an environment for the formal verifica-
tion of different MDE aspects using heterogeneous verification approaches, which
is based on a theoretical definition presented in a previous work [4]. The envi-
ronment was integrated into Hets by defining comorphisms from institutions
representing MDE elements to Casl, the core language of Hets. The existent
connections between Casl and other logics within Hets broadens the spectrum
of logical domains in which the verification of MDE elements can be addressed.

The environment supports a separation of duties between software developers
(MDE and formal methods experts) such that a formal perspective is available
whenever it is required. A developer can import the MDE elements, supplement
this information with verification properties specified in other languages within
the graph of logics supported by Hets, and perform the heterogeneous verifica-
tion assisted by the tool. Since the implementation can generate a heterogeneous
specification from the same files used by MDE practitioners, and there is no need
of rewriting MDE building block in each logic involved, the environment is scal-
able without human assistance. Although our proposal is aligned with OMG
standards, this idea can be potentially formalized for any transformation ap-
proach and language, which allows extending the approach as far as necessary.
Finally, the environment is reliable since it is supported by a well-founded theory
and by a mature tool in which there are several logics already defined.

16

Nevertheless, we still have some open issues. A current drawback is the inex-
istence of an institution for OCL which is a language in which QVT is strongly
based. For now we have considered a very simple expressions language, but the
definition of an institution for OCL is subject of further work. In the same sense,
we expect to extend the institutions to include some elements not considered
and give them tool support, besides exploring other options for the verification
of transformation properties. This will strengthen the formal environment for
MDE. Since our institutions formalize languages strongly related with those in
the UML ecosystem, it will be interesting to explore the possibility of integrating
them with other languages, as those already defined as institutions in [21].

We need to continue bridging the gap between MDE and formal verification in
terms of tool development in order to practitioners really be able to benefit from
our approach. First, we can connect the definition of the MDE elements in any
popular tool with an automatic generation of the heterogeneous specification,
as explained in Section 5.1, and the execution of Hets using this specification.
Moreover, we could perform an automated verification of some properties (if pos-
sible) by running Hets in the background and providing a better user interface
to show the problems found by Hets. For this to be possible, we need to improve
feedback from existing formal tools. This needs better traceability between the
problem definition and the results given by a verification tool. We can define
some traceability links from comorphisms, interpret the output of the verifica-
tion tool and return something that the MDE practitioner can interpret. This
interpretation is like defining a transformation between the domain of outputs
of the verification tool and the domain of messages in MDE.

Moreover, as described in Section 5.2, the environment deals with many ve-
rification properties, but a deeper understanding of this (as for example about
the behavior of models) is a must. In this sense, we can use the knowledge in [2]
to provide a guide for the selection of the “right” verification approach for the
problem which is of interest to verify. We also need to apply our approach to
industrial, real-size examples for strengthening the results.

A final topic of interest, somewhat related to this work, is to explore the
possibility of leveraging the capabilities of Hets by using MDE elements as a
metalanguage for expressing logics and comorphisms. If metamodels are defined
for different logics, model transformations can be used to express comorphisms
between them. Models can represent specifications within corresponding logics
and an automatic process can generate their representation to the Hets engine.
This could eventually simplify the definition of logics and comorphisms.

References

1. Kent, S.: Model driven engineering. LNCS, vol. 2335, pp. 286–298. Springer (2002)

2. Calegari, D., Szasz, N.: Verification of model transformations: A survey of the
state-of-the-art. ENTCS, vol. 292, pp. 5–25. Elsevier (2013)

3. Mossakowski, T.: Heterogeneous specification and the Heterogeneous Tool Set.
Technical report, Universitaet Bremen (2005) Habilitation thesis.

17

4. Calegari, D., Szasz, N.: Institution-based semantics for MOF and QVT-relations.
LNCS, vol. 8195, pp. 34–50. Springer (2013)

5. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM 39 (1992) 95–146

6. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. LNCS,
vol. 4424, pp. 519–522. Springer (2007)

7. Mossakowski, T., Haxthausen, A.E., Sannella, D., Tarlecki, A.: Casl- the com-
mon algebraic specification language: Semantics and proof theory. Computers and
Artificial Intelligence 22 (2003) 285–321

8. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Specification Version
2.0, Object Management Group (2003)

9. OMG: Object Constraint Language. Formal Specification Version 2.2, Object
Management Group (2010)

10. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final
Adopted Specification Version 1.1, Object Management Group (2009)

11. Calegari, D.: Heterogeneous Verification of Model Transformations.
PhD thesis, Universidad de la República - PEDECIBA (2014) url:
https://www.fing.edu.uy/inco/pedeciba/bibliote/tesis/tesisd-calegari.pdf

12. Codescu, M.: Generalized theoroidal institution comorphisms. LNCS, vol. 5486,
pp. 88–101. Springer (2008)

13. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification
of model transformations. LNCS, vol. 5503, pp. 18–33. Springer (2009)

14. Codescu, M., Mossakowski, T., Riesco, A., Maeder, C.: Integrating Maude into
Hets. LNCS, vol. 6486, pp. 60–75. Springer (2011)

15. Lano, K., Rahimi, S.K.: Model transformation specification and design. Advances
in Computers 85 (2012) 123–163

16. Shan, L., Zhu, H.: Semantics of metamodels in UML. In: Proc. TASE, IEEE
Computer Society (2009) 55–62

17. Bidoit, M., Hennicker, R., Tort, F., Wirsing, M.: Correct realizations of interface
constraints with OCL. LNCS, vol. 1723, pp. 399–415. Springer (1999)

18. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain specific
languages: A craftsman’s approach for the railway domain using CASL. LNCS,
vol. 7841, pp. 178–194. Springer (2013)

19. Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification. Volume 6
of AMAST Series in Computing. World Scientific (1998)

20. Giménez, M., Moscato, M., López, C., Frias, M.: Heterogenius: A framework for
hybrid analysis of heterogeneous software specifications. EPTCS, vol. 139, pp.
65–70. (2018)

21. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach
to UML Semantics LNCS, vol. 5065, pp. 383–402. Springer (2008)

